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Cavopulmonary assist for the univentricular Fontan circulation: von
Kármán viscous impeller pump
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Objective: In a univentricular Fontan circulation, modest augmentation of existing cavopulmonary pressure head

(2–5 mm Hg) would reduce systemic venous pressure, increase ventricular filling, and thus substantially improve

circulatory status. An ideal means of providing mechanical cavopulmonary support does not exist. We hypoth-

esized that a viscous impeller pump, based on the von Kármán viscous pump principle, is optimal for this role.

Methods: A 3-dimensional computational model of the total cavopulmonary connection was created. The impeller

was represented as a smooth 2-sided conical actuator disk with rotation in the vena caval axis. Flow was modeled

under 3 conditions: (1) passive flow with no disc; (2) passive flow with a nonrotating disk, and (3) induced flow with

disc rotation (0–5K rpm). Flow patterns and hydraulic performance were examined for each case. Hydraulic perfor-

mance for a vaned impeller was assessed by measuring pressure increase and induced flow over 0 to 7K rpm in a lab-

oratory mock loop.

Results: A nonrotating actuator disc stabilized cavopulmonary flow, reducing power loss by 88%. Disk rotation

(from baseline dynamic flow of 4.4 L/min) resulted in a pressure increase of 0.03 mm Hg. A further increase in pressure

of 5 to 20 mm Hg and 0 to 5 L/min flow was obtained with a vaned impeller at 0 to 7K rpm in a laboratory mock loop.

Conclusions: A single viscous impeller pump stabilizes and augments cavopulmonary flow in 4 directions, in the

desired pressure range, without venous pathway obstruction. A viscous impeller pump applies to the existing

staged protocol as a temporary bridge-to-recovery or -transplant in established univentricular Fontan circulations

and may enable compressed palliation of single ventricle without the need for intermediary surgical staging or use

of a systemic-to-pulmonary arterial shunt. (J Thorac Cardiovasc Surg 2010;140:529-36)
In Fontan repair of functional single ventricle, a staged sur-

gical approach is necessary to achieve the end goal of a series

connection of the systemic venous return to the pulmonary

arteries. Despite medical and surgical advances, however,

this approach remains problematic.1 At the expense of pro-

viding a reliable source of neonatal pulmonary blood flow,

interim use of a systemic-to-pulmonary arterial shunt creates

serious pathophysiologic consequences. Shunt physiology

may impair timing for Fontan conversion and detrimentally

affect late Fontan status.2 Once Fontan palliation is com-

plete, the absence of a subpulmonary ventricle results in
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chronic elevation in systemic venous, capillary, and intersti-

tial pressures; reduction in ventricular preload; and subnor-

mal cardiac output for the duration of a patient’s life.

These problems can be addressed by pump augmentation

of existing Fontan cavopulmonary flow.3,4

A pump to accomplish this does not currently exist. If

a safe and reliable device were developed, it may be possible

to stabilize patients with ‘‘failing Fontan’’ physiology, early

or late after repair, by temporarily reversing the Fontan par-

adox of elevated venous pressure and impaired ventricular

filling.5 We hypothesized that a viscous impeller pump,

based on the von Kármán viscous pump principle, possesses

qualities that are ideal to serve in this capacity.6,7 This report

presents an initial analysis, and background and rationale, for

a viscous impeller pump to provide cavopulmonary assist.

MATERIALS AND METHODS
Computational Fluid Dynamic Analysis of an
Actuator Disk Within a Total Cavopulmonary
Connection

Computational fluid dynamic (CFD) (Fluent, Ansys Inc, Canonsburg,

Pa) analysis was used to examine the hydraulic performance and flow con-

ditions of a viscous impeller pump (tip diameter, 20 mm; hub diameter, 6

mm) in an idealized adult total cavopulmonary connection (TCPC) model

of semi-physiologic flow (22-mm diameter inferior vena cava [IVC]/supe-

rior vena cava [SVC], 19-mm diameter left pulmonary artery/right pulmo-

nary artery, slightly expanded at junction resulting in tip gap clearance of

8 mm, 4.4 L/min baseline flow, 50/50 inlet–outlet split) (Figure 1). These
rdiovascular Surgery c Volume 140, Number 3 529
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FIGURE 1. Concept of a viscous impeller pump to provide cavopulmo-

nary assist. SVC, Superior vena cava; IVC, inferior vena cava; LPA, left pul-

monary artery; RPA, right pulmonary artery.

