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The response of turbulence subjected to planar straining and de-straining is studied
experimentally, and the impact of the applied distortions on the energy transfer across
different length scales is quantified. The data are obtained using planar particle image
velocimetry (PIV) in a water tank, in which high-Reynolds-number turbulence with
very low mean velocity is generated by an array of spinning grids. Planar straining
and de-straining mean flows are produced by pushing and pulling a rectangular piston
towards, and away from, the bottom wall of the tank. The data are processed to yield
the time evolution of Reynolds stresses, anisotropy tensors, turbulence kinetic energy
production, and mean subgrid-scale (SGS) dissipation rate at various scales. During
straining, the production rises rapidly. After the relaxation period the small-scale SGS
stresses recover isotropy, but the Reynolds stresses still display significant anisotropy.
Thus when destraining is applied, a strong negative production (mean backscatter)
occurs, i.e. the turbulence returns kinetic energy to the mean flow. The SGS dissipation
displays similar behaviour at large filter scales, but the mean backscatter gradually
disappears with decreasing filter scales. Energy spectra are compared to predictions
of rapid distortion theory (RDT). Good agreement is found for the initial response
but, as expected for the time-scale ratios of the experiment, turbulence relaxation
causes discrepancies between measurements and RDT at later times.

1. Introduction
Turbulent flows exhibit strong interaction between different scales, including

momentum and kinetic energy exchange. At high Reynolds numbers, the range of the
scales involved can span several decades. Better understanding of scale interactions
is important for successful application of turbulence prediction methods, especially
when the turbulence interacts with mean velocity gradients and is not in equilibrium
conditions with the mean flow.

In the Reynolds-averaged Navier–Stokes (RANS) approach, the Reynolds stress
tensor, −ρ〈u′

iu
′
j 〉, must be appropriately modelled in order to close the equations. The

energy exchange between mean flow and turbulence is accounted for in the transport
equation of turbulent kinetic energy (k ≡ (1/2)〈u′

iu
′
i〉) (Tennekes & Lumley 1972; Pope

2000). There, the turbulence production rate

Ψ ≡ −〈u′
iu

′
j 〉∂〈ui〉

∂xj

(1.1)
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quantifies the energy supply from the mean flow to the turbulence, and its typically
positive value indicates flux of kinetic energy from the mean flow to the turbulence.
The viscous dissipation rate term, ε ≡ 2ν〈sij sij 〉, accounts for the energy drain by the
viscous stresses, where sij ≡ (∂u′

i/∂xj + ∂u′
j /∂xi)/2 is the fluctuating rate of strain

tensor.
In large-eddy simulation (LES) (e.g. Rogallo & Moin 1984; Reynolds 1990; Pope

2000), a flow variable f (x, t) is filtered into a coarse-scale part

ef (x, t) =

∫
D

f (x − x ′, t)G∆(x ′) dx ′ (1.2)

and a small-scale (or subgrid scale, SGS) part

f SG(x, t) = f (x, t) − ef (x, t), (1.3)

where G∆(x ′) represents a filter kernel with characteristics scale ∆. Similar to the
Reynolds stress in the RANS equations, the subgrid scale (SGS) stress, τij = euiuj −
euieuj , must be properly modelled in order to close the LES equations. The crucial
influence of the SGS stress on the resolved flow field is accounted for in the transport
equation of resolved kinetic energy, k∆ ≡ 1

2
euieui (Piomelli et al. 1991; Pope 2000).

The term −τij
eSij , commonly referred to as SGS dissipation, quantitatively describes

the local energy transfer between resolved and subgrid scales. While on average the
typical trend of energy transfer is from resolved to subgrid scales (forward scattering),
locally in a turbulent flow, the subgrid scales often return energy to resolved scales
(back scattering) (Piomelli et al. 1991; Liu, Meneveau & Katz 1994). The mean SGS
dissipation,

Π∆ = −〈τij
eSij 〉, (1.4)

is the net energy transfer across scale ∆.
In most engineering applications, turbulent flows are regularly subjected to strong

large-scale mean deformation. Examples include turbulent flows inside contracting
or expanding channels, flows inside pumps, ship hull boundary layers impinging on
propeller blade, etc. Such deformations have the ability to affect significant ranges of
turbulence scales and may thus affect quantities of interest in LES, such as the SGS
dissipation and the performance of SGS models. When the turbulence-to-mean-flow
time ratio is very large, i.e. Sk/ε → ∞, where S characterizes the strength of the
mean flow velocity gradients, rapid distortion theory (RDT) has been introduced
as a means of simplifying the Navier–Stokes equations (Prandtl 1933; Taylor 1935;
Batchelor & Proudman 1954; Savill 1987; Hunt & Carruthers 1990; Pope 2000). The
resulting RDT equations are linear with respect to the fluctuating part, and thus can
be solved analytically. Turbulent fields predicted by RDT depend on the total strain,
e(t) =

∫ t

t0
S(t ′) dt ′.

The interactions between turbulence and strong mean flow velocity gradients
have been studied using both RANS and LES frameworks. In the context of the
RANS, Townsend (1954), Keffer (1965) and Tucker & Reynolds (1968) conducted
hot-wire measurements of decaying grid turbulence inside a specially designed
distorting section of wind tunnel. One may also refer to the experiments reported in
Gence & Mathieu (1979, 1980), Kevlahan & Hunt (1997) and Choi & Lumley (2001).
Lee & Reynolds (1985) performed DNS of strained turbulence and explored different
straining schemes, including planar and axisymmetric straining, at a microscale
Reynolds number, Rλ, of less than 100. For turbulence subjected to mean shear,
Saddoughi & Veeravalli (1994) performed high-resolution hot-wire measurements of
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turbulent boundary layers in the world’s largest wind tunnel, at Rλ ∼ 500 − 1500 and
Sk/ε ∼ 6−12. In the context of LES, the PIV measurement by Liu, Katz & Meneveau
(1999) provided insight on scale interactions and evolution of SGS statistics when
a constant axisymmetric distortion (Sk/ε ∼ 7) was applied on an initially isotropic
turbulence. Among others, the results showed that the measured SGS stress anisotropy
was smaller than the prediction of RDT and that eddy-viscosity type SGS models give
biased predictions when strong straining was present. Their data ensemble was small
(20 measurements at every time phase), creating significant scatter in the statistics and
trends. To further elucidate the interaction of mean straining flow and turbulence,
other types of applied straining, e.g. planar straining in the present study, must be
studied with variations and combinations of straining histories.

Previous investigations of SGS physics predominantly focus on nearly equilibrium
turbulence or equilibrium turbulence subjected to strong distortion (e.g. Liu et al. 1999;
Meneveau & Katz 2000). A more complicated scenario exists when the turbulent flow
is subjected to a sequence of straining and destraining. This process occurs, for
instance, when turbulence impinges, and passes around, a propeller blade. Along the
suction side, the free-stream turbulence is first compressed and then stretched by the
mean flow, near the leading edge of the blade. In the middle section of a blade passage,
the same turbulent fluid element is advected by nearly uniform mean flow (turbulence
relaxation). Finally, the deformation is partially reversed (destraining) during passage
in the pressure recovery part of the flow, near the trailing edge of the blade. This
type of sequence also exists for turbulence below surface waves (Teixeira & Belcher
2002), and in internal combustion engines (Hadzic, Hanjalic & Laurence 2001). SGS
physics and modelling in non-equilibrium conditions were studied also by Piomelli,
Coleman & Kim (1997) in suddenly accelerated or sheared wall-layers.

In the present study, we investigate experimentally the evolution of turbulence
subjected to a cycle of planar straining, relaxation and destraining from the perspective
of both RANS and LES. The scale-interactions are documented as functions of
length scale and time during the cycle. The main questions to be addressed are:
(i) What is the relationship between RANS and LES variables, such as Reynolds
and SGS stresses, as well as Reynolds production and SGS dissipation, as function
of scale; (ii) How well does RDT predict the time evolution of the above mentioned
parameters at different scales, when the strength of the applied straining is ‘moderate’,
i.e. the Sk/ε → ∞ validity criterion for RDT does not apply.

Details about the experimental apparatus and instrumentation are given in § 2. The
characteristics of both initial turbulence and mean flow history are documented in
§ 3. Results and discussion are presented in § 4. Conclusions are drawn in § 5.

2. Experimental set-up
2.1. Apparatus

The experimental set-up is shown in figures 1 and 2. The same set-up has been
used to study the performance of a series of sub-grid stress models, as described in
Chen, Katz & Meneveau (2005). Since the facility and procedures are essential for
interpreting the results, we provide a brief description also in this paper.

The facility is composed of a water tank, a turbulence generation mechanism,
a straining system, and support frames. The dimensions of the water tank are
325(L) × 125(H ) × 20(W ) cm3, with the test section located at the centre of the bottom
portion of the tank. Windows below and on both sides of the test section provide
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Figure 1. Schematic description of (a) the experimental facility, and (b) the active grids.

optical access for data acquisition. Two honeycomb plates are set at the top part of
the water tank to alleviate the possible effects of surface waves.

In recent years, active grids have proved useful in generating high-Reynolds-number
isotropic turbulence. For example, Makita (1991) devised a system of randomly
flapping agitator wings inside a small wind tunnel, and obtained nearly homogenous
and isotropic turbulence with Rλ ∼ 400. Mydlarski & Warhaft (1996) employed the
same idea to study the characteristics of turbulence at different Reynolds numbers
ranging from 50 to 473, and the design was scaled up to reach Rλ ∼ 730 (Mydlarski &
Warhaft 1998; Kang, Chester & Meneveau 2003). See also Hwang & Eaton (2004)
who used synthetic jet actuators. Liu et al. (1999) introduced four symmetrically
deployed rotating grids to obtain isotropic turbulence with Rλ ∼ 290 and weak mean
flow. As in Liu et al. (1999) and Friedman & Katz (2002), in the present study,
four rotating active grids are installed on both sides of the test section, as shown
in figure 1. Each grid has four perforated metal blades with a solidity of 40%. The
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Figure 2. Perspective views of the facility showing the actuator and lever attached to the
piston, the grid drivers, and the location of test section. (a) Front view; (b) back view.

location of the active grids has been decided based on prior experience (Liu et al.
1999; Friedman & Katz 2002) and by solving a one-dimensional diffusion equation
using the k−ε equations with standard coefficients. The objectives are to place the
grids as far as possible from the sample area (to avoid contaminating the latter
with fluid passing through the grids and then being advected into the sample section
during the destraining) while maximizing the turbulence intensity. An initial guess
for the distance is determined by solving a one-dimensional diffusion problem using
the k−ε equations. With the chosen distance, pure turbulent diffusion of k in the
horizontal direction between the two grid pairs yields the desired level of k in the
sample area. Half-horsepower a.c. motors are used to drive each grid, using variable
frequency inverters (ABB, ACS 140) to provide independent speed control for each
motor. The active grids can operate at constant speed independent of the load up to
500 r.p.m. The speed and rotation direction of each grid are adjusted separately in
order to obtain optimal, most isotropic and homogeneous, turbulence characteristics.
To acquire the data used in the present study, motors A and C run at 375 r.p.m.,
whereas motors B and D run at 450 r.p.m. The rotation orientation is shown in
figure 1. The difference in motor speeds is required to offset the influence of the
bottom tank wall on turbulence generation.

The response of turbulence subjected to irrotational straining has been investigated
in wind tunnels for some time (e.g. Townsend 1954; Reynolds 1962; Keffer 1965;
Tucker & Reynolds 1968; Gence & Mathieu 1979, 1980; Kopp, Kawall & Keffer 1995).
In these studies, the straining has been generated by using a specially designed test
section of varying cross-section. This approach has certain inherent drawbacks: (i) the
turbulence is decaying along the flow passage, so the effect of the distortion is coupled
with the inherent decay process, (ii) the boundary layers developing in the distorting
section may influence the response of the turbulence, and (iii) the hot-wire technique
gives valid information on structure only when the Taylor’s hypothesis holds. Liu
et al. (1999) explored techniques to overcome these drawbacks. In their experiments,
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a pair of disks (15 cm diameter) were driven by a cam mechanism towards each other
in a small water tank, generating irrotational axisymmetric straining between them.
This straining is applied on the turbulence generated by the aforementioned active
grids. This concept is extended in the present study to generate plane straining and
destraining by translating a piston vertically inside the water tank, as shown in figures
1 and 2. For a piston height h(t), the flow pattern induced underneath the piston
bottom surface can be idealized by a two-dimensional stagnation-point flow. In the
Cartesian coordinate system shown in figure 1, the strain rate tensor is given by

S(t) = S(t)

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ , (2.1)

where S(t) = −ḣ(t)/h(t) is the strain rate magnitude. If the piston moves towards the
tank bottom, i.e. S(t) > 0, the process is referred to as ‘straining’; if the piston moves
away from the bottom, i.e. S(t) < 0, it is referred to as ‘destraining’ (reverse straining).

The dimensions of the piston are 100(L) × 135(H ) × 18(W ) cm3 and it occupies
almost the entire width of the tank. Its bottom surface has rounded corners to
prevent flow separation. The piston is driven by a motion control system through a
motion magnification lever with a ratio of 3:1, as shown in figure 2. The maximum
displacement of the piston is 76.2 cm. The motion control system consists of an
Exlar GS60-1010 linear electric actuator, an Emerson MX-1600 brushless drive,
and an Emerson AXIMA2000 programmable motion control module, all illustrated
in figure 3. The trajectory of the piston is programmed through the motion control
module, enabling adjustment of the relevant parameters to obtain a desired trajectory.
The piston trajectory designed for the present study is shown in figure 4. In each
cycle, the piston moves downward to generate the straining, rests for a certain time
(relaxation), and then moves upward to generate destraining. The trajectory of the
piston is monitored by a high-speed video camera (Kodak Ektapro EM) operating
at 250 frames per second. Results confirm that the motion control system is of good
repeatability, with a position variance of 2 mm between different runs.

2.2. Instrumentation

Particle image velocimetry (PIV) is used to measure the velocity field. The light source
is a dual-head Nd-YAG pulse laser (532 nm, 120 mJ), and the beam is expanded to
a sheet, along the (x1, x2)-plane using spherical and cylindrical lenses. The flow
field is uniformly seeded with hollow glass beads with spherical shape, median
diameter 8–12 µm, and specific gravity 1.05–1.15. A Kodak ES-4.0 CCD camera,
with 2048 × 2048 pixels resolution, is used to record the PIV images. The camera is
operated under double-exposure mode, and records 5 image pairs per second. The
time interval between the double exposures is 
T = 2.0ms. In order to increase the
temporal resolution of the statistics, four PIV measurement sequences are recorded
at varying initial delays of 0.210, 0.260, 0.310 and 0.360 s, respectively. In this way,
the measurements are performed at a temporal resolution of 50 ms.

As shown in figure 3, the motion control, the piston trajectory calibration, the laser
control, and the PIV data acquisition are synchronized in order to obtain repeatable
measurements at exactly the same timing in every cycle. At every temporal phase,
the measurement is repeated 1000 times, which provides a good ensemble set for
statistical analysis and convergence.

The PIV images are acquired into a computer through an XCAP image-grabbing
hardware/software combination, and then undergo cross-correlation analysis using
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in-house developed software, described in Roth, Mascenik & Katz (1999) and
Roth & Katz (2001). The interrogation windows are 32 × 32 pixels, and the vector
spacing is δ = 0.70 mm (16 pixels, with 50% overlap). A total of 121 × 121 vectors are
obtained from each image pair. The sample area is 9.0 × 9.0 cm2, of which the upper
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9.0 × 7.5 cm2 is used during the analysis of turbulence behaviour. The lower 1.5 cm
strip shows some bottom effect and thus is discarded. The centre of this sample area
is located at x2 = 6.0 cm.

The typical conservative uncertainty estimate of the instantaneous data from
PIV measurement is 0.15 pixels, and the relative uncertainty is about 1.5% (for
characteristic displacements of 10.0 pixels). Consequently, the uncertainties in variables
involving mean velocity are about 0.06%, and those involving the r.m.s. values are
about 0.4%. The uncertainty in terms involving mean velocity gradients is about
0.5%. Further details on errors and uncertainties in the present analysis procedure
are presented in Roth & Katz (2001). Extended discussion on uncertainties in PIV
analysis can be found, for example, in Keane & Adrian (1990), Huang, Diabiri &
Gharib (1997) and Raffel, Willert & Kompenhans (1998).

Moreover, to quantify the characteristics of initial turbulence along the x3 direction,
in a separate set of experiments, a laser sheet illuminates the centreplane (x2 = 6.0 cm)
of the test section along the x1 −x3 direction, as shown in figure 1, where a 6 cm × 6 cm
sample area is recorded through a camera–mirror combination (perpendicular to that
shown in figure 3). The same PIV recording hardware and analysis software are
applied as described before. The initial turbulence measurements (without piston
movement) are repeated 1000 times to accumulate statistics. 121 × 121 vectors are
extracted from every instantaneous measurement, with a vector spacing of 0.45 mm.

3. Flow characterization
To verify that the mean flow is two-dimensional, PIV measurements are conducted

at several (x1, x2)-planes, i.e. at different x3. These tests confirm that the mean flow
keeps nearly the same two-dimensional distribution along the x3-direction, except
for areas near the sidewalls. The area of wall effects is limited to 3.5 cm away from
the sidewalls. The data presented in this paper are obtained in the central plane
(x3 = 0). The characteristics of the mean flow pattern and turbulence are determined
by statistical analysis of the ensemble set at the same piston phase.

In evaluating derivatives using finite differencing, two different kinds of grid, coarse
and fine (figure 5), are used. Unless specially stated, the Reynolds averaged parameters
are obtained using a fine grid δ, the PIV spatial resolution. For calculating the LES
parameters associated with the resolved field such as filtered strain rate tensor eSij , we
use a coarse grid ∆, the filter size. The derivatives on the fine grid are evaluated using
a least-squares filter (Raffel et al. 1998; Foucaut & Stanislas 2002), e.g. at a discrete
point indexed by (n, m)

〈
∂ui

∂xj

〉 ∣∣∣∣
(n,m)

=

〈
−2ui |(n,m−2) − ui |(n,m−1) + ui |(n,m+1) + 2ui |(n,m+2)

10δ

〉
. (3.1)

This expression is obtained from a least-squares-error fit through 5 points on the
PIV (fine) grid. As shown in Raffel et al. (1998) and Foucaut & Stanislas (2002), this
method has proved effective for reducing the error of derivative calculations from
PIV data. The coarse grid derivatives for LES variables are evaluated using central
second-order derivative:

∂eui

∂xj

∣∣∣∣
(n′,m′)

=
−eui |(n′,m′−1) +eui |(n′,m′+1)

2∆
, (3.2)
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Figure 5. The fine grid (spacing = δ) and coarse grid (spacing =∆).

where (n′, m′) are the nodes on the coarse grid. At this scale, the data are already
very smooth and accurate derivatives can be evaluated from the two-point evaluation
and there is no need for the 5-point least-squares method used on the fine grid.

3.1. Initial turbulence

The mean and root-mean-square fluctuation of the initial equilibrium turbulence
before straining, 〈ui〉 and u′

i , are computed at every point (x1, x2, x3 = 0.0 cm) and
(x1, x2 = 6.0 cm, x3) and based on the data ensemble at t = 0.210 s. The spatially
averaged mean velocity components in all three directions are significantly smaller
than the mean velocities applied by the straining and destraining (given later). The
spatial distributions of r.m.s. values of velocity fluctuations, shown in figure 6, reflect
good spatial homogeneity for x2 > 0.03 m. Only data in this nearly homogeneous
region are used in the analysis hereinafter. The r.m.s values of velocity, spatially
averaged over the 9 cm × 7.5 cm sample area, are given in table 1. They significantly
exceed the magnitudes of mean flow. The degree of anisotropy is around 1.1, which
is close to the anisotropy obtained in traditional grid turbulence (valued between 1.0
and 1.1), and less than the values of active grid turbulence, of about 1.2 (Makita 1991;
Mydlarski & Warhaft 1996; Kang et al. 2003). The one-dimensional kinetic energy
spectra of the initial homogenous turbulence are calculated, and shown in figure 7.
These spectra are calculated using data along four lines near the central area (κi

follows the direction of xi). The ensemble mean velocity of every point is subtracted,
and the data are linearly detrended before fast Fourier transform (FFT) is applied
to calculate the spectra. The result is then averaged over the four lines, and over the
1000 realizations in the ensemble set. The solid line reproduces the Kolmogorov −5/3
spectrum for the inertial range (Tennekes & Lumley 1972; Hinze 1987):

E11(κ1) = 18
55

Cκε
2/3κ

−5/3
1 (3.3)

where Ck is the Kolmogorov constant, