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Shear-induced vertical mixing in a stratified flow is a key ingredient of thermohaline circulation. We

experimentally determine the vertical flux of momentum and density of a forced gravity current using

high-resolution velocity and density measurements. A constant eddy-viscosity model provides a poor

description of the physics of mixing, but a Prandtl mixing length model relating momentum and density

fluxes to mean velocity and density gradients works well. For the average gradient Richardson number

Rig � 0:08 and a Taylor Reynolds number Re� � 100, the mixing lengths are fairly constant, about the

same magnitude, comparable to the turbulent shear length.
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Mixing in stratified shear flows is an important process
in many geophysical situations including atmospheric
shear layers or the upper ocean mixing induced by wind
stresses at the surface [1–3]. Of particular current interest
are the mixing and entrainment of oceanic overflows,
which are involved in the transport of heat and salt in the
global ocean via the thermohaline ‘‘conveyor belt’’ [4–7].
Such circulations are thought to play a significant role in
decadal predictability of ocean evolution. Understanding
the physics of mixing in stratified layers and providing a
simple description of this mixing may help improve pre-
dictions of global climate change [8].

Laboratory studies of stratified mixing layers [9–11] and
gravity currents on shallow inclines [12–14] have charac-
terized the mixing and entrainment resulting from the
competition of shear and buoyancy. Whereas fundamental
studies of shear layers have provided reasonable charac-
terization of some turbulence quantities, the gravity current
experiments have focused on bulk entrainment measure-
ments rather than on details of the turbulence itself. There
is a need to apply modern turbulence measurements to the
physically relevant problem of inclined gravity currents as
a model of turbulent oceanic overflows. In particular,
understanding turbulent mixing implies being able to de-
scribe how correlations of small scale fluctuating quantities
affect large-scale fluid transport properties.

We developed an experiment of a stratified flow on an
inclined plane that is destabilized by shear. Our main result
is that the turbulent transport of momentum and density are
described in a direct and compact form by a Prandtl mixing
length model [15,16]. In particular, the turbulent vertical
fluxes of momentum and density scale with the vertical
mean gradients of velocity @z �u and density @z �� as an eddy
viscosity �T ¼ L2

mj@z �uj and an eddy diffusivity �T ¼
L2
�j@z �uj where Lm and L� are approximately constant

over the mixing zone of the stratified shear layer. In gen-
eral, Prandtl mixing length models, although widely used
because of their simplicity, are often not verified by simu-

lation or experiment [17]. For example, a mixing length
description does not work well in our system when the flow
is unstratified, suggesting that stratification plays a key role
in the correlations we measure. More complicated descrip-
tions beyond a simple eddy-viscosity or mixing length
approach have been developed [17] but seem unnecessary
here. Our compact description may provide an efficient
parametrization of mixing and entrainment in oceanic
overflows.
The experiment, sketched in Fig. 1(a), and described in

detail elsewhere [18], consists of a turbulent, uniform-
density flow injected via a pump through a 5 cm high
�45 cm wide nozzle at a speed of U0 ¼ 8 cm=s into a
tank filled with unstirred higher density fluid. The turbu-

x

z DENSE FLUID

INCLINED PLATE

NOZZLE

SAMPLE

AREA
LIGHT
FLUID

(a)

FIG. 1 (color online). (a) Sketch of the experimental device.
(b) Density snapshot obtained from PLIF and (c) vorticity snap-
shot from PIV. The scale of density is from 0 [yellow (light
gray), salt water] to�1:4 g=L [red (dark gray), mixture of water
with ethanol]. The scale of vorticity is from positive (yellow) to
negative (red) with vorticity amplitude in the range�12<�y <

