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The accuracy of digital in-line holography to detect particle position and size within a 3D domain is evalu-
ated with particular focus placed on detection of nonspherical particles. Dimensionless models are pro-
posed for simulation of holograms from single particles, and these models are used to evaluate the
uncertainty of existing particle detectionmethods. From the lessons learned, a new hybrid method is pro-
posed. This method features automatic determination of optimum thresholds, and simulations indicate
improved accuracy compared to alternative methods. To validate this, experiments are performed using
quasi-stationary, 3D particle fields with imposed translations. For the spherical particles considered in
experiments, the proposed hybrid method resolves mean particle concentration and size to within 4%
of theactual value,while the standarddeviationof particledepth is less than twoparticlediameters. Initial
experimental results for nonspherical particles reveal similar performance. © 2013 Optical Society of
America
OCIS codes: (090.1995) Digital holography; (350.4990) Particles.
http://dx.doi.org/10.1364/AO.52.003790

1. Introduction

Holography can be used to record and reconstruct the
complex amplitude of a 3D optical field [1–3]. In the
recording step, both the amplitude and phase infor-
mation are encoded in a hologram whose transmis-
sion function is proportional to the intensity of the
interference pattern between the object wave and the
reference wave. In the reconstruction step, the inter-
ference of the conjugate reference wave and the holo-
gram yields an image of the object wave. This process
is illustrated mathematically by [4]

E�x; y; z� � �I0�x; y�E�
r �x; y�� ⊗ g�x; y; z�: (1)

Here E is the reconstructed complex amplitude,
I0�x; y� is the recorded intensity of the hologram,
E�

r is the conjugate reference wave, ⊗ represents the
convolution operation, and g�x; y; z�, is the Rayleigh–
Sommerfeld diffraction kernel with a unit obliquity
factor expressed as

g�x; y; z� � ejk
����������������
x2�y2�z2

p ∕jλ
���������������������������
x2 � y2 � z2

q
: (2)

Here λ is the wavelength, k is the wave number, and
z is the propagation distance from the hologram.
In digital holography, a CCD is used to record the
hologram as a digital grayscale image, and thus
the cumbersome wet-chemical preprocessing of the
hologram in analog holography is eliminated. In
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digital reconstruction, Eq. (1) is solved numerically
in the frequency domain by

E�x; y; z� � I−1fIfI0�x; y�g ·G�f x; f y; z�g; (3)

where I and I−1 denote the Fourier transform and
inverse Fourier transform, respectively. Typically,
these transforms are numerically evaluated with
the fast Fourier transform (FFT). f x and f y are the
transverse spatial frequencies, respectively. Finally,
G�f x; f y; z� � expf jkz�1 − λ2f 2x − λ2f 2y�1∕2g and is the
analytic solution to the Fourier transform of Eq. (2)
[4]. Note in this equation,E�

r is assumed to be a plane
reference wave with unit amplitude.

Because of its simplicity, the in-line configuration
has been extensively adopted for many practical
applications, particularly in the measurement of
particle fields [5–29]. Shown in Fig. 1 is a typical ex-
perimental configuration. The performance of this
technique relies heavily on the accuracy of the mea-
sured depth (i.e., focus plane) of the particles.
However, due to the limited aperture and the compa-
ratively large pixel size of current imaging sensors,
the depth of focus of digital holographic imaging sys-
tems is large [3]. This considerably increases the un-
certainties in depth measurement. As an example,
for size-limited recording, as defined in [30], the
depth of focus can be estimated by

δ ≈ d2∕λ; (4)

where d is the particle diameter. For the experimen-
tal conditions considered in this work (d � 465 μm,
λ � 532 nm), δ ≈ 0.4 m. To be of practical use, meth-
ods are needed to determine particle depth with
uncertainty significantly less than δ. For this reason,
the first goal of the current work is to evaluate the
accuracy of particle depth detection techniques and
propose new techniques with improved accuracy.

In the literature, methods to determine particle
depth are often based on either the intensity [5–9] or
the sharpness of edges within the reconstructed im-
ages [10–13], and it is assumed that in-focus par-
ticles are defined by extremes in intensity or edge
sharpness with respect to depth. This work focuses
on the evaluation and improvement of these types
of methods and draws particular inspiration from

the work of Tian et al. [6]. Note that many alternative
methods have been developed for digital holographic
microscopy [14–17] where the nature of light scatter-
ing by small particles (on the order of micrometer or
less) creates unique challenges. Such methods are
not considered in detail here.

