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Experimental test of revised similarity hypotheses without Taylor’s hypothesis
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The refined similarity hypotheses (RSH) and their extension to passive scalar (RSH-P) are tested experimentally
using simultaneous velocity and scalar data in a turbulent jet. Different from the single-point hot-wire probe
in a previous experimental test, a combined particle image velocimetry and planar laser induced fluorescence
technique enable us to obtain the test data without applying Taylor’s hypothesis. RSH is successfully validated with
direct examinations of its three hypotheses. RSH-P is partially supported, where the hypothesis of independent
behavior of the stochastic variable υθ is not supported. The conditional probability density functions (PDFs) of
υ and υθ cannot be described by Gaussian distributions when Rer < 5 for υ and Rer < 300 for υθ , and their
Gaussian peaks converge when Rer > 100 for υ and Rer > 1000 for υθ . In addition, the bimodal behavior of the
PDFs and oscillations at small r in previous experimental tests are not observed in this study.
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I. INTRODUCTION

Inspired by Richardson’s description of energy cascade [1],
Kolmogorov [2] introduced that the anisotropic influence
from the large scales would be lost during the breakdown
of eddies and at the sufficiently small scales the flow would be
statistically homogeneous and isotropic, which was proposed
in the famous Kolmogorov’s similarity hypotheses (K41) and
believed as the era culmination of turbulent study [3]. K41
states that the statistics of the small-scale motions should have
a universal form when the Reynolds number is sufficiently
high. The nth moment of velocity increment, �u′

r ≡ u′(x +
r) − u′(x), is related to the turbulent dissipation, ε = 2νsij sij

[ν is the kinematic viscosity, and the strain rate tensor is
sij = 0.5(∂u′

i/∂xj + ∂u′
j /∂xi)], by〈

�u′n
r

〉 = Cn(r〈ε〉)n/3, (1)

where 〈·〉 denotes an averaging operation, and Cn is a universal
constant and r is within the inertial subrange. However,
for high orders n � 4, it is known that the discrepancies
of scaling exponents exist between the predictions of the
Kolmogorov theory (K41) and experimental results, where
the deviations are known as anomalous scaling [4]. This phe-
nomenon is termed intermittency. To account for intermittency,
Kolmogorov [5] and Oboukhov [6] revised K41 to refined
similarity hypotheses (RSH): (1) �ur is related to a local
energy dissipation rate

εr ≡ 1

V

∫
ε(x)dx, (2)

where V is a volume of linear dimension r , instead of 〈ε〉, by

�u′
r = υ(rεr )1/3. (3)

Here the nondimensional stochastic variable υ is independent
of r and εr . (2) The probability density function (PDF) of υ,
P (υ), varies with a local Reynolds number

Rer = r(rεr )1/3/ν, (4)

when r � L (L is integral length scale). (3) Furthermore,
when Rer � 1, P (υ) is independent of Rer [5,6].
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Previously, extensive efforts have been drawn to vali-
date RSH. Since all nine elements of sij cannot be fully
measured in experiments, a certain surrogate of ε using
measurable components must be adopted in the analysis, such
as ε � 15ν(∂u′

1/∂x1)2, by assuming isotropy. Hosokawa and
Yamamoto [7,8] discovered evidence against RSH by using
a direct numerical simulation (DNS) on isotropic turbulence,
while other studies, using DNS and high-Reynolds number
laboratory and atmospheric experiments, tend to support RSH
[9–13]. Hot-wire measurement of a cylinder wake at a Taylor
scale Reynolds number Rλ = 533 shows a joint probability
density function (JPDF) of �ur and (rεr )1/3 depends on
r in the inertial subrange [11]. Analysis of the correlation
between |�ur | and εr has been applied to test RSH using
experimental data [10] and DNS data [12]. However, the
correlation coefficient decreases as r increases in the inertial
subrange, which is less supportive to the hypotheses [10].