6 s�1.
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lence level of the injection current is enhanced by an active
grid device located just before the injection nozzle. The
flow, upon exiting the nozzle, is bounded from above by a
transparent plate inclined at an angle of 10� with respect to
horizontal, is unbounded below, and is confined in a tank
about 2 m long, 0.5 m wide, and 0.5 m high. The compo-
nents of the spatial position vector x describing the flow are
the mean flow direction x, the cross-stream direction y, and
the downward distance perpendicular to the plate z. The
corresponding velocity uðxÞ has components fu; v; wg. We
use the notation �u for a time- and ensemble-averaged
quantity and u0 ¼ u� �u for its fluctuating part. The exit
fluid, a solution of ethanol and water, is less dense (�e ¼
996:8 g=L) than the fluid in the tank, water and salt (NaCl)
(�s ¼ 999:4 g=L). The net density difference between the
fluids is �� ¼ 2:6 g=L. The concentrations of ethanol and
salt are adjusted (and the fluid temperatures maintained
equal within 0:2 �C) so that the fluids are index matched to
avoid optical distortions [19]. All the fluids are freshly
prepared for each run, which lasts for about 45 s.

Instantaneous velocity and density fields are measured
in a 9 cm� 9 cm area of a 0.1 cm thick laser sheet in the
x-z plane. Velocity and density are measured simulta-
neously using particle image velocimetry (PIV) and planar
laser-induced fluorescence (PLIF), respectively, at a rate of
3 Hz with two 20482 pixel digital cameras. Fluorescent dye
(rhodamine 6G) is added to the light fluid, and a calibration
of density versus fluorescence intensity is performed for
each position of the field of view. Figure 1 shows a snap-
shot of the density difference obtained from the PLIF and
of the y component of vorticity, derived from the PIV
velocity field [�y ¼ @zuðx; zÞ � @xwðx; zÞ].

The lighter exit fluid is stably stratified with respect to
the heavy fluid in the tank and forms a gravity current on
the bottom side of the plate. The competition between the
stabilizing effect of buoyancy and the destabilizing shear
is captured in a dimensionless parameter, the gradient
Richardson number, Rig ¼ �ðg=�sÞð@z ��Þ=ð@z �uÞ2 where

g is acceleration of gravity. For small RigRi, shear domi-

nates buoyancy, and the flow is unstable to Kelvin-
Helmholtz instability [3]. The gravity current is fully tur-
bulent as it exits the nozzle with streamwise velocity
fluctuations u0 about 25% of �u, corresponding to a Taylor

Reynolds number Re� ¼ u02=
ffiffiffiffiffiffiffiffiffiffiffi

15��
p � 100, where � is

the fluid kinematic viscosity and � is the mean dissipation
rate measured directly from velocity field (the spatial
resolution of our velocity measurement is 0.5 mm com-
pared to the dissipation scale of 0.33 mm). Over the first
20 cm, there is rapid evolution of mean quantities including
the vertical velocity and density gradients. In this Letter,
we focus on the region from 21 to 45 cm over which
averages are approximately uniform along x, e.g., Rig �
0:08, @z �u � 1 s�1, ð1= ��Þ@z �� � 10�4 cm�1, and � �
1 cm2=s3. Note, however, that the results described here
also apply to the initial region, except for a stronger
dependence on downstream distance. Details of the spatial

distribution of mean and fluctuating quantities in vertical
and streamwise directions will be presented elsewhere.

The time-averaged profiles of density difference �� ¼
�� �s and downstream velocity �u as functions of z are
shown in Fig. 2(a). Figure 2(b) shows the corresponding
profiles of @z �� and @z �u. There is a strong mixing region
within 1:5 cm< z < 7 cm where the gradients are within
50% of their maximum values. The velocity field goes to
zero over a turbulent boundary layer (not resolved), which
leads to the velocity maximum at z � 1 cm. The vertical
density gradient decreases near the wall, indicating less
vigorous mixing owing to the presence of the boundary.
Nevertheless, some mixing has occurred at lower x, as
indicated by the reduced density difference at the wall
compared to the initial difference. Far from the wall, the
velocity and density difference approach quiescent values
because of the stabilizing influence of stratification.
The density and momentum evolution equations are