In addition, for many practical applications, par-
ticles are characterized by nonspherical morpholo-
gies. However, most particle detection techniques in
the literature have been calibrated for detection of
spherical particles, and few have been specifically in-
vestigated for detection of nonspherical morpholo-
gies [11,18,19]. Therefore, the second goal of this
work is to quantify the accuracy of particle detection
techniques for application to nonspherical particles.
Particular attention is placed on the detection of
opaque particles, as such particles can be readily
modeled and have many practical applications.

This paper begins with the development of a nondi-
mensionalmodel for the formationandreconstruction
of synthetic holograms. Models of spherical and rec-
tangular particles are evaluated and compared to
existing particle depth determination methods over
a wide range of nondimensional parameters. Based
on the lessons learned, anewhybridparticle detection
method is presented. Finally, the accuracy of the pro-
posed method is experimentally verified for both
spherical and nonspherical particles.

2. Theoretical Analysis

A. Methodology

As discussed in the previous section, a number of
methods have been proposed for the estimation of
particle position and shape from in-line, digital holo-
grams. Here, the accuracy of a few of these methods
is evaluated using simulated holograms of individual
spherical and nonspherical, absorbing particles. As is
often done in the literature [14,20,21], complexities
arising from 3D particle morphologies are ignored,
and each particle is modeled as a two-dimensional
opaque shape.

A simple method for simulation of digital holo-
grams involves the numerical propagation of the
complex amplitude from the plane containing the si-
mulated particle to the recording plane using Eq. (3)
[7,10,22]. However, errors in the simulated hologram
may be introduced due to discretization, the inherent
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Fig. 1. Schematic of in-line digital holography applied to particle field: (a) recording and (b) reconstruction.
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periodicity of the FFT, and signal windowing. In
addition to this, Eq. (3) will also later be used for
reconstruction of the particle field, and use of the
same numerical method for simulation and recon-
struction may be problematic. To avoid these issues
in this work, simulated holograms are calculated
from the analytic solution of the propagation equa-
tions. This choice has the additional advantage of
yielding a nondimensional model that allows for
evaluation of accuracy in terms of nondimensional
parameters.

To begin, consider the case of a spherical particle
modeled as an opaque disk of radius ao (in the x–y
plane) centered at (x � 0, y � 0, z � 0). It is assumed
that the disk is illuminated by a plane reference
wave propagating along the z axis with uniform in-
tensity, Ir. An exact analytic solution for the intensity
in the recording plane, I0, at distance zo based on the
solution of Eq. (1) is not available. However, an exact
solution to the somewhat simpler Fresnel equation is
available and can be written as

I0�ρ;Za�∕Ir � j1 − jπe−jπρ
2∕Za �L�u; v� −M�u; v��∕Zaj2:

(5)

Here, I0�ρ;Za�∕Ir is the nondimensional intensity in
the recording plane. ρ � �x2 � y2�1∕2∕ao. Za � λzo∕a2

o
and is the inverse of the Fresnel number. u � 2∕Za
and v � 2ρ∕Za. Finally, L�u; v� and M�u; v� are solu-
tions to Lommels’ integral of the form
1
0

R
J0�vρ�e−juρ2∕2ρdρ � �L�u; v� − jM�u; v��∕2;where J0

is the zero-order Bessel function of the first kind.
The derivation of Eq. (5) is based on the equations
presented by Gu and Gan [31,32] and Mielenz [33]
for circular apertures combined with Babinet’s prin-
ciple. In the results presented in Section 2B, the
numerical method of Mielenz [33] is used to calculate
L�u; v� and M�u; v�.

Similarly, opaque rectangles of half-width wo and
half-height ho, located at (x � 0, y � 0, z � 0), are
used to model prototypical nonspherical particles.
As was the case for the opaque disk, an exact solution
to the Fresnel equation can be derived and is
given by

I0�X;Y;Zw; b�∕Ir �

���������

1� j
2

�
C
� �����

2
Zw

q
�1 − X�

�
− C

�
−

�����
2
Zw

q
�1� X�

�
� j

�
S
� �����

2
Zw

q
�1 − X�

�
− S

� �����
2
Zw

q
�1� X�

���

×
�
C
�
b

�����
2
Zw

q
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�
− C

�
−b
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2
Zw

q
�1� Y�

�
� j

�
S
�
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�����
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Zw

q
�1 − Y�

�
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�
b

�����
2
Zw

q
�1� Y�
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���������

2

:

(6)

Here, I0�X;Y ;Zwb�∕Ir, is the nondimensional inten-
sity in the recording plane. X � x∕wo, Y � y∕ho,
Zw � λzo∕w2

o , b � ho∕wo and is the aspect ratio.
Finally, C�α� and S�α� are solutions to the integral
α
0

R
ejπσ

2∕2dσ � �C�α� � jS�α��;and are sometimes re-
ferred to as the Fresnel cosine and sine integrals,

respectively. The derivation of Eq. (6) is based on
the equations presented by Goodman [4] for a square
aperture combined with Babinet’s principle. In the
results presented in Section 2B, the numerical
method of D’Errico [34] is used to calculate C�α�
and S�α�.

