Lecture 01

1/11/2012

Roview of prob notation (assuming discrete random variables)

Capital X \ Z: Yardom variable

small X y z: deterministic values

 $P_X(x) = Prob(X=x)$ is a number for

a function w.r.t. X

 $P_{x}(\bullet) \circ S_{x} \longrightarrow [0,1]$ is a function

 $P_{T}(x(y|x) = P_{rob}(Y=y|X=x))$ is a number

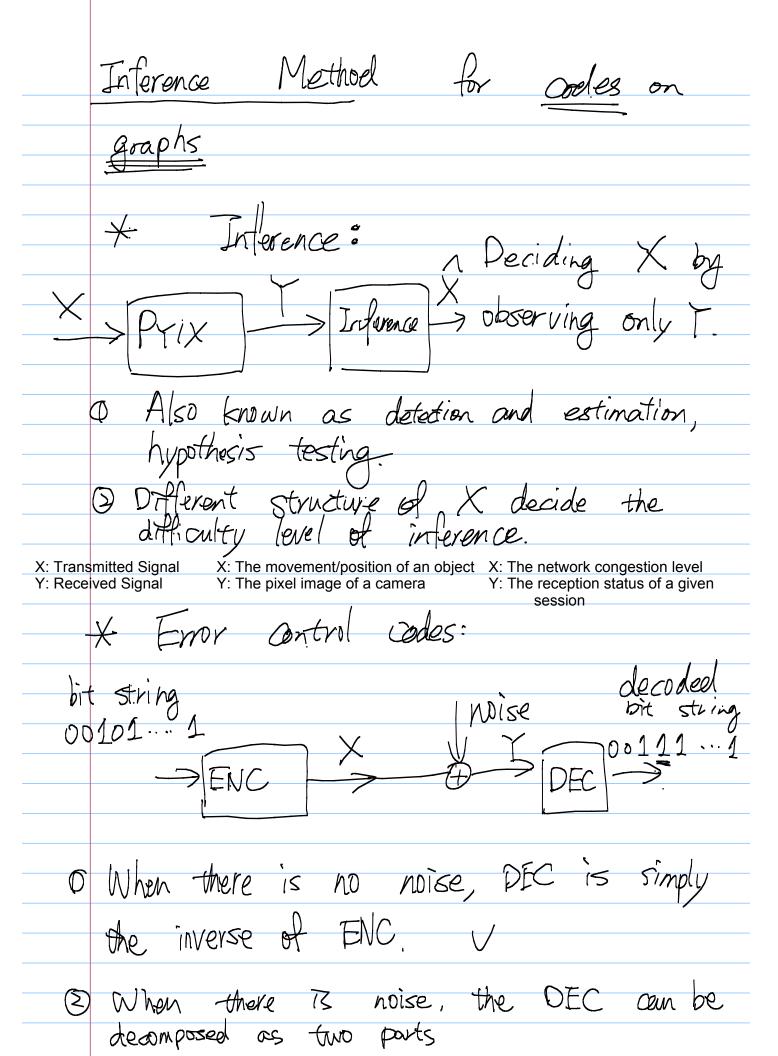
 $P_{Y|X}(\bullet|\bullet): S_{Y} \times S_{X} \longrightarrow [0,1]$

