https://engineering.purdue.edu/~chihw/12ECE695C/12ECE695C.html

Question 1: Consider the following inference problem:

$$P_X(0) = 1/3, P_X(1) = 2/3,$$

 $P_{Y|X}(\cdot|x) \sim Gsn(0, x + \sigma^2).$

Find the divergence $D(P_0||P_1)$ between $P_0 = P_{Y|X}(\cdot|0)$ and $P_1 = P_{Y|X}(\cdot|1)$.

Question 2: Consider the following inference problem specified by the joint probability mass function of X and Y:

	X = 0	X = 1
Y = 0	$\frac{5}{36}$	$\frac{5}{18}$
Y = 1	$\frac{5}{18}$	$\frac{5}{36}$
Y = 2	$\frac{1}{48}$	$\frac{1}{16}$
Y = 3	$\frac{1}{16}$	$\frac{1}{48}$

1. What is the corresponding p_e error probability of a MAP detector?

- 2. If we define $b = E(\sqrt{\frac{P_{X|Y}((1-X)|Y)}{P_{X|Y}(X|Y)}})$, find out the *b* value for this problem. Hint: you should first decide the function $f(x,y) = \sqrt{\frac{P_{X|Y}(1-x|y)}{P_{X|Y}(x|y)}}$, and then evaluate the E(f(X,Y)). In communications, this *b* is termed the Bhattacharyya noise parameter for a given channel.
- 3. Consider the following hypothesis testing problem. H_0 : A sequence of n 1s (111..., 1) is transmitted over the above binary-input/quaternary-output channel. H_1 : A sequence of n 0s (000..., 0) is transmitted over he above binary-input/ternary-output channel and Y_1 to Y_n are the corresponding output.

Use the Chernoff bound to bound the average error probability of a MAP detector. Verify that the Chernoff bound is indeed the Bhattacharyya noise parameter.

4. [Optional] You might notice that $2p_e \leq b$. Prove that for any given table,

	X = 0	X = 1
Y = 0	$p_{0,1}$	$p_{1,1}$
Y = 1	$p_{0,2}$	$p_{1,2}$
Y = 2	$p_{0,3}$	$p_{1,3}$

 $2p_e \leq b$ always holds.

5. [Optional] You might notice that $b \leq 2\sqrt{p_e(1-p_e)}$. Prove that for any given table,

	X = 0	X = 1
Y = 0	$p_{0,0}$	$p_{1,0}$
Y = 1	$p_{0,1}$	$p_{1,1}$
Y = 2	$p_{0,2}$	$p_{1,2}$

 $b \leq 2\sqrt{p_e(1-p_e)}$ always holds. Hint: Note that $f(p) = \sqrt{p(1-p)}$ is a concave function with respect to p.

Question 3: Show that entropy $H(X) = E_X \left\{ \log(\frac{1}{P_X(X)}) \right\}$ is a concave function. Hint: You can use the convexity of the divergence.

Question 4: Consider a special binary erasure channel as follows. Given a bit string of length n, at most ϵn bits will be completely erased. For example: for n = 6, $\epsilon = 1/3$, if one sends 6 bits 010010, then at most 2 bits are erased. One possible received bit string is 01^*0^*0 .

If we are allowed to use the channel exactly n times, design three binary codes that can achieve *error-free* transmission for the following three difference scenarios, respectively.

1. $n = 2, \epsilon = 1/2$.

2.
$$n = 3, \epsilon = 1/3.$$

3.
$$n = 4, \epsilon = 1/2.$$

In your schemes, how many codewords can you pack into the space. The code rate of yours is then defined as

$$\frac{\log_2(\text{the number of codewords})}{n}.$$
 (1)

Hint: the X vector takes values in $\{0, 1\}^n$, while the observation Y vector takes values in $\{0, 1, *\}^n$.