Equations (5) and (6) provide an exact, nondimen-
sional expression for the intensity at the recording
plane due to an opaque disk and opaque rectangle,
respectively. Next, the intensity is assumed to be
sampled by a CCD with N pixels in the x-direction
andM pixels in the y-direction, where the active area
of each pixel is assumed to be of size Δx×Δy. In a non-
dimensional form, this pixel size is given by
Δx∕ao×Δy∕ao or Δx∕wo×Δy∕ho when modeling the
disk or rectangle, respectively. In the results pre-
sented in the Section 2B, a 100% fill factor is as-
sumed such that the active area and physical size
of each pixel is the same. Finally, to model the local
signal averaging at each pixel, the exact nondimen-
sional intensity is calculated on a grid which is ten
times finer than the nondimensional CCD grid,
and then averaged onto the CCD grid.

Next, the effects of some important noise sources
are added to the modeled signal. First, it is assumed
that the CCD converts the analog signal to a digital
signal with n bits of accuracy. It is further assumed
that the constant reference intensity, Ir, is converted
to a digital value given by γ�2n − 1�, where γ is the per-
cent of the full-scale output. Therefore, the effects of
analog to digital conversion are introduced by scaling
the nondimensional intensity by γ�2n − 1� and round-
ing to the nearest integer value. Second, to model the
effects of shot noise, thermally generated noise, read-
out noise, and other random noise sources, normally
distributed random integer values with a mean of
zero, and a standard deviation of β�2n − 1� are added
to all of the simulated pixel values. Here, β is the
standard deviation of the noise as a percent of full-
scale output.

In summary, the preceding discussion outlines a
nondimensional model for hologram formation and
recording when the object is a single opaque disk of
radius ao or a rectangle of half-width wo and half-

height ho. The relevant nondimensional parameters
are (1) Za � λzo∕a2

o or Zw � λzo∕w2
o for the disk and

rectangle, respectively, which can be considered as
a nondimensional recording distance; (2) b � ho∕wo,
which defines the aspect ratio of the rectangle; (3) γ,
which quantifies the nondimensional reference
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intensity; (4) Δx∕ao and Δy∕ao or Δx∕wo and Δy∕ho,
which are the nondimensional pixel sizes; (5) N,
which is the number of pixels in the x-direction;
(6) M, which is the number of pixels in the y-
direction; (7) n, which is the number of bits for analog
to digital conversion; (8) β the nondimensional stan-
dard distribution of CCD noise.

To apply this model, it is also necessary to non-
dimensionalize the reconstruction equation. As
mentioned in Section 1, the discrete form of the
Rayleigh–Sommerfeld equation, Eq. (3), is often used
to calculate the reconstructed signal. However, nondi-
mensionalization of Eq. (3) requires the definition of
yet another nondimensional parameter. To avoid
further increasingtheparameterspacewhenperform-
ing reconstruction of the simulations in this section,
the Fresnel equation is utilized for reconstruction
rather than Eq. (3). By applying the same nondimen-
sional parameters as above, thediscreteFresnel equa-
tion, in convolution form, can be written as

I�X;Y ;Z; b�∕Ir � jI−1fIfI0�X;Y ;Z; b�∕Irg
·G�f X ; f Y ;Z; b�gj2; (7)

where I�X;Y ;Z; b�∕Ir is the intensity in the recon-
struction plane, andG�f X ; f YZ; b� � expf−jπZ��f X�2 �
�f Y∕b�2�g. When evaluating Eq. (7) for the disk, Z �
λz∕a2

o and b � 1 and for the rectangle, Z � λz∕w2
o

and b � ho∕wo. Notice that no additional nondimen-
sional parameters are required to evaluate Eq. (7).