Abbreviations and Acronyms
CFD ¼ computational fluid dynamic

IVC ¼ inferior vena cava

SVC ¼ superior vena cava

TCPC ¼ total cavopulmonary connection
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are reasonable estimates of adult TCPC dimensions and flow, and provide

a reasonable clinical safety margin against impeller strike and vessel injury.

The following conditions were considered: (1) absence of the pump; (2)

presence of a stationary pump; and (3) presence of a rotating pump (0–5000

rpm). Impeller geometry for the CFD studies was patterned as a smooth sur-

faced, 2-sided, centrifugal pump. Tetrahedral meshes were produced using

Gambit (preprocessor for Fluent) with 900,000 elements. Laminar flow was

assumed for the case without the pump and with the stationary pump. The un-

steady Reynolds-averaged Navier–Stokes equations using the realizable k-e

turbulence model, no-slip boundary conditions, and yþ grid requirements

were integrated within Fluent only for the case of the rotating pump. The inlet

turbulence intensity was selected as 3%, and variation of this value did not sig-

nificantly affect the results. The fluid medium was assigned a physiologic den-

sity of 1060 kg/m3 and viscosity of 3.5 cP; both were assumed to be constant.

In Vitro Hydraulic Studies
The hydraulic performance of a vaned impeller was assessed in an in vitro

mock circulatory loop with a 4-way TCPC conduit. The mock loop used com-

pliance and resistance elements to mimic the physiologic parameters of an

adult Fontan circulation.8 The impeller tested was constructed as a stereoli-

thography rapid-prototype from computer-aided design drawings using opti-

cally transparent Accura 60 resin (Forecast 3D, Carlsbad, Calif). Impeller and

conduit dimensions used in the mock circulatory loop were identical to the

CFD model, with the exception that surface vane structure was added to

the impeller surface. This adult-scale, rapid-prototype impeller simulates

the expanded device and is 18 mm in diameter and 6 mm in length. The im-

peller is intended to be collapsed to 2.86 mm in diameter to fit an 8F catheter.

The operational range is 0 to 7000 rpm. There are 4 vanes on the version

tested, each 2 mm in height at the center and blended at inflow hub and out-

flow tip. An external brushless direct-current motor was used to drive the

impeller in the Fontan mock circuit.

RESULTS
Computational Fluid Dynamic Modeling and Flow
Patterns

A mid-plane contour plot of instantaneous velocity magni-

tude with streamlines, with and without a stationary pump

present, is shown in Figure 2. TCPC flow patterns in the

absence of a central stabilizing body (actuator disk/pump)

match previously reported studies using CFD and magnetic

resonance imaging, where irregular flow in the central stagna-

tion region accounts for energy loss and inefficiency.9,10 In the

presence of the stationary pump, TCPC flow patterns are

improved with 88% reduction in power loss (Table 1).

Thus, the presence of the pump, rotating or not, has a marked

stabilizing effect in this 4-way flow configuration.

Predicted Hydraulic Performance and Wall Shear
Stress

CFD predictions for hydraulic performance of a smooth-

surfaced impeller within the TCPC, and comparison with
530 The Journal of Thoracic and Cardiovascular Surg
a TCPC without a pump, are shown in Table 1. According

to the boundary conditions used as constraints in the compu-

tations, the flow rate remained constant for each case (4.4 L/

min), whereas the effect of the pump was demonstrated in gen-

erating a pressure increase, thus reducing power loss (6P

[Pa] 3 4.4L/min and then converted to m3/s) within the fluid

of the model. Although the pressure increase in each case is

comparatively small, viscous flow losses are negated by the

actuator disk between 1000 and 2500 rpm, whereon the func-

tion of the disk makes a transition from the role of flow stabi-

lizer to that of a pump. Axial (vena caval) inflow increased

consistent with pressure generated by higher rates of impeller

rotation.

We further used CFD to identify regions of both high stress

(hemolysis and platelet activation) and low stress (flow stasis

and thrombogenicity) within the impeller. Scalar stress esti-

mations for the smooth impeller at 5000 rpm are shown in

Figure 3, A.11 Relatively low scalar stress is found on the sur-

face of the pump and rotation of the fluid as it transitions from

axial to radial flow. All stress values were greater than zero.