In wind tunnel experiments using hot-wire measurements,
when ε is estimated by the streamwise gradient of the trans-
verse velocity component ε � 7.5ν(∂u′

3/∂x1)2 (transverse
surrogate) instead of the commonly used ε � 15ν(∂u′

1/∂x1)2

(longitudinal surrogate), the dependence between |�u′
r | and

(rεr )1/3 disappears (correlation coefficient ∼0.1), and this
suggests that the previous experimental support for RSH may
be premature [14]. A study using DNS leads to a similar
conclusion [15]. To respond to this finding, Praskovasky et al.
experimentally tested RSH in a mixing layer generated in a
wind tunnel at high Reynolds number (Rλ > 103), and showed
that both the transverse surrogate and longitudinal surrogate
led to higher correlations between |�u′

r | and (rεr )1/3 than the
result in Ref. [14], thus RSH is still valid [16]. Hosokawa
et al. [17] showed that one-dimensional surrogates of ε gain
more intermittency, which can introduce fundamental changes
in the statistics of turbulence. A systematic study of the
intermittent behavior using DNS data reveals that all surrogates
of ε are more intermittent than the true dissipation (analyzed
using all nine elements of sij ), especially for the transverse
surrogate [18]. This work suggests that as many measurable
elements of sij should be used in estimating ε in order to reduce
the overintermittent behavior [18].

RSH has also been extended into the passive scalar field
(RSH-P) by assuming that velocity u and scalar θ are
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FIG. 1. (Color online) (a) Schematics of the turbulent jet facility, and a snapshot of simultaneous velocity (b) and scalar (c) fields. Only
1/4 of the velocity vectors are plotted for clarity of display.

equivalent to a certain extent in the inertial subrange [19,20].
In particular,

�θ ′
r ≡ θ ′(x + r) − θ ′(x) = υθ

(
r1/3ε−1/6

r χ1/2
r

)
, (5)

where

χr ≡ 1

V

∫
χ (x)dx (6)

is a local averaged scalar dissipation, and

χ ≡ 2

∂θ ′

∂xj

∂θ ′

∂xj

, (7)

where 
 is the diffusivity, and θ ′ = θ − 〈θ〉. Similar to RSH,
RSH-P states the following: (1) The nondimensional stochastic
variable υθ is independent of r , εr , and χr ; (2) when r � L,
the PDF of υθ , P (υθ ), varies with Rer; and (3) when Rer � 1,
P (υθ ) is independent of Rer. Among a few experiments, hot-
cold wire measurements of a circular jet and a cylinder wake
in wind tunnels support RSH-P [21,22]. The dynamical aspect
of RSH-P was tested using DNS and the obtained P (υθ ) is
nearly Gaussian [23].

When DNS is applied to test RSH and RSH-P, differ-
ent studies lead to different conclusions [7,8,12], and the
boundary conditions of DNS are usually idealized (e.g.,
periodic boundary condition). Other dominant contributions
for testing RSH and RSH-P were from the hot-cold-wire
probe measurements in a wind tunnel. When a hot-wire (or

a hot-cold-wire) probe is applied in the experiments, Taylor’s
hypothesis has to be adopted to extract spatial statistics from
pointwise temporal measurements. But to measure the small-
scale derivatives of velocity (or scalar), the results invoking
Taylor’s hypothesis introduce possible errors, i.e., derivatives
from Taylor’s hypothesis yield a correlation ranging from 0.56
to 0.74 with the true values (see the details in Ref. [24]).
A recent numerical simulation study interprets the bimodal
spectra derived from channel flow as artifacts of Taylor’s
hypothesis [25,26], which evokes doubt as to whether Taylor’s
hypothesis brings in artifacts to the test of RSH (and RSH-P).
In addition, the single-probe application measuring ε leads
to premature test conclusions by using a one-dimensional
surrogate [14,15]. When the hot-cold-wire probe is applied,
the cold-wire probe (mounted in front of the hot-wire probe)
introduces possible interference to the velocity measuring of
the hot-wire probe, since the distance between the two probes
is small (i.e., 2ηk−3ηk in Refs. [21,27]).