Equations (5)–(7) define a model for hologram for-
mation, recording, and reconstruction in terms of
nondimensional parameters. These equations are
programmed and evaluated with a MATLAB script.
In the results presented in Section 2B, six test cases
are considered with the relevant parameters defined
in Table 1. These parameters are selected to span the
range of conditions considered in the experiments
and other conditions expected in the intended appli-
cation. For each test case, 20 different values of Z are
simulated, and at each value of Z, 20 separate holo-
grams are calculated to allow for evaluations of the
effects of the random noise on reconstruction accu-
racy. In total, 2400 separate hologram simulations
are performed.

Two methods to detect particle shape and position
are evaluated: (1) particle detection based on inten-
sity minimization in the depth direction and (2) par-
ticle detection based on maximum edge sharpness in
the depth direction. For both methods, the intensity

is reconstructed at 1000 planes at depths between
0.9Zo and 1.1Zo where Zo is the actual value of Za
or Zw.

The minimum intensity method is based on the
assumption that intensity within a reconstructed
particle is minimized at the in-focus plane. To imple-
ment this method, the minimum intensity value and
its corresponding Z location for each pixel are stored
to form a minimum intensity map. Particles are de-
tected by applying a threshold to theminimum inten-
sity values, and depth is estimated by the mean Z
location of minimum intensity within the detected
particles.

In the maximum edge sharpness method, particles
are assumed to be in-focus when the sharpness of
their edge is maximized. Sharpness is quantified by
the Tenengrad operator applied to each pixel in the
reconstructed image, where the Tenengrad operator
is defined as

T�x; y� � �A�x; y� ⊗ Sx�2 � �A�x; y� ⊗ Sy�2: (8)

Here A�x; y� is the reconstructed amplitude, defined
as the square root of intensity. Sx and Sy are the hori-
zontal and vertical Sobel kernels, respectively [35].
(Note that in a previous publication the Tenengrad
operator was applied to the intensity image rather
than the amplitude as proposed here [23]; however,
through trial-and-error it is found that the amplitude
produces a Tenengrad map with higher-signal to
noise.) To apply this method, Eq. (8) is solved to find
the value of the Tenengrad operator for each pixel at
all values of Z. Next, the maximum Tenengrad value
and its corresponding Z location are stored to form
the maximum Tenengrad map. Finally, a threshold
is applied such that any pixel with maximum Tenen-
grad value greater than the threshold is assumed to
form an in-focus edge. The depth of the in-focus edge
is taken as the mean Z location of maximum Tenen-
grad within the detected particles.

B. Results and Discussion

An evaluation of the conditions and methods out-
lined in the previous subsection results in a signifi-
cant amount of data. Detailed presentation and
discussion of these data, in their entirety, are beyond
the scope of this work. Here a few select results are
presented to illustrate the important trends.

Figure 2 shows the minimum intensity and maxi-
mum Tenengrad maps for the case of the large
square at Zo � 2.979. Figures 2(a) and 2(b) show the

Table 1. Nondimensional Conditions Considered in Simulations of Digital Holograms

Description Za or Zw b γ Δx∕ao or Δx∕wo Δy∕ao or Δy∕ho N M n β

Large disk 0.425 ≤ Za ≤ 8.512 N/A 0.5 0.0296 0.0296 1024 1024 14 0.006
Large square 0.425 ≤ Zw ≤ 8.512 1 0.5 0.0296 0.0296 1024 1024 14 0.006
Large rectangle 0.425 ≤ Zw ≤ 8.512 2 0.5 0.0296 0.0148 1024 1024 14 0.006
Small disk 10.64 ≤ Za ≤ 212.8 N/A 0.5 0.148 0.148 1024 1024 14 0.006
Small square 10.64 ≤ Zw ≤ 212.8 1 0.5 0.148 0.148 1024 1024 14 0.006
Small rectangle 10.64 ≤ Zw ≤ 212.8 2 0.5 0.148 0.074 1024 1024 14 0.006
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value and Z location of minimum intensity, respec-
tively, while Figs. 2(c) and 2(d) show the value and
Z location of maximum Tenengrad. To detect objects,
these images in Figs. 2(a) and 2(c) are thresholds, re-
sulting in the detected regions shown in Fig. 3. Note
that the x and y axis in Fig. 3 have been reduced com-
pared to Fig. 2 to better illustrate the results. Also, in
Fig. 3(b) the specified threshold is defined as a per-
cent of the overall maximum Tenengrad value.

To estimate the particle depth, the Z locations of
the minimum intensity and maximum Tenengrad for
all pixels within the detected regions are averaged
together. The errors in the detected depths for all
conditions considered for the large square test case
are summarized in Fig. 4. In this figure, lines show
the mean value of the detected depth for all 20 real-
izations of random noise considered at each condi-
tion, and the error bars represent the standard
deviation.

