6:30-7:30pm Tuesday, September 29, 2009, ME 312,

1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. Some time-consuming and bonus questions are assigned a small number of points. Make sure you manage your time well during the exam.
4. There are 4 questions and 12 pages in the exam booklet. Use the back of each page for rough work.
5. Neither calculators nor help sheets are allowed.
Name:
Student ID:
E-mail:
Signature:

Question 1: [20\%]
Consider a hypothesis testing problem with observation Y :
$H_{0}: Y$ is of distribution $P_{Y} \sim e^{-2|y-1|}$, and
$H_{1}: Y$ is of distribution $Q_{Y} \sim e^{-\pi(y+1)^{2}}$.

1. [6\%] Write down the Maximum Likelihood (ML) detector in the form of a log-likelihood-ratio test.
2. [6\%] Find out the decisions for different observations $Y=0.5, Y=-0.5$, and $Y=-3$, respectively.
3. [8\%] Prove that the ML detector minimizes the summation of the false-alarm and the misdection probabilities.

Question 2: [30\%] Consider a binary code of the following 1 by N parity-check matrix

$$
H=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & \cdots & 1 \tag{1}
\end{array}\right) .
$$

Suppose we pass this code through an i.i.d. binary-input/ternary-output channel with a parameter $\epsilon \in[0,1]$. Namely, for each $X=x, x \in\{0,1\}$, we have

$$
P(Y=y \mid X=x)= \begin{cases}1-\epsilon & \text { if } y=(-1)^{x} \tag{2}\\ \epsilon & \text { if } y=0 \\ 0 & \text { if } y=(-1)^{x+1}\end{cases}
$$

1. [3\%] What is the code rate of this code.
2. [8\%] Suppose the received output is $\vec{y}=y_{1} y_{2} y_{3} \cdots y_{N}$ where each y_{i} takes value in $\{-1,0,1\}$. Plot the factor graph representation of the joint probability $P_{\vec{X} \vec{Y}}(\vec{x}, \vec{y})$, assuming each valid codeword is equally likely to be chosen. Please explicitly describe the factor functions used in your factor graph representation.
3. [8\%] Use the BCJR decoder on this factor graph to find the Maximum A posteriori Probability (MAP) decision of the third bit x_{3}, assuming the observation is $\vec{y}=$ $-1,1,0,-1,1,1,1,-1$ with $N=8$. Please write down all the forward (and feedback) metrics $a_{X_{i}}\left(x_{i}\right)$ (and $\left.b_{X_{j}}\left(x_{j}\right)\right)$ in the following form

$$
a_{X_{i}}\left(x_{i}\right)= \begin{cases}\cdots & \text { if } x=\cdots \tag{3}\\ \cdots & \text { if } x=\cdots\end{cases}
$$

And write down the decision rule in the final stage.
4. [5\%] Repeat the above question for general $\vec{y}=y_{1} y_{2} y_{3} \cdots y_{N}$. For this sub-question, there is no need to write down the detailed derivation of the state metrics. A final result in terms of the observation $y_{1} y_{2} y_{3} \cdots y_{N}$ would be sufficient.

Note: when there is a tie between the computed posterior probabilities, please declare x_{3} as "uncertain" rather than choose it to be 0 or 1 .
5. [6\%] Suppose the all-zero codeword $\vec{x}=0,0,0,0, \cdots, 0$ was transmitted. Find the closed-form expression of the probability that the third bit x_{3} is declared as "uncertain". Your answer should be in terms of ϵ and N.

Question 3: [35\%] Consider the following trellis structure with three states, which takes an input of T binary bits $u_{1} u_{2} \cdots u_{T}$ to an output of T real numbers $v_{1} v_{2} \cdots v_{T}$. Each v_{i} takes value in $\{-1,0,1\}$.

We thus have 2^{T} different valid codewords. A popular application of trellis codes is "trellis quantization." That is, a trellis quantizer takes as input any T-dimensional real vector $\vec{x}=\left(x_{1}, x_{2}, \cdots, x_{T}\right)$ and outputs a binary string $\hat{\vec{u}}=\left(\hat{u}_{1}, \hat{u}_{2}, \cdots, \hat{u}_{T}\right)$ such that among all 2^{T} valid trellis codewords, the $\hat{\vec{v}}$ real vector corresponding to $\hat{\vec{u}}$ is the one that is the closest to \vec{x} in terms of the Euclidean distance $\sqrt{\sum_{i=1}^{T}\left(x_{i}-v_{i}\right)^{2}}$.

Describe how to implement such trellis quantization by describing the following three steps of your iterative trellis quantizers:

- For the t-th stage, write down the path-metric assignment for the six branches in the trellis when the input is x_{t}.
- Describe the update rules of your trellis quantizer.
- Describe carefully the final decision rule of your trellis quantizer.