Yeung et al. [28] and Ishihara et al. [29,30] suggest the
moderate-Reynolds-number simulation could exhibit high-
Reynolds-number flow characteristics, which also should be
suitable to experimental work. Hence, in this paper, we present
an independent laboratory experimental test of RSH and RSH-
P using simultaneously measured high-resolution velocity-
scalar data from a turbulent jet. The velocity data within
the two-dimensional (2D) measurement plane were measured
using particle image velocimetry (PIV), whereas the scalar
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FIG. 2. (Color online) (a) Mean nondimensional streamwise
velocity 〈U〉/〈U0〉 and (b) mean nondimensional density difference
〈θ〉 distribution. The red dashed rectangular indicates the data used
in this study.

data were obtained using planar laser induced fluorescence
(PLIF). These field measurements enable us to revisit RSH
and RSH-P without Taylor’s hypothesis. Our main result is
that RSH is successfully validated through direct testing of the
hypotheses, and the trend of variation of P (υ) and its approach
to being uniform is clearly observed when Rer increases. While
the similar trend of variation of P (υθ ) and its approach to
being uniform is also observed when Rer increases, however,
the independence of υθ on r , εr , and χr is not observed.

II. EXPERIMENT

The experiment setup, sketched in Fig. 1 and described in
detail in Ref. [31], consists of a dense fluid (density ρs , mixed
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FIG. 3. (Color online) energy spectra E11(k1) and E33(k1).

with fluorescent dye) horizontally injected through a nozzle
into light fluid (ρe) with a slight density difference (as shown
in Table I). The details of the experimental running condition
are shown in Table I. In the experiments, the bulk Richardson
number Rib = 0.0002, thus the influence of stratification is
minimal. The overlap region of E11(k1) and 0.75E33(k1) in
Fig. 3 indicates the inertial subrange, which is conservatively
estimated as 15δv−35δv (see e.g., Ref. [4]).

A 1/2-mm-thick laser sheet was formed through a group of
lenses to illuminate a horizontal plane (x−y) at z = 0. A com-
bined PIV-PLIF technique was developed to simultaneously
measure the velocity and density (scalar) fields. The scalar
field from PLIF (�θ = 0.054 mm) is sampled to match the res-
olution of the velocity field from the PIV measurement (�v =
0.86 mm). More details of the technique and calibration can
be found in Ref. [31], and the uncertainties of instantaneous
measurements are 0.7% for velocity and 2% for scalar. Three

TABLE I. Experimental conditions. Local values are computed using data from the area of interest enclosed by
red dashed lines in Fig. 2.

Parameter Value

Inlet velocity 〈U0〉 1.9 m/s
Inlet density difference �ρ0/ρs = (ρs − ρe)/ρs 0.5%
Fluctuation ratio urms/vrms 1.15
Turbulent intensity urms/〈U0〉 4.5%
Inlet Reynolds number Re0 = 〈U0〉D/ν 24 000
Inlet Taylor scale Reynolds number Rλ 265
Inlet bulk Richardson number Rib = �ρ0Dg/(ρs〈U0〉2) 0.0002
Averaged local Kolmogorov scale ηk = (ν3/ε)1/4 0.07 mm
PIV neighboring vector distance δv 0.86 mm � 12ηk

Schmidt number Sc 500−700
Averaged local Batchelor scale ηb = ηk/

√
Sc 0.003 mm

PLIF pixel resolution δθ 0.054 mm � 18ηb

Inertial subrange (15δv−35δv) � (185ηk−430ηk)
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FIG. 4. (Color online) Comparison of PDFs at different r’s in the inertial subrange, from left to right: (I) P (υ,(rεr )1/3) and (II)
P (υ)P ((rεr )1/3). Both axes are normalized by their corresponding standard deviations. (III) Profiles of P (υ,(rεr )1/3) and P (υ)P ((rεr )1/3)
at a, b, c. (IV) Profiles of P (υ,(rεr )1/3) and P (υ)P ((rεr )1/3) at d, e, f. Gray circles and solid lines: P (υ,(rεr )1/3); green triangles and dashed
lines: P (υ)P ((rεr )1/3).

consecutive frames along the streamwise direction have been
recorded, and the field of view for each frame is 11 × 11 cm2.
A sample pair of snapshots of the velocity field combined with
the scalar field on a 128 × 128 grid are shown in Fig. 1. The
mean streamwise velocity and scalar distributions are shown
in Fig. 2, calculated from 600 snapshots, where θ (x,y) =
�ρ(x,y)/�ρ0 is the nondimensional scalar (0 � θ � 1). In
this study, data from a downstream region of 3.5 × 8.6 cm2

(enclosed by red dashed lines in Fig. 2, centered at x/D � 20,
y/D = 0) are selected from each snapshot, where the flow is
fully developed. A total of 2.4 mega data points are used for
the statistical analysis presented in this study.

