ECE 695C, Homework \#2, due date: 2/9/2012

https://engineering.purdue.edu/~chihw/12ECE695C/12ECE695C.html

Question 1: Consider the following inference problem:

$$
\begin{aligned}
& P_{X}(0)=1 / 3, P_{X}(1)=2 / 3 \\
& P_{Y \mid X}(\cdot \mid x) \sim \operatorname{Gsn}\left(0, x+\sigma^{2}\right)
\end{aligned}
$$

Find the divergence $D\left(P_{0} \| P_{1}\right)$ between $P_{0}=P_{Y \mid X}(\cdot \mid 0)$ and $P_{1}=P_{Y \mid X}(\cdot \mid 1)$.

Question 2: Consider the following inference problem specified by the joint probability $\underline{\underline{\text { mass function of } X \text { and } Y} \text { : }}$

	$X=0$	$X=1$
$Y=0$	$\frac{5}{36}$	$\frac{5}{18}$
$Y=1$	$\frac{5}{18}$	$\frac{5}{36}$
$Y=2$	$\frac{1}{48}$	$\frac{1}{16}$
$Y=3$	$\frac{1}{16}$	$\frac{1}{48}$

1. What is the corresponding p_{e} error probability of a MAP detector?
2. If we define $b=E\left(\sqrt{\frac{P_{X \mid Y}((1-X) \mid Y)}{P_{X \mid Y}(X \mid Y)}}\right)$, find out the b value for this problem. Hint: you should first decide the function $f(x, y)=\sqrt{\frac{P_{X \mid Y}(1-x \mid y)}{P_{X \mid Y}(x \mid y)}}$, and then evaluate the $E(f(X, Y))$. In communications, this b is termed the Bhattacharyya noise parameter for a given channel.
3. Consider the following hypothesis testing problem. H_{0} : A sequence of $n 1 \mathrm{~s}(111 \cdots, 1)$ is transmitted over the above binary-input/quaternary-output channel. H_{1} : A sequence of $n 0 \mathrm{~s}(000 \cdots, 0)$ is transmitted over he above binary-input/ternary-output channel and Y_{1} to Y_{n} are the corresponding output.
Use the Chernoff bound to bound the average error probability of a MAP detector. Verify that the Chernoff bound is indeed the Bhattacharyya noise parameter.
4. [Optional] You might notice that $2 p_{e} \leq b$. Prove that for any given table,

	$X=0$	$X=1$
$Y=0$	$p_{0,1}$	$p_{1,1}$
$Y=1$	$p_{0,2}$	$p_{1,2}$
$Y=2$	$p_{0,3}$	$p_{1,3}$

$2 p_{e} \leq b$ always holds.
5. [Optional] You might notice that $b \leq 2 \sqrt{p_{e}\left(1-p_{e}\right)}$. Prove that for any given table,

	$X=0$	$X=1$
$Y=0$	$p_{0,0}$	$p_{1,0}$
$Y=1$	$p_{0,1}$	$p_{1,1}$
$Y=2$	$p_{0,2}$	$p_{1,2}$

$b \leq 2 \sqrt{p_{e}\left(1-p_{e}\right)}$ always holds. Hint: Note that $f(p)=\sqrt{p(1-p)}$ is a concave function with respect to p.

Question 3: Show that entropy $H(X)=E_{X}\left\{\log \left(\frac{1}{P_{X}(X)}\right)\right\}$ is a concave function. Hint: You can use the convexity of the divergence.

Question 4: Consider a special binary erasure channel as follows. Given a bit string of length n, at most ϵn bits will be completely erased. For example: for $n=6, \epsilon=1 / 3$, if one sends 6 bits 010010, then at most 2 bits are erased. One possible received bit string is $01^{*} 0^{*} 0$.

If we are allowed to use the channel exactly n times, design three binary codes that can achieve error-free transmission for the following three difference scenarios, respectively.

1. $n=2, \epsilon=1 / 2$.
2. $n=3, \epsilon=1 / 3$.
3. $n=4, \epsilon=1 / 2$.

In your schemes, how many codewords can you pack into the space. The code rate of yours is then defined as

$$
\begin{equation*}
\frac{\log _{2}(\text { the number of codewords })}{n} . \tag{1}
\end{equation*}
$$

Hint: the X vector takes values in $\{0,1\}^{n}$, while the observation Y vector takes values in $\{0,1, *\}^{n}$.