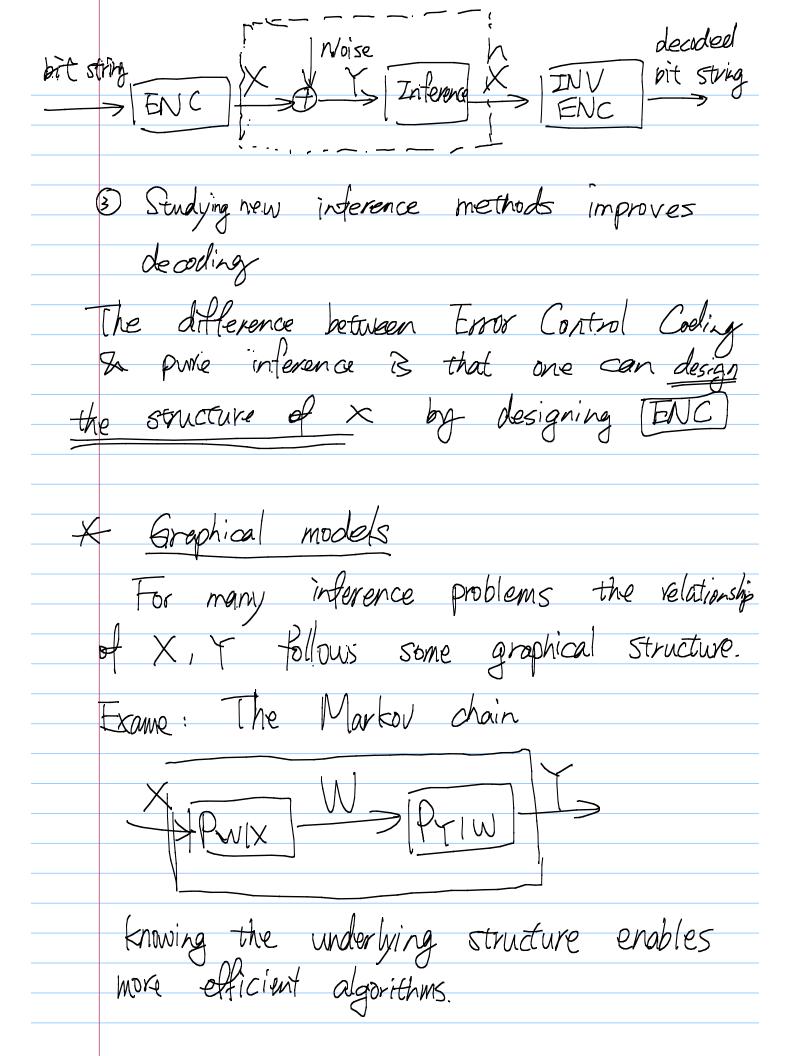
 $P_{Y}(X(Y|\bullet): S_{X} \longrightarrow [0,1]$