As suggested in Ref. [18], as many of the measurable
elements of sij should be applied to reduce the overintermittent
behavior. Thus, in this study, four elements resolved from 2D
PIV are applied to calculate ε by

ε � ν

[
4

(
∂u′

1

∂x1

)2

+ 4

(
∂u′

2

∂x2

)2

+ 4
∂u′

1

∂x1

∂u′
2

∂x2

+ 3

(
∂u′

1

∂x2

)2

+ 3

(
∂u′

2

∂x1

)2

+ 6
∂u′

1

∂x2

∂u′
2

∂x1

]
, (8)

where the local isotropy assumption for unresolved terms of
sij is applied. See details in Ref. [32]. The central difference

scheme is applied to compute sij . A one-dimensional (along
the streamwise direction) average of ε is applied to obtain εr ,
i.e.,

εr = 1

N + 1

N∑
j=0

ε(x1 + jδv,x2), (9)

where N = r/δv .
In previous experimental tests of RSH, the scalar dissipation

is estimated using the assumption of isotropic. However,
similar to the estimate of energy dissipation, as many mea-
surable elements as possible should be used to reduce the
overintermittent (or underintermittent) behavior. Therefore in
this study, an assumption is applied to calculate χ by

χ = 2


[(
∂θ ′

∂x1

)2

+ 2

(
∂θ ′

∂x2

)2
]

, (10)

as used in Refs. [33,34]. One is reminded that ∂θ ′/∂xj is
calculated using PLIF data, which is of a spatial resolution of
�θ = 0.054 mm = 18ηb before the data of the scalar field is
sampled to match the spatial resolution of the velocity field.
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FIG. 5. (Color online) Comparison of PDFs at different r’s in the inertial subrange, from left to right: (I) P (υθ ,r
1/3ε−1/6

r χ 1/2
r ) and

(II) P (υθ )P (r1/3ε−1/6
r χ 1/2

r ). Both axes are normalized by their corresponding standard deviations. (III) Profiles of P (υθ ,r
1/3ε−1/6

r χ 1/2
r ) and

P (υθ )P (r1/3ε−1/6
r χ 1/2

r ) at a, b, c. (IV) Profiles of P (υθ ,r
1/3ε−1/6

r χ 1/2
r ) and P (υθ )P (r1/3ε−1/6

r χ 1/2
r ) at d, e, f. Red squares and solid lines:

P (υθ ,r
1/3ε−1/6

r χ 1/2
r ); blue triangles and dashed lines: P (υθ )P (r1/3ε−1/6

r χ 1/2
r ).

Similar to εr , χr is obtained by

χr = 1

N + 1

N∑
j=0

χ (x1 + jδv,x2). (11)

To obtain υ and υθ , �u′
r and �θ ′

r , as defined previously, are
calculated along the streamwise direction, as commonly used
in previous studies.

III. RESULT AND DISCUSSION

The independence of υ on r and εr and that of
υθ on r , εr , and χr are examined through using JPDF
and PDF. If the independence exists, one should have
P (υ,(rεr )1/3) = P (υ)P ((rεr )1/3) and P (υθ ,r

1/3ε
−1/6
r χ

1/2
r ) =

P (υθ )P (r1/3ε
−1/6
r χ

1/2
r ) [21]. In Fig. 4, although the outer

region of those PDF contours displays certain differences, the
central regions demonstrate strong similarities at different r’s.
For better illustration, as marked in Fig. 4, the profiles of
the 2D PDFs are selected at different sections across a, b, c
and d, e, f from both P (υ,r1/3ε

1/3
r ) and P (υ)P (r1/3ε

1/3
r ). In

Fig. 4, at all three characteristic r’s, the gray curves [indi-
cating P (υ,r1/3ε

1/3
r )] nearly coincide with the green curves

[indicating P (υ)P (r1/3ε
1/3
r )]. Thus, υ has independence upon

r and εr . The degree of independence in the outer regions is
yet improved than the one in Ref. [21].