Question 4: $[15 \%+$ bonus $10 \%]$ The description of this problem is very long but the questions are actually much simpler.

Consider the following communication scheme over a binary symmetric channel with cross-over probability p. Namely, for any time slot t, the transmitter can remain silent $x_{t}=0$ or transmit a bit $x_{t}=1$. When transmitting a zero (remaining silent), the transmitter uses no power (cost $=0$). When transmitting a one, the transmitter uses power $1(\operatorname{cost}=1)$. There are totally T slots available.

Suppose we use $H_{2}(p)$ to denote the binary entropy function

$$
\begin{equation*}
H_{2}(p) \triangleq-p \log _{2}(p)-(1-p) \log _{2}(1-p) \tag{4}
\end{equation*}
$$

The maximum number of bits one can transmit over this channel is $T(I(X ; Y))=T(1-$ $\left.H_{2}(p)\right)$, which requires $P(X=0)=P(X=1)=1 / 2$. The total cost for the transmission is thus $T / 2$. The data rate per cost is thus $\frac{T\left(1-H_{2}(p)\right)}{T / 2}=2\left(1-H_{2}(p)\right)$. On the other hand, we can choose non-uniform prior distribution $P(X=0)=1-w$ and $P(X=1)=w$ instead. One can show that with the non-uniform prior distribution the achievable rate per unit cost is

$$
\frac{H_{2}(w+p-2 p w)-H_{2}(p)}{w}
$$

By some simple calculus, one can show that

$$
\begin{equation*}
\max _{w \in[0,1]} \frac{H_{2}(w+p-2 p w)-H_{2}(p)}{w}=D\left(P_{1} \| P_{0}\right) \tag{5}
\end{equation*}
$$

where the two distributions P_{1} and P_{0} are

$$
\begin{gather*}
P_{1}(y)=P_{Y \mid X}(y \mid x=1)=\left\{\begin{array}{ll}
p & \text { if } y=0 \\
(1-p) & \text { if } y=1
\end{array},\right. \\
P_{0}(y)=P_{Y \mid X}(y \mid x=0)= \begin{cases}(1-p) & \text { if } y=0 \\
p & \text { if } y=1\end{cases} \tag{6}
\end{gather*}
$$

Namely, the maximum achievable capacity per unit cost (ACPUC) is $D\left(P_{1} \| P_{0}\right)$ with $p^{*}=0$.

Question: Consider the following code construction that achieves this optimal rate per unit cost and answer the following subquestions.

Our construction has $M+1$ valid codewords. We first divide the T bits into M different sub-periods, each period has T / M bits. The zero-th codeword $\vec{x}_{0}=00 \cdots 0$ contains T zeros. The second codeword is $\vec{x}_{0}=\underbrace{11 \cdots 1}_{T / M \text { bits }(M-1) T / M \text { bits }} \underbrace{000}_{(0000 \cdots 0}$. Namely, the first sub-period is
all one and the remaining bits are all zero. Similarly, the i-th codeword $\vec{x}_{i}, i=2, \cdots, M$ has the i-th subperiod being all one while the remaining subperiods being all zero.

For example, if $T=6$ and $M=3$, the four valid codewords are: $\vec{x}_{0}=000000$, $\vec{x}_{1}=110000, \vec{x}_{2}=001100$, and $\vec{x}_{3}=000011$.

We choose the M value satisfying $M+1=2^{\frac{T}{M} \cdot\left(D\left(P_{1} \| P_{0}\right)-\delta\right)}$ for some small $\delta>0$

1. [3\%] With $M+1=2^{\frac{T}{M} \cdot\left(D\left(P_{1} \| P_{0}\right)-\delta\right)}$, how many bits can we transmit using this scheme?
2. [3\%] With the above construction, in average, how much cost is it to transmit a codeword?
3. [2\%] What is the rate per unit cost of the above scheme.
4. $[7 \%+$ bonus $10 \%=17 \%]$ The remaining question is whether the receiver can successfully distinguish among the $M+1$ different codewords $\vec{x}_{i}, i=0, \cdots, M$ based on the noisy observation over the binary symmetric channel. Explain in words (or prove that) why using the above scheme the receiver can indeed successfully distinguish among $M+1$ different codewords $\vec{x}_{i}, i=0, \cdots, M$ when T is sufficiently large.
Hint 1: Quantify the probability that the \vec{x}_{0} being misdetected as \vec{x}_{i} for some $i \neq 0$.
Hint 2: Design a decoder that looks at each of the M subperiods individually first and then make a decision by jointly considering all M subperiods together.