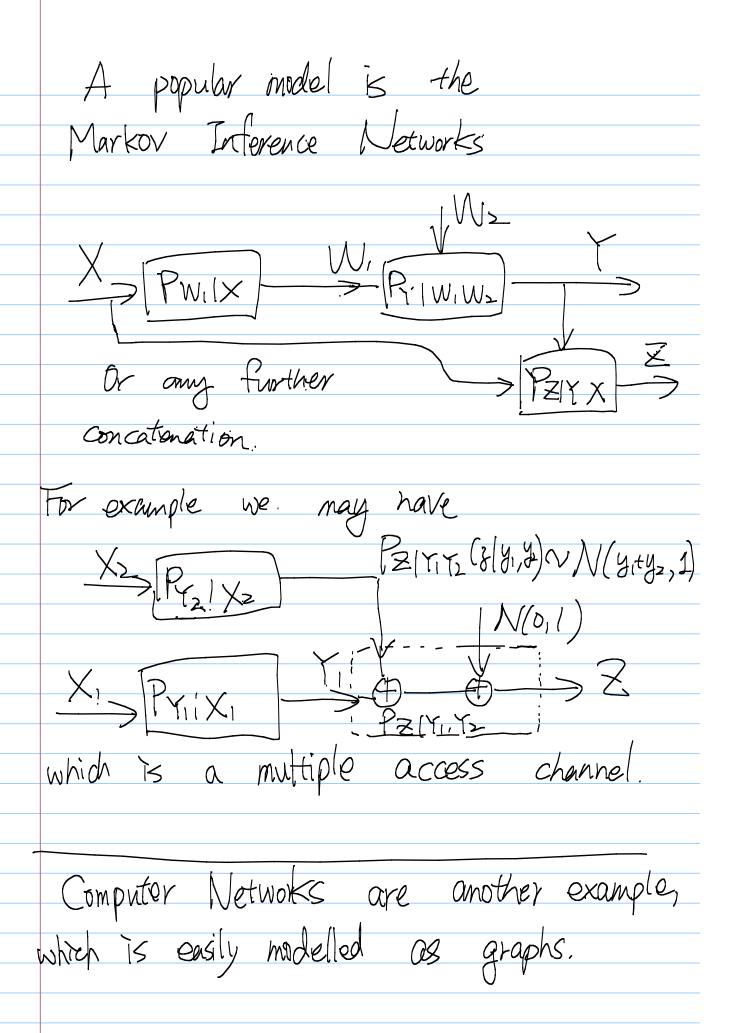
ECE 639: ECC

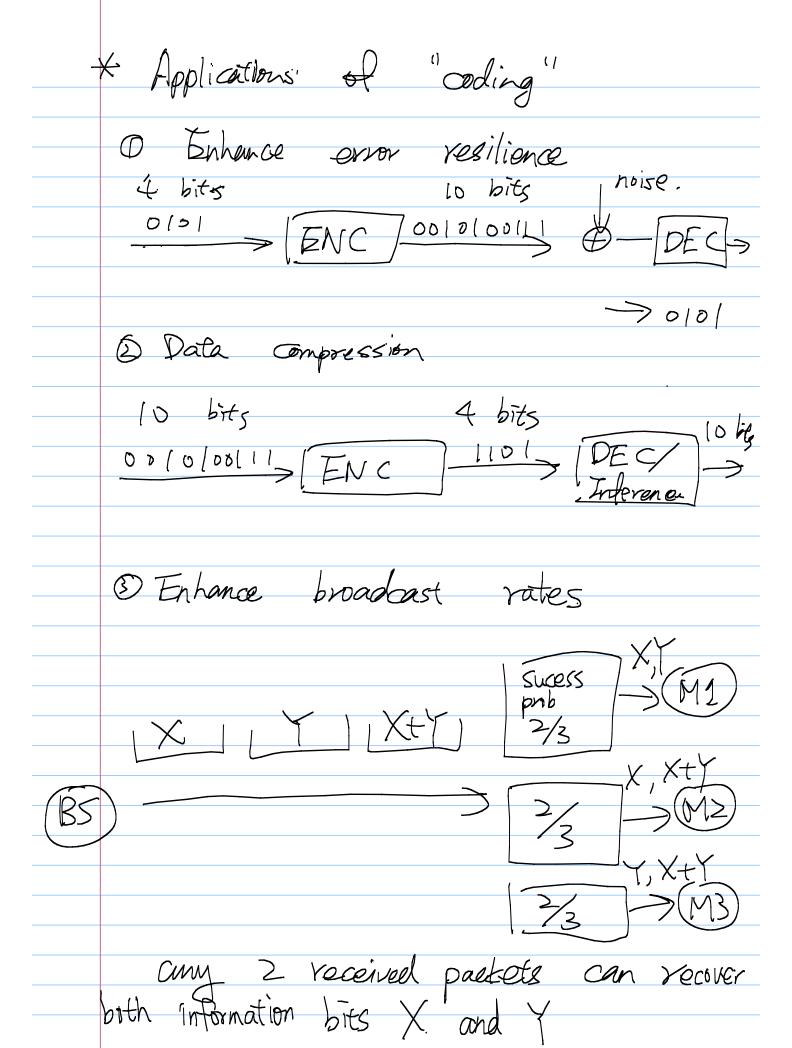
ECE 642: Into theory

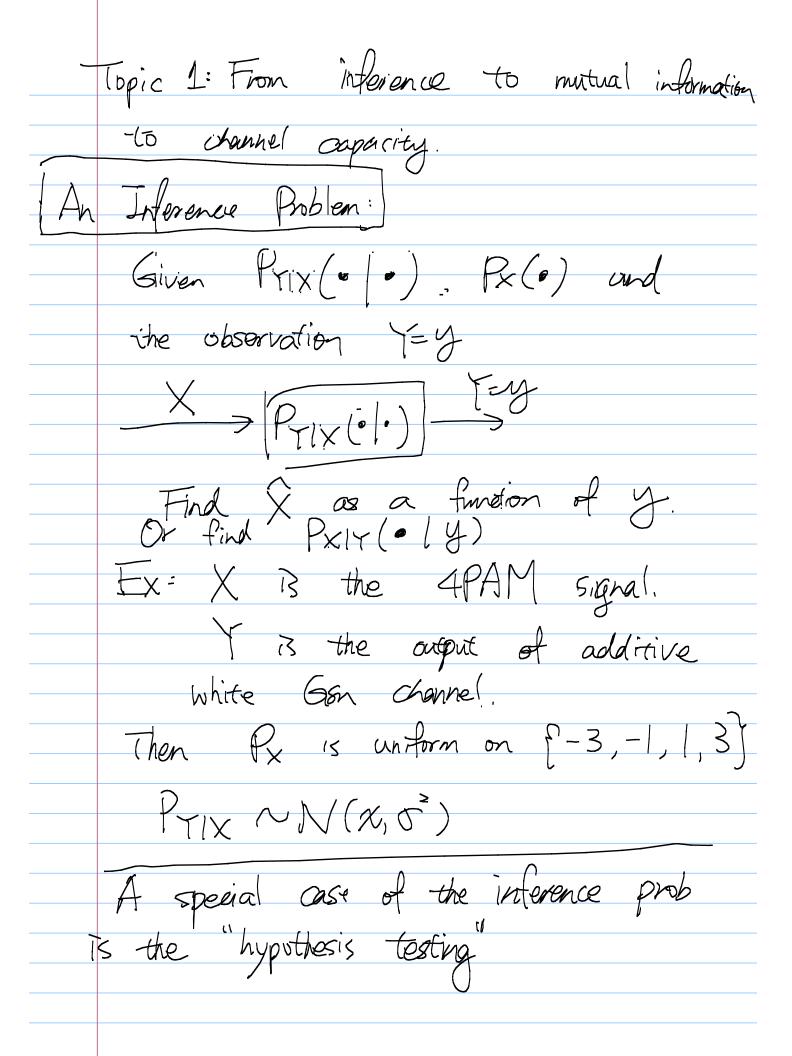
ECE 645: Estimation theory











	Two hypotheses.
	Ho? (~P
	[-1: Y ~ QY
	P(Ho T3 true) = Po P(H1 is true) = 1-Po
	observe Y=y. Find P(Ho is true (Y=y)
	It is indeed an inference problem
	X=0 or 1 .
	Pr: Prix (• (0) P(Hz is true)
	$Q_{\tau}: P_{\tau \mid X}(\cdot \mid 1) = P(X = i)$
(Solution of the HT:
	The maximum a posteriori prob (MAP)
	detector.
/	$\chi_{\text{MAP}}(y) = \max_{\chi=c,j} P(\chi=x)$
	By Bayes' Rule (1)
	By Bayes' Rule $p(X=0, Y=y)$ $P(X=0 Y=y) = \frac{p(X=0, Y=y)}{p(Y=y)}$
	P(Y=y x=0) P(X=0)
	$\frac{1}{P(Y=y X=0)P(X=0)+P(Y=y X=1)}$
	P(X=1)
	i /

 $\frac{P_{X|Y}(o|y)}{P_{X|Y}(1|y)} = \frac{P_{Y|X}(y|o) \cdot P_{X}(o)}{P_{Y|X}(y|1) \cdot P_{Y}(1)} \ge 1$ we choose XMAP (Y) = An aquivalent form of the MAP detector the likelihood ratio test. Prix(y/2) Converted to the log likelihood ratio test by taking the logarithm Prix(y(0)) vs. leg PCX Prix (4/1)