For spherical particles, Tian et al. proposed a re-
lated minimum intensity method where depth is cal-
culated from the edge pixels of the thresholded
minimum intensity map [6]. That method has also
been evaluated using the procedures outlined in this
section, and it is found to indeed produce superior re-
sults when applied to the disk. However, when ap-
plied to square and rectangular particles, the depth
error is larger than that shown in Fig. 4(a).

From Figs. 3 and 4, it is seen that the accuracy of
the detected particle shape and position is a strong
function of the selected algorithm and applied
threshold. Results for all other conditions outlined
in Table 1 show similar trends. In general, the

minimum intensity method is superior for detecting
a single, connected region from which particle shape
and in-plane position can be measured [see Fig. 3(a)].
In contrast, particle outlines detected with the maxi-
mum Tenengrad method often contain holes that
complicate efforts to extract the particle shape [see
Fig. 3(b)]. On the other hand, as seen in Fig. 4, with
relatively high thresholds, the maximum Tenengrad
method is superior to the minimum intensity method
for determination of particle depth.

A few important limitations of these methods
should be highlighted: first, the optimum thresholds
are a strong function of particle size and shape. For
applications where a broad distribution of size and
shape is expected, the use of a single threshold to de-
tect all particles is unlikely to result in accurate re-
sults. Second, for the case of the symmetric disks, the
Tenengrad method fails to accurately detect particle
depth. This is attributed to the presence of Poisson’s
spot, which leads to large spatial gradients (high
Tenengrad operator) within the particle interior
and consequently the detection of false edges. Third
and final, the results tend to be somewhat unstable,
such that thresholds that give reasonable results at
one value of Zo may produce large errors at slightly
different values of Zo.

In summary, this section outlines simulation pro-
cedures to evaluate the accuracy of particle detection
algorithms. Unlike other methods commonly found
in the literature, governing equations are fully non-
dimensional, care has been taken to ensure high
accuracy of the simulated holograms, and estimates
for uncertainty are included. Results indicate the
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Fig. 2. (a) Minimum intensity in the reconstructed Z direction and (b) the corresponding Z location. (c) Maximum Tenengrad in the Z
direction and (d) corresponding Z location for the large square at Zo � 2.979.
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simulations are useful for exploring a wide range of
conditions. In Section 3, these procedures will be fur-
ther applied for evaluation of the accuracy of a pro-
posed hybrid particle detection method based on a
combination of the minimum intensity and maxi-
mum Tenengrad methods. This hybrid method is
specifically designed to overcome the limitations dis-
cussed in the previous paragraph.

3. Proposed Hybrid Particle Detection Method

As discussed in Section 2B, with an optimum thresh-
old, the minimum intensity map tends to produce
accurate representations of the particle shape and
in-plane position. On the other hand, when particle
edges are accurately captured, the thresholded
maximum Tenengrad map tends to better capture
the particle depth. To combine these two methods,
it is proposed to apply various thresholds to the min-
imum intensity map to find a family of possible par-
ticle edges. Then, the values of the Tenengrad map
from the pixels on the particle edge are averaged to
estimate the edge sharpness of each possible particle
edge. Finally, the particle edge with the maximum
Tenengrad operator is chosen as the in-focus edge,
and its depth is calculated from the average Z

location along the selected edge of the Tenengrad
depth map.

The Tenengrad operator tends to maximize on a
boundary that is slightly outside of the actual par-
ticle edge. This is likely related to the ringing effect
in coherent imaging in which the image of an opaque
disk displays higher spatial gradients just outside its
edge (see Fig. 6.20 in [4]). For the conditions consid-
ered here, this effect is reasonably accounted for by
dilating the thresholded minimum intensity map
outward by one pixel before calculating the average
Tenengrad operator along the detected edge.

This hybrid method is evaluated for the test cases
given in Table 1. For all conditions, the minimum
intensity and maximum Tenengrad maps are
calculated from the reconstruction of 1000 planes
at depths between 0.9Zo and 1.1Zo. One hundred dif-
ferent potential particle edges are considered by
thresholding the minimum intensity between 0.001
and 0.7.

Figure 5 illustrates the results when applied to the
case of the large square at Zo � 2.979. Figure 5(a)
shows the average of the Tenengrad map calculated
for each threshold. From this it is seen that a thresh-
old of 0.1352 gives the highest mean value of the
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Tenengrad operator and is used to find the in-focus
particle shape shown in Fig. 5(b). For this case, the
detected nondimensional particle Z position is 2.966,
an error of −0.42% with respect to the actual value.
In addition, the detected particle height and width is
0.977, an error of −2.32% with respect to the actual
value.

Figure 6 summarizes the accuracy of the hybrid
method for all conditions given in Table 1. Compari-
son of Fig. 6(a) with Fig. 4 reveals that the accuracy
in detected depth is significantly improved compared
to the minimum intensity or maximum Tenengrad
methods. In addition, the results are relatively sta-
ble, in that small changes in particle position do
not lead to large changes in accuracy. Finally, it is im-
portant to reiterate that the proposed hybrid method
does not require a priori knowledge of the optimum
threshold, a significant improvement over previous
methods.

Figures 6(b)–6(d) shows the error in the detected
particle diameter, width, and height, respectively,
where do, wo, and ho represent the actual values of
diameter, width, and height, respectively. For the
large particles, the size error is generally less than
about �5%, which may be acceptable for some appli-
cations. However, the size error of smaller particles
can exceed �30%. Similar results have been ob-
served by other authors using alternative algo-
rithms, and when particles are assumed spherical,
some authors have chosen to correct experimental re-
sults based on trends observed in simulations [24].
No such correction is proposed here, because algo-
rithms are specifically sought that do not require a
priori knowledge of particle shape.

To improve the detection of small, nonspherical
particles, a second depth refinement may be per-
formed, repeating the process as described above
with the exception that the intensity reconstructed
at the current best estimate of particle location is
thresholded to find the family of possible particle
edges rather than the minimum intensity. For exam-
ple, Fig. 7 summarizes the results after applying a
second refinement to the small rectangle test case.
Significant improvement is achieved in the detected
depth and width. Note that further iterations of this
process are possible, but simulations indicate little
change in results after the second refinement. Also,
for the other test cases listed in Table 1, the change in
accuracy after applying a second refinement is
less. Nevertheless, the results in Fig. 7 indicate
that further refinement of particle shapes via the
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the simulated large square test case at Zo � 2.9973. (a) Average of
the Tenengrad map along the detected edges from the thresholded
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the detected optimum threshold.
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Fig. 6. Error in detected particle: (a) depth, (b) diameter, (c) width, and (d) height for the proposed hybrid method. Error bars indicate the
standard distribution.
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thresholded local intensity may be advantageous for
certain conditions.

Finally, it should be noted that the proposed hybrid
method makes no attempt to eliminate the out-of-
focus twin-images which add noise around the recon-
structed particle images [3]. For applications to
dense fields of small particles where Z ≫ 1, reduction
of the twin-image effect may be possible using meth-
ods proposed in the literature [36,37]; however, it is
left as future work to explore these methods.

4. Experimental Analysis

Experiments are performed to validate the theoreti-
cal analysis and quantify any additional sources of
experimental uncertainty. This section begins with
an overview of the experimental setup followed
by discussion of experimental results for spherical
particles. Finally, initial results for nonspherical par-
ticles are presented.

A. Methodology

The experimental configuration is illustrated in
Fig. 8. A frequency doubled, continuous wave,
Coherent Verdi V6 Nd:YAG laser is spatially filtered
and collimated to form the reference wave for an in-
line digital holography configuration. This illumi-
nates an optical glass cuvette with inner dimensions
of 50 mm × 50 mm × 50 mm (Hellma Analytics
model 704.003-OG) filled with 100 ml of 10,000 cSt
Dow Corning silicone oil. Polystyrene beads from
Polysciences, Inc. are added to the silicone oil to serve
as the objects of interest. The resulting diffraction
pattern is recorded by a Redlake EC16000 MegaPlus

II monochrome camera placed at approximately
zmean ≈ 195 mm from the center of the cuvette. The
CCD has 4872 pixels in the x direction and 3248 pix-
els in the y direction. Each pixel is approximately
7.4 μm square. In the reconstructions presented in
Section 4B, the pixel fill factor is assumed to be
100%. Finally, the cuvette is placed on a linear
traverse stage oriented in the z direction with a
specified positing accuracy of �3 μm.

In an experiment, the linear traverse stage is used
to displace the particle-filled cuvette by 2 mm be-
tween each hologram recording. As is shown in
Section 4B, particle matching between subsequent
reconstructions is used to quantify the experimental
accuracy of the particle depth determination algo-
rithms. To improve statistical convergence, the ex-
periments are repeated after stirring the cuvette
and degassing in a vacuum to remove any bubbles.
In total, 14 experimental holograms are recorded.

The size distribution of the polystyrene beads was
independently measured with a Malvern Master-
sizer 2000, and the mass median diameter of the
particles was found to be approximately 465 μm.
Assuming Stokes flow and material properties pro-
vided by the manufactures, the settling velocity of
the particles is estimated to be 0.84 μm∕s. The time
necessary to acquire two subsequent holograms is
less than 60 s, such that the particles are estimated
to settle less than 50 μm in the y direction between
acquisitions.

Based on the mass median diameter and the esti-
mated mean depth, the relevant nondimensional
parameters are Za ≈ 1.9 and Δx∕a ≈ Δy∕a ≈ 0.03.
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Fig. 7. Error in detected particle: (a) depth, (b) width, and (c) height for the small rectangle test case after a second refinement where the
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Holograms are recorded with n � 14 bits of accuracy
and the reference intensity is adjusted such that the
ratio of the recorded reference intensity to the
maximum pixel value is approximately γ � 0.5.
Comparison of the aforementioned nondimensional
parameters with the conditions defined in Table 1 re-
veals that the experimental conditions most closely
correspond to the large disk simulations. Therefore,
the predicted experimental uncertainty is defined by
the black lines at Zo � 1.9 in Figs. 6(a) and 6(b).

B. Results and Discussion

Figure 9 illustrates the processing of an experimen-
tal hologram using the proposed hybrid method.
Figure 9(a) shows an example experimental holo-
gram. Minimum intensity and maximum Tenengrad
maps are calculated from reconstruction of 1000
planes at depths between 150 and 250 mm, and the
results are shown in Figs. 9(b) and 9(c). Next, the hy-
brid detection algorithm is applied to find the best
estimate of the in-focus particle positions. Here
thresholds to the minimum intensity map between
5 and 300 are considered. To account for loss of
spatial information and accuracy near the edge of
the hologram, no particles are accepted within 200
pixels of the hologram edges. Finally Fig. 9(d) shows
the detected shapes of the in-focus particles colored
by the detected z position. Despite a large amount of
noise in the background of Fig. 9(c), spherical par-
ticles are successfully extracted using the hybrid
method. Note that although the entire hologram is
processed in the described manner, only the center

2056 × 2056 pixels are shown in Fig. 9 to illustrate
features.

On average, 65 particles are detected in each holo-
gram within a volume that is roughly 24 cm3. This
corresponds to a detected particle concentration of
2.7particles∕cm3. The actual particle concentration
is estimated to be 2.8particles∕cm3 based on the
mass of particles added to the silicone oil. The par-
ticle size distribution is measured with the Master-
sizer, and the material density provided by the
manufacturer.

Figure 10 summarizes the particle-size distribu-
tion calculated from all particles detected in all holo-
grams. The experimental results are converted to a
volume weighted distribution using the detected
diameter and assuming spherical particles. Also
shown is the particle size distribution measured with
the Mastersizer. The mass median diameter mea-
sured with holography is 474 μm, a bias of 2.0% with
respect to the value measured with the Mastersizer.

To quantify the accuracy of the detected z position,
particle matching is performed between successive
hologramsusingaHungarianroutine,whichattempts
to minimize the sum of the detected displacements
[38]. All matching is performed by considering the x,
y positions, and to minimize false particle matches,
nomatch is accepted that has a total x, y displacement
greater than 100 μm. The results are summarized in
Fig. 11. The mean detected displacement is 1.91 mm,
whilethestandarddeviationofdisplacement0.81mm.
Here, the uncertainty of particle displacements, as
quantified by the standard deviation, is 1.74 times
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Fig. 9. (a) Experimental hologram of spherical particles, (b) minimum intensity in the reconstructed z direction, (c) maximum Tenengrad
in the z direction (scale adjusted to improve visibility of features), and (d) detected in-focus particle shapes colored by detected z location in
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themeanparticle diameter.Although fewworks in the
literature have quantified experimental depth uncer-
tainty to the extent reported here, thoseworks that do
report distributions of particle positions indicate typ-
ical uncertainties on the order of two times the mean
particle diameter or greater [25,29].

These results indicate that the hybrid method can
successfully extract particle x, y, z position and shape
from a 3D particle field. The particle concentration
and size distribution closely matches the expected
value,while the uncertainty of particle displacements

is equal to or better thanmany results reported in the
literature. Furthermore, the hybrid method does not
depend on user-defined thresholds and is therefore
expected to remainaccurate over a broad range of con-
ditions. Nevertheless, some areas for improvement
can be noted. For example, the mean diameter is
slightly larger than expected. This may be attributed
to particles that are closely spaced in the x–y plane
and are incorrectly detected as single large particles
[see Fig. 9(d)]. Furthermore, the simulations, which
consider the effect of camera readout noise on uncer-
tainty, predict a standard deviation of particle z
position on the order of 0.001% of zo, while the exper-
imental value is 0.4% of zmean. Potential sources of ex-
perimental uncertainty that are not included in
simulations include dust on the beam forming optics,
imperfections in the planar wavefront, false detection
of closely spaced particles, etc. It seems likely that
these experimental noise sources are significantly
greater than camera induced noise, and further ef-
forts are need to quantify, model, and reduce their
effects. For example, when particle matching is per-
formed on only those particleswith detected diameter
less than 400 μm,which tends to eliminate large over-
lapping particles, themean and standard deviation of
displacement improves to 1.95 and 0.42 mm, respec-
tively. This indicates that new algorithms to separate
overlapping particles would significantly improve
experimental uncertainty.One example is themethod
using Gaussian mixture models presented by
Tian et al. [6].

C. Initial Experimental Results for Nonspherical Particles

Finally, the proposed method is tested on a particle
field containing nonspherical particles. To do so, the
cuvette is placed at approximately zmean ≈ 300 mm
and is filled with 60,000 cSt silicone oil containing
a few metal shavings. Seven holograms are obtained
while displacing the cuvette 2 mm in the z direction
between recordings. Figure 12(a) shows an example
hologram, and Fig. 12(b) shows the particles detected
using the hybrid method. Nonspherical shapes are
clearly visible, while some spherical particles are
also observed and can be attributed to gas bubbles
in the highly viscous liquid.
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Fig. 12. Example nonspherical particle results showing: (a) the hologram and (b) the detected in-focus particle shapes colored by detected
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Once again, particle matching is performed
between subsequent recordings and the results are
summarized in Fig. 13. The mean detected displace-
ment is 2.0 mm, while the standard deviation of dis-
placement 3.0 mm. For these particles, the detected
area equivalent mean diameter is approximately
860 μm; therefore, the uncertainty of particle dis-
placement is roughly 3.5 times the mean particle
diameter. Further experimental data is needed to
better resolve the statistics; nevertheless, these ini-
tial results indicate that the hybrid method can be
successfully applied to nonspherical particles yield-
ing uncertainty similar to that of spherical particles.

5. Conclusions

Among available particle diagnostic techniques, in-
line digital holography is uniquely suited to capture
the 3D spatial distribution of particle position and
shape. However, accurate detection of particles is
complicated by the large depth of focus.

This work presents a theoretical and experimental
evaluation of particle detection methods with par-
ticular focus on detection of nonspherical particles.
New simulation techniques are developed to accu-
rately model hologram formation and reconstruction
of single opaque spherical and rectangular particles.
This model is used to evaluate particle detection al-
gorithms based on intensity minimization and edge
sharpness maximization. Lessons learned from these
evaluations leads to the proposal of a new hybrid
method with a number of advantages. Finally, exper-
imental results of spherical and nonspherical par-
ticles suspended in a viscous liquid are used to
verify the accuracy of the proposed hybrid detection
method.

This work has resulted in a number of important
findings, including:

• Newmethods proposed for the simulation of dig-
ital holography are fully nondimensional. As shown
here, the use of the nondimensional methods allows
for reduction of the number of simulations necessary
to characterize the accuracy of particle detection
algorithms.
• A new particle detection algorithm based on

the combination of minimum intensity and edge

sharpness is shown to capture particle depth and
shape with improved accuracy compared to other
methods evaluated in this work. In addition, this
method requires no a priori knowledge of particle
shape or optimum threshold. As a consequence, this
method appears well suited to the detection of non-
spherical particles with a broad size distribution.
• Experiments that involve imposed translations

to quasi-stationary particle fields are shown to be
well suited for evaluation of the uncertainty of par-
ticle detection algorithms.
• The experimental results indicate additional

uncertainties not captured by the single particle sim-
ulations. In particular, particles that overlap in the
x–y plane increase depth-of-focus and particle size
uncertainty. Additional work is needed to develop
methods that detect and minimize these effects.
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tical setup, Lindsay Gloe Hughes for the particle size
measurements using the Malvern Mastersizer, and
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