@tuþ ðu � rÞu ¼ � 1

�
rpþ �r2u� g
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where p is the pressure field and � is the molecular mass
diffusivity of the light fluid into the heavy one. For a
turbulent flow, the Reynolds decomposition of quantities
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FIG. 2 (color online). The time-averaged values of (a) down-
plane velocity �u (solid line, bottom axis) and density difference
�� (dashed line, top axis) and (b) the vertical gradients dz �u
(solid line, bottom axis) and dz �� (dashed line, top axis) as
functions of the distance z from the plane. These profiles have
also been averaged along the downstream distance (h�ix sym-
bol), between 21 and 47 cm.
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into mean and fluctuating parts yields an additional effec-
tive force density due to the turbulent fluctuations [17]. It

takes the form of the divergence of the stress tensor �u0iu0j.
In the same way, for a flow with variable density, the

divergence of �0u0 appears in the density equation. The
equations for the evolution of the averaged momentum and
density, in the stationary case, become (with the spatial
derivative along the ith component of x denoted @i)

�uj@j �ui ¼ � 1

�
@i �pþ �@jj �ui � @ju

0
iu

0
j � gi

�

� ��

�s

�

�uj@j

�

� ��

�s

�

¼ �@jj

�

� ��

�s

�

� 1

�s

@j�
0u0j:

In particular, u0w0 and �0w0 can be interpreted, respec-
tively, as the vertical flux of downstream momentum and
of density due to turbulent fluctuations. To understand the
transport mechanisms that maintain the vertical gradients
shown in Fig. 2, we need to relate the turbulent fluxes to the
mean gradients. A closure scheme commonly used in
turbulence establishes these relations via effective diffu-
sivity coefficients (or eddy diffusivities) �T ¼ �u0w0=@z �u
and �T ¼ ��0w0=@z ��.

The simplest models used in geophysical models of
climate (see, e.g., [20]) assume a constant effective diffu-
sivity, which yields a linear relation between the fluxes and
the corresponding gradients. Because we are able to di-

rectly measure u0w0 and �0w0, we can test the eddy diffu-
sivity assumption. In Fig. 3 several two-dimensional
histograms show the correlation between fluxes and gra-
dients. Each entry in a histogram corresponds to one
particular PIV grid point, averaged over time for a given
experimental run and then over all experimental runs for
the field view locations beyond x ¼ 21 cm. We exclude
data from the vicinity of the solid boundary layer (z <
1:5 cm) as well as data in the quiescent zone (z > 7 cm),
which display a somewhat different behavior.

In contrast to the constant eddy-viscosity (diffusivity)
assumption, the data in Fig. 3(a) show that the momentum
flux is proportional to the square of the velocity gradient. In
the same way, Fig. 3(b) shows that the density flux is
proportional to the product of the velocity gradient and
the density gradient. The quadratic dependence yields a
nice description for the fluxes over most of the mean
gradient range. The insets in Figs. 3(a) and 3(b) show the
momentum and density fluxes versus the corresponding
gradients. The data fail to support the constant eddy diffu-
sivity model because the fluxes increase faster than the
gradients. This qualitative trend was reported earlier [21].

The quadratic behavior can be understood if both eddy
diffusivities are linear functions of the velocity gradient,
instead of being constant. Indeed, as the gradient becomes
larger, one expects the turbulence intensity to increase.
This can be interpreted in terms of a mixing length model,
originally proposed by Ludwig Prandtl [15]. Prandtl’s
argument is analogous to that applied in the kinetic theory
of gases to molecular transport processes: it assumes that

the coefficient of eddy viscosity is equal to the product of a
‘‘mixing length’’ Lm, characteristic of the mixing phe-
nomena, and a suitable velocity: �T ’ Lm �UðtypicalÞ.
One straightforward way of defining this velocity is to
relate it to the mixing length and the mean velocity gra-
dient along the direction of the transport: UðtypicalÞ ¼
Lmj@z �uj. This relation assumes that Lm is small enough
so that the variation of the gradient over a distance Lm can
be neglected. The following expression for the momentum
flux is then obtained: u0w0 ¼ �L2

mj@z �uj@z �u. In our case,
where u0w0 is positive and @z �u negative, this expression
becomes u0w0 ¼ L2

m@z �u
2. The same argument for the den-

sity flux yields [16] �0w0 ¼ �L2
�j@z �uj@z�, where L� is a

mixing length associated with the density transport. As a
result, averaging quantities along the downstream direction
(h�ix symbol), we computed the mixing lengths as