Scalar stress values on the impeller surface were less than

100 Pa, with the highest levels at the outflow edge of the

impeller (Figure 3, B). Efficiency can be optimized by modi-

fying pump geometry to distribute flow from the pump pe-

riphery over the entire cross-sectional area of the left and

right pulmonary arteries. As spatial distribution is optimized

and magnitude of turbulence is minimized, the risk of shear-

induced blood damage is reduced.11-13 We expect scalar
ery c September 2010



FIGURE 2. Velocity magnitude (m/s) contour plot within the TCPC at

flow of 4.4 L/min. A, No impeller. Incoming flow is irregular at the intersec-

tion. B, Stationary impeller. Flow pattern is stabilized, reducing power loss

by 88%. SVC, Superior vena cava; IVC, inferior vena cava, LPA, left pul-

monary artery; RPA, right pulmonary artery.

TABLE 1. Transition from flow stabilizer to pump with increased

rotation

RPM

Pressure increase

(mm Hg)

Maximum wall

shear (Pa)*

Power

loss (watts)

No impeller �0.43 1.4 0.25

0 �0.05 7.6 0.03

500 �0.05 15.6 0.03

1000 �0.04 29.3 0.02

2500 0.02 98.7 �0.01

5000 0.03 130.8 �0.02

RPM, Revolutions per minute; Pa, pascal. *Location of maximum wall shear stress is

on the TCPC vessel wall for case with no impeller and on impeller surface for cases

with impeller.
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stress with the viscous impeller pump will remain less than

300 Pa, within the clinically acceptable range.
In Vitro Hydraulic Performance
Hydraulic performance of a surface-modified viscous im-

peller pump (2-mm surface vanes and with cage present) was

tested in the mock circulatory loop shown in Figure 4, A. The

impeller induced a pressure increase of 0 to 20 mm Hg and

flow rates of 0 to 5 L/min at rotational speeds of 0 to 7K rpm

(Figure 4, B). No reduction in flow rate was observed at

0 rpm, and no gross cavitation was observed at 7K rpm.
The Journal of Thoracic and Ca
Performance curves are characteristically flat, signifying

consistent low-pressure performance over a wide range of

flow conditions. At high pump speeds, the device is capable

of generating pressure increase that is greater than the 2 to

5 mm Hg optimum range because of the presence of surface

vanes. Lower pressure increase values can be obtained at

lower pump speeds or by using a more smoothly surfaced

impeller (lower profile surface vanes). The operational speed

of the pump and extent of surface vane expression may vary

depending on the clinical conditions in which the pump is

applied. The use of surface vanes to modify impeller perfor-

mance must be balanced with acceptable shear rates at de-

fined operational specifications.
DISCUSSION
Fontan Failure Is Not the Same as Heart Failure

Patients undergoing the Fontan procedure are at high risk

of regression from compensated to uncompensated Fontan

physiology not only at the time of repair but also as they

age.5 This risk is, in part, a reflection of their initial staging

operations in which a shunt was used.2 The increasing num-

ber of survivors with Fontan physiology constitutes an

emerging public health concern.14 Although children and

adults with ‘‘Fontan failure’’ exhibit classic features of con-

gestive heart failure (increased tissue/organ water, decreased

tissue/organ perfusion), the underlying cause is not primary
myocardial dysfunction. The ventricular (diastolic) dysfunc-

tion observed in patients undergoing the Fontan procedure

may be to a large extent attributable to chronically reduced

filling.15-17

Treatment options for this group are limited and less than

ideal. For example, diuretic therapy may alleviate symptoms

of increased tissue water, but at the expense of circulating

blood volume; ideal therapy would be to simply reduce sys-

temic venous pressure alone. Similarly, inotrope therapy

will improve cardiac output inefficiently in an underfilled

ventricle; ideal therapy would be to simply increase ventric-

ular filling. Cavopulmonary assist can ideally and concur-

rently address both of these circumstances.
rdiovascular Surgery c Volume 140, Number 3 531



FIGURE 3. Predicted scalar stress (Pa) (A) and fluid streamlines as colored

by total pressure (Pa) (B) for a smooth surface viscous impeller pump rotat-

ing at 5000 rpm. SVC, Superior vena cava; IVC, inferior vena cava, LPA, left

pulmonary artery; RPA, right pulmonary artery.

FIGURE 4. Prototype hydraulic performance. A, In vitro mock circulatory

loop consisting of the following elements: (1) single ventricle, (2) aorta, (3)

arterial compliance, (4) systemic vascular resistance, (5) venous compli-

ance, (6) Fontan junction with viscous impeller pump, and (7) pulmonary

compliance. B, Experimental hydraulic performance for a vaned impeller

with cage present. P, Pressure millimeters of mercury; Q, flow milliliters/

minute.
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A Pump ‘‘Primer’’ Rather Than a Primary Pump
In a reversal of assumptions, it can be stated that other seg-

ments of the circulation are failing the Fontan heart. Thus

(assuming normal systolic function), the target for therapeu-

tic support of the Fontan circulation is the cavopulmonary

circulation, rather than the systemic circulation. A cavopul-

monary assist device would serve as a low input ‘‘primer’’

for the primary pump (systemic single ventricle), rather

than as a primary pump per se. A modest increase in down-

stream ventricular filling (2–5 mm Hg) will improve myo-

cardial performance and cardiac output. Simultaneously,

reduction in upstream systemic venous pressure will mark-

edly benefit the systemic and mesenteric venous circulation

and interstitium. This is identical to the essential function of

the right ventricle in a normal biventricular circulation.18
532 The Journal of Thoracic and Cardiovascular Surg
Unique Pump Requirements
Mechanical cavopulmonary assist within the TCPC pres-

ents unique anatomic and physiologic challenges that are

markedly dissimilar to any other mechanical circulatory sup-

port application. Flow must be augmented in a highly com-

plex 3- or 4-axis geometry in which incoming and outgoing

flow are perpendicularly opposed. The pump will provide par-

tial support in a location where no ventricle will recover to as-

sume function of the pump; it is not a ventricular assist device.

Ambient hydrostatic pressure in the TCPC is low (10–12 mm

Hg), increasing concern for flow stasis and thrombogenicity.

In addition, the desired flow is high-volume, low-pressure
ery c September 2010



FIGURE 5. Von Kármán viscous pump. A, Flow patterns induced by ac-

tuator disk rotation. B, Flow streamlines depicted on 2 sides of an actuator

disk.
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flow. A gentle pressure step-up of 2 to 5 mm Hg may be ideal.

In certain cases, higher pressure may be undesirable or detri-

mental. In other instances, higher pressure may be necessary

against increased pressure head (eg, pulmonary hyperten-

sion). Because there is no volume reservoir for the pump inlet

to draw from, risk of vein collapse and cavitation caused by

inlet suction is high. Thus, a high degree of fluid slip (low

preload dependence) is preferable. Similarly, downstream

flow must remain low pressure to avoid perfusion lung injury

(similarly, a high degree of fluid slip is preferable). Notably,

there is no natural barrier (eg, a valve) present within the
The Journal of Thoracic and Ca
TCPC pathway to prevent recirculation around the pump

body. For a fixed-diameter, small percutaneous device

positioned within the large diameter central veins, recircula-

tion must be addressed. Finally, and perhaps most important,

it is critical that the cavopulmonary pathways remain

unobstructed during pump deployment, as pump support is

weaned to no net contribution before removal, when the

pump is shut off, in the event of rotation failure, and after

the pump is withdrawn.

Limitations of Microaxial Flow Pumps
At first thought, adapting a traditional axial flow design is

an appealing solution to this problem. A computational model

of an axial flow pump intended for use in the IVC has been

reported in which blade geometry and rotational speed were

simply modified to operate in the low-pressure venous circu-

lation.19 On the contrary, in our experience, microaxial

pumps have critical limitations. Most important, the pump

itself, or combination of pump, housing, and barrier to recir-

culation, is obstructive to flow. Once in place, the pump

cannot be simply shut off. In the event of failure or shut-

down, the venous pressure necessary to maintain cardiac

output would be untenable in an environment in which only

2 to 5 mm Hg obstruction has grave consequences. For cav-

opulmonary assist, the ability to wean support to very low

levels—without any degree of obstruction—is critical. Sec-

ond, the inlet pressure of a microaxial pump is in an unaccept-

able negative range, portending suction collapse of the vena

cava. The smaller the diameter of a fixed-radius microaxial

pump, the greater the rotational speed required to transfer

equivalent volume and the greater the risk for inefficient recir-

culation. A truly percutaneous microaxial device, at perhaps

less than 10% of vena caval cross-sectional area, must greatly

accelerate flow to deliver equivalent effective flow. This

increases risk for suction, cavitation, and blood component

activation. Third, because of size (anything>4 mm in diam-

eter in adults), placement and removal require open surgery

and cardiopulmonary bypass. Fourth, a microaxial device

requires a contained housing, inducer, and diffuser, which in-

crease complexity, synthetic material burden, and thromboge-

nicity risk. Fifth, microaxial pump flow is unidirectional: This

mandates either the use of 2 separate pumps or undesirable

surgical revision of the systemic venous pathways to prevent

retrograde pressure elevation and backflow into the opposing

vena cava.20,21

An Expandable, Multidirectional Rotary Pump
Because of these limitations, we abandoned existing

microaxial designs and considered a rotary pump that is

both expandable and multidirectional. The ability to expand

the radius of a peripherally inserted, centrally deployed

intravascular pump would reduce rotational rates and pro-

vide a functional barrier to recirculation.22 The native,

endothelial-lined vessel walls would serve as the conduit for
rdiovascular Surgery c Volume 140, Number 3 533



FIGURE 6. Expandable viscous impeller pump using ‘‘cage within a cage’’ concept. A, Large-scale model in collapsed configuration. B, Same model ex-

panded by axial compression. The outer cage serves to center the impeller and protect the vessel wall. The inner cage, covered with an elastomer, forms the

rotating impeller surface. The expanded to collapsed ratio is 500%. C, Adult-scale functional prototype: closed diameter 8F, 2.86 mm; open diameter 22-mm

outer cage.
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flow. Advanced numeric modeling has shown that a fixed

central diverting body at the TCPC intersection will benefi-

cially split incoming TCPC flow toward the outlets, minimiz-

ing turbulent energy loss.23 By combining passive flow

optimization with the need for an expandable impeller, we

had the insight to apply rotational energy to an expandable,

central impeller suspended in the midst of the TCPC, indepen-

dent of the vessel walls.

von Kármán Viscous Pump
Consider a large, flat disk rotated in fluid.6 The no-slip

condition requires that fluid at the surface of the disk rotate

with the same velocity (Figure 5, A). Viscous effects diffuse

away from the disk and induce rotation. However, there is no

pressure gradient in the radial direction to balance the

centrifugal force. Once fluid has been accelerated by the

plate, it is also flung out in a radial direction. Conservation

requires that the outwardly displaced fluid is replaced by

axial inflow from quiescent fluid far away from the disk.

Thus, fluid is pumped from the far axial stream (SVC above;

IVC below) toward the disk, where viscous forces induce

a swirl and the resulting centrifugal effect produces radial

outflow (Figure 5, B).7 On the basis of this fundamental fluid

dynamic principal, a single impeller will stabilize and aug-

ment TCPC flow in 4 axes.
534 The Journal of Thoracic and Cardiovascular Surg
A viscous impeller pump is an exciting conceptual

advance. The problem is dramatically simplified from a com-

plex 2-pump solution with competing and colliding flows to

a more advantageous, single impeller solution with multidi-

rectional flow capability (3-way inverted ‘‘T’’; 4-way ‘‘t’’).

The preferred TCPC pathway can be maintained, avoiding

unnecessary surgical venous pathway revision that might be

necessary with unidirectional devices.20,21 An impeller and

protective centering cage, collapsed for percutaneous

insertion, advanced to the intersection of the TCPC, opened,

and rotated, will draw venous flow inward from opposed

directions and propel blood radially outward in the

pulmonary arteries, regardless of orientation (Figure 6).

Broad Applicability of Cavopulmonary Assist
Cavopulmonary assist is fully compatible with the existing

staged paradigm and can be applied for temporary perioper-

ative support after stage 2 or 3 repair alone. Cavopulmonary

assist can also be applied late after repair for support of ‘‘fail-

ing Fontan’’ physiology in older children or adults. It can be

implemented noninvasively in the catheterization laboratory

or intensive care unit setting via percutaneous venous access

and the Seldinger technique. Cavopulmonary assist may also

enable a new paradigm of compressed or combined surgical

staging: (1) stages 2 and 3 combined, or 1-stage Fontan
ery c September 2010
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conversion; (2) stages 1 and 2 combined (avoidance of shunt

physiology)24; (3) stages 1 to 3 combined (1-stage neonatal

Fontan repair). This technology applies to both a 3-way

‘‘T’’ (stage 2 Glenn; hemi-Fontan) and 4-way ‘‘t’’ (stage 3;

TCPC). As a platform device, asymmetric impeller or surface

(vane) modification can address differential inflow and

outflow rates. In adults, the majority of complications of

failing Fontan physiology arise from the IVC distribution,

which accounts for 70% of total systemic venous return.

Conversely, in neonates, upper-body venous return comprises

60% to 70% total venous flow, which is largely a reflection of

cerebral blood flow (�90% SVC flow).25
CONCLUSIONS
This report describes a de novo pump concept and its an-

atomic and physiologic limitations and constraints. Much

work remains to carry this concept to clinical implementa-

tion. A limitation of this preliminary analysis is that the

impeller tested was a rigid rather than an expandable proto-

type. Furthermore, the device was scaled to adult dimen-

sions; performance at dimensions suitable for infants and

neonates remains to be determined. Future investigation

will include reduced scale analyses, hydraulic optimization,

and hemolysis and thrombogenicity assessment. Shear stress

and hemolysis are not expected to be problems given the

lower rotation requirements of this device in comparison

with commercially available microaxial devices. A viscous

impeller pump makes mechanical circulatory support of

a univentricular Fontan circulation a more realistic consider-

ation. Proven safe and effective, a viscous impeller pump

will greatly improve therapy for individuals with single-

ventricle heart disease.
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Discussion
Dr Glen Van Arsdell (Toronto, Ontario, Canada). With this

presentation, Dr Rodefeld and his colleagues have introduced an

important conceptual leap around the ideas for mechanical assist

in single-ventricle palliation. This is the first time one can actually

envision one of the holy grails for single-ventricle surgery, ie,

1-stage neonatal Fontan with outcomes that match neonatal biven-

tricular repair. Except for incremental improvements in single-

ventricle surgery, it appears to me that we have reached a ceiling.

Now we can see beyond that ceiling, at least conceptually. I have

3 questions for you. One, in your model, it appears that the study

is based on a rigid wall concept. In humans, there is some rigidity

and some flexibility in a standard Fontan setup. Can you talk with

us about how you envision dealing with this conceptually? I know

you mentioned the cage, but one of the issues with the microaxial

devices is wall trauma and cavitation.
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Dr Rodefeld. What you are seeing is the first iteration of the

pump concept, and it is demonstrated in an idealized rigid conduit.

There are ways to model a compliant vessel, either by using a com-

putational technique or by in vitro modeling, and certainly those

would be done with additional studies, and very eloquent modeling

can account for vessel compliance in this situation.

Dr Van Arsdell. So do you have a sense of the ‘‘suction’’ effects

on the walls in this device as compared to a microaxial device?

Dr Rodefeld. I don’t have any hard data on it. This type of pump

is a slippery pump, it is a weak pump, and it is the reason why you

don’t see it used in a lot of industrial applications. But my sense is

that the negative pressure generation is going to be much less of

a problem than what you would see with a fixed radius, microaxial

flow pump that has to spin at high speed.

Dr Van Arsdell. Second, many of the patients that may poten-

tially benefit from this are our current failing Fontan population,

which is primarily an atriopulmonary connection type of arrange-

ment. Would you envision this usage in that connection or would it

require a conversion to the present extracardiac Fontan arrangement?

Dr Rodefeld. This particular device would not apply necessarily

for an atriopulmonary type of construction. The field has moved

away from that, but obviously the older failing Fontan patients

that we are dealing with presently had the prior atriopulmonary

type of reconstruction. I think at this point I would advocate conver-

sion to a total cavopulmonary connection, which, as you know,
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gives the benefit of 2 to 5 mm Hg pressure streamlining, which ac-

tually supports this pump impeller concept as well, and then if they

need additional temporary support, this pump could provide that.

Dr Van Arsdell. It would seem to me one of the advantages of

this is that you might raise the margin of safety around Fontan con-

version to a more modern Fontan.

My final question: One of the most remarkable things in this pre-

sentation to me is the level of efficiency of flow seen with the static

implantation of a disk alone. Are you looking at or should we be

looking at a biologically compatible disk that could be suspended

magnetically within the current Fontan arrangement, ie, implanted

at the time of Fontan or that could be implanted percutaneously

later?

Dr Rodefeld. This could be potentially placed as a static device

percutaneously, similar to a venocaval filter type of deployment or

retrieval strategy. There are other groups that have talked about

a static device in the cavopulmonary connection. Most important

would be the Georgia Tech group and Ajit Yoganthan have re-

ported on a flow splitting device that would optimize streamlining

through the cavopulmonary connection. This could be considered

as a static device, but the pressure reduction is fairly small. So

whether that would have a clinical impact or not, I am not sure at

this point.

Dr Van Arsdell. Congratulations on this excellent manuscript.

Dr Rodefeld. Thank you.
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