The test of independence behavior of υθ is shown in
Fig. 5, where the central regions of those contours demonstrate
similarities to a certain extent, but the outer regions yield
more differences at different r’s. In Fig. 5, the red curves
[indicating P (υθ ,r

1/3ε
−1/6
r χ

1/2
r )] have distinct differences

from the blue curves [indicating P (υθ ) P (r1/3ε
−1/6
r χ

1/2
r )].

Thus, the independence of υθ on r , εr , and χr is not sufficiently
supported, i.e., it is difficult to determine the existence of
the independence with strong confidence. Therefore, a further
examination of the second order moments of υ and υθ is
conducted: If the independence exists, the averages of υ2

obtained by 〈�u2
r /(rεr )2/3〉 should be equal to those obtained

by 〈�u2
r 〉/〈(rεr )2/3〉, and the same to averages of υ2

θ . In
Fig. 6, 〈υ2〉 from the two methods are nearly coincident (ratio
∼0.95) over the inertial subrange. However, 〈υ2

θ 〉 from the
two methods show a large difference (ratio between 0.61 and
0.68). One is reminded that the uncertainties of measurements
are also plotted in Fig. 6, although they are small. These
observations suggest that the independence of υ on r and
εr exists in the inertial subrange, while that of υθ on r , εr , and
χr is not clearly observed.
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FIG. 7. (Color online) Conditional PDFs: (a) P (υ|Rer) and (c) P (υθ |Rer). Circles in insets (b), (d) show peaks of Gaussian curves, and
triangles in insets (b), (d) show peaks of non-Gaussian distributions.
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To test the second and third hypotheses in RSH, the PDF of
υ conditioned on Rer, P (υ|Rer), needs to be examined [21].
As shown in Fig. 7, for small Rer (e.g., Rer = 1,3,5), the
PDFs cannot be described by Gaussian distributions. For
larger Rer, P (υ|Rer) have strong Gaussian distributions. All
Gaussian curves collapse when Rer > 100, suggesting Rer

independence of P (υ|Rer). Similar results are also observed
for the conditional PDF of υθ conditioned on Rer [P (υθ |Rer)],
but the Gaussian curves of P (υθ |Rer) collapse when Rer >

1000 [rather than 100 for P (υ|Rer)]. Another finding is that the
peaks of PDFs, as Rer increases, experience oscillations before
converging to a value of about 0.39 for P (υ|Rer) and 0.42 for
P (υθ |Rer) in the insets, where the non-Gaussian and Gaussian
peaks are marked by triangles and circles, respectively.
These oscillations need to be further investigated for smaller
Rer.

Furthermore, in the previous hot-cold-wire probe tests of
RSH (and RSH-P), the bimodal behavior of PDFs exists when
r is small (see Figs. 10–13 in Ref. [21]). Besides, strong
oscillations can be also observed [from Figs. 10–13 in Ref. [21]
(shown in log scale)]. However, no bimodal behavior of PDFs
and oscillations are observed in our testing results (as shown
in Fig. 7).

IV. CONCLUSION

Previous experimental tests of refined similarity hypotheses
were usually performed in a wind tunnel by applying hot-

cold-wire probes. Taylor’s hypothesis has to be applied to
convert the temporal series of data into spatial series of data,
however, Taylor’s hypothesis is believed to bring in possible
errors to the test of RSH (and RSH-P) [14,15,24–26]. In
this study, the simultaneous obtained high-resolution velocity
and scalar fields are used to test RSH and RSH-P without
adopting Taylor’s hypothesis. For RSH, the results show that
the stochastic variable υ is independent of r and εr in the iner-
tial subrange. P (υ|Rer) experience non-Gaussian distribution
when Rer is small, however, when Rer increases, P (υ|Rer)
shows a Gaussian distribution. Investigating P (υ|Rer) strongly
supports the statement that P (υ) is independent on Rer when
Rer > 100. We also observe Rer dependence of P (υ) when
Rer ∼ 1. In addition, the oscillation of the converging of
P (υ|Rer) is observed. For RSH-P, P (υθ ) depends on Rer

when r � L and is universal when Rer � 1. However, the
independence of υθ on r , εr , and χr is not sufficiently supported
with strong confidence by the present experimental results. In
addition, the bimodal behavior of PDFs and strong oscillations
exist in the previous experimental testing results when r is
small. However, no bimodal behavior of PDFs and oscillations
are observed in our testing results.
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