L2
m ¼ hu0w0ix

h@z �u2ix
and L2

� ¼ �h�0w0ix
hj@z �uj@z ��ix :

FIG. 3. Two-dimensional histograms representing the correla-
tion between turbulent stresses and mean gradients. The gray
scale represents a number of entries in the histogram.
(a) Momentum flux u0w0 vs square of vertical-velocity gradient
@z �u

2; (b) density flux �0w0 vs product of vertical-velocity and
density gradient @z �u@z ��. The insets show a test of the linear
assumption: u0w0 vs @z �u in (a) and �0w0 vs @z �� in (b). The
respective slopes indicated by dashed lines yield respectively L2

m

and L2
� for the main plots and �T and �T for the insets.

PRL 102, 134504 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 APRIL 2009

134504-3



The resulting z profiles of mixing lengths, shown in
Fig. 4, are fairly uniform, yielding mean values of Lm ¼
L� ¼ 0:45� 0:1 cm. The constancy of these lengths

through the mixing zone and their equal magnitude (turbu-
lent Prandtl number �T=�T � 1) yield a simple but power-
ful model for the mixing in stratified shear flows.

By comparing the results presented above with data
obtained with different conditions of stratification and/or
turbulence level (although always at low Rig), we can draw

some conclusions and provide a physical interpretation of
the mixing length. Without turbulent enhancement, the
mean Rig is unchanged, but the smaller Lm�L��
0:3 cm implies that the degree of initial turbulence in the
current strongly affects vertical mixing. Increasing the
stratification leads as expected to less efficient mixing
and a smaller mixing length (Lm � L� � 0:3 cm for a

doubled density difference). Other data at higher Re sug-
gest a stronger quadratic correlation between flux and
gradient, as well as an increased mixing length (Lm �
0:6 cm for Re� ¼ 140), but further experiments are neces-
sary to confirm that trend. Finally, without stratification,
i.e., for a free shear flow, the distribution of fluxes for a
particular mean gradient is much wider, and neither a
constant eddy-viscosity model nor the mixing length
model provides an adequate description of the data.

An interpretation of Lm implies comparison with scales
[22] involving the competition of turbulent kinetic energy
with the stabilization of buoyancy or the destabilization
from shear. The energy of a typical eddy of size l is of order

v2
t � ð�lÞ2=3, whereas the energy associated with buoyancy

and shear is v2
b � ðNlÞ2 and v2

s � ðSlÞ2, respectively, where
N2 ¼ g@z ��= �� and S ¼ @z �u. Balancing the turbulent and
forcing components yields a buoyancy length Lo ¼
ð�=N3Þ1=2 and a shear length Ls ¼ ð�=S3Þ1=2. The smaller
of these lengths limits the typical eddy size. We have Lo �
2 cm and Ls � 0:5 cm, so we would expect Lm � Ls as
indeed we observe. Further, the results obtained with dif-
ferent stratification and/or turbulence levels indicate Lm �
L� � Ls for those conditions, implying that for low

Richardson number the turbulent mixing lengths scale

with shear rather than buoyancy. Applying this argument
to oceanic Mediterranean overflow data [7] where one has
measured values of Ls � 2:3 m and h@zui � 0:013 s�1,
our model predicts eddy diffusivities of �T � �T �
Lsh@z �ui � 650 cm2=s. We also expect that at a higher
Richardson number, as in the ocean, the length scale will
be determined by buoyancy since Lo < Ls so that our
oceanic estimate may be a bit high. Unfortunately, data
allowing a direct comparison between our measurements
and oceanic conditions are not available to our knowledge.
Parametrizations in ocean models [23] have used values in
the range 300< �T < 7000 cm2=s for typical overflow
scenarios. Critical to extrapolating to oceanic conditions
is a systematic exploration of the dependence of the mixing
lengths on turbulence intensity and on the degree of strati-
fication as measured by Rig.
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FIG. 4 (color online). Mixing lengths Lm (d) and L� (j) vs
distance z from the plane. The error bars correspond to the
standard deviation computed from the average along x.
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