	@ When we set 7=1, & compare
	$L(y) \ge 1$, it becomes a
	maximum likelinood (ML) detector.
_	X The MAP In ML detectors with
	3 competing hypotheses
	X=0,1,2
	(XMAP(Y) = argmax PX/Y(X/Y)
	$X_{ML}(y) = argmax P_{Y/X}(y/X)$ $X_{MAP}(\bullet) = X_{ML}(\bullet)$ when $P(X=0) = P(X=1) = P(X=2) = \frac{1}{3}$
	$X_{MAP}(\bullet) = X_{ML}(\bullet)$ when $P(X=0) = P(X=1) = P(X=2) = 3$
{	sample: A binary symmetric channel with non-uniform prior distribution
	1-P (=0
	3 X=1 P T=1
	Q: Find the XMP (y).

Ahs: We need to determine XMAP(Y)
as a function of y. When Y=0 $P_{X|Y}(x|0) = \int_{-\frac{3}{3}}^{\frac{1}{3}(1-p)} = \frac{1-p}{1+p}$ When Y=1 Case I The XMAP $(y) = \begin{cases} 2-2p \\ 2-p \end{cases}$ if y=0 ase I $p < \frac{1}{3}$ We have three cases. $X_{MAP}(y) = \begin{cases} 0 & \text{if } y=0 \\ 1 & \text{if } y=0 \end{cases}$ $X_{MAP}(y) = \begin{cases} 0 & \text{if } y=0 \\ 1 & \text{if } y=0 \end{cases}$ for y=0, If 3 < p < XMAP (4)=