High Frequency Model

\[\omega \uparrow \Rightarrow \frac{1}{j \omega C} \downarrow \]

\[\Rightarrow V_{ab} \downarrow \]

\[\Rightarrow V_{out} \downarrow \]

High-frequency fall of voltage gain
Low-pass filter

Example: Single-pole circuit

\[R_s \xrightarrow{\downarrow} Z_{ab} \]

\[V_s \]

\[R_s \]

\[C_{in} \]

\[R_{in} \]

\[V_{out} \]
Single-pole circuit (High Freq.)

\[A_{vs} = \frac{Z_{ab}}{Z_{ab} + R_s} \cdot A \cdot \frac{R_L}{R_L + R_{out}} \]

\[Z_{ab} = \frac{R_{in}}{1 + j\omega C_{in} R_{in}} \]

\[A_{vs} = \frac{R_{in}}{R_{in} + R_s} \cdot A \cdot \frac{R_L}{R_L + R_{out}} \times \frac{1}{1 + j\omega C_{in} \frac{R_{in} R_s}{R_{in} + R_s}} \]

Let \(f_2 = \frac{1}{2\pi C_{in} \frac{R_{in} R_s}{R_{in} + R_s}} \)

\[|A_{MB}| \]

\[f \]

\[f_2 \]
\[T_p = C_{in} \left(\frac{R_{in} R_s}{R_{in} + R_s} \right) : \text{short-circuit time constant} \]

\[C_{ci} \text{ is shorted} \]

\[\begin{circuitikz}
\draw (0,0) to [short, v] (0,-1) to [short, v] (1,-1) to (1,0) to (0,0); \end{circuitikz} \]

Thevenin equivalent impedance seen by

\[C_{in} \text{ is } \left(\frac{R_{in} R_s}{R_{in} + R_s} \right) \]

\[\omega_2 = 2\pi f_2 = \frac{1}{T_p} = \frac{1}{C_{in} \left(\frac{R_{in} R_s}{R_{in} + R_s} \right)} \]
Double-pole circuit

\[\tau_{p1} = C_{in} \left(\frac{R_{in} R_s}{R_{in} + R_s} \right) \]

\[\tau_{p2} = C_{out} \left(\frac{R_{out} R_L}{R_{out} + R_L} \right) \]

\[A_{VS} = \frac{R_{in}}{R_{in} + R_s} A \frac{R_L}{R_L + R_{out}} \]

\[\frac{1}{1 + \frac{j f}{2 \pi \tau_{p1}}} \cdot \frac{1}{1 + \frac{j f}{2 \pi \tau_{p2}}} \]

\[f_2 = \frac{1}{2 \pi \tau_{p1}} \quad , \quad f'_2 = \frac{1}{2 \pi \tau_{p2}} \]

Overall higher corner frequency

\[[1 + \left(\frac{f_2}{f'_2} \right)^2][1 + \left(\frac{f_H}{f'_2} \right)^2] = 2 \]

\[f_H^4 + \left(f_2^2 + f'_2^2 \right) f_H^2 - f_2^2 f'_2^2 = 0 \]
Approximation for f_H

1. For each internal parasitic capacitors C_i,

 Determine R_{eff} seen by C_i

 assuming that other int. parasitic capacitors are open

 Calculate $\tau_i = R_{eff} \cdot C_i$

2. Approximate $\omega_H = \frac{1}{\tau_1 + \tau_2 + \ldots}$

 $< \text{true higher corner freq.}$

Approximation for AVS

$$AVS = \text{AMB} \cdot \frac{1}{1 - j\frac{f}{f_H}} \cdot \frac{1}{1 + j\frac{f}{f_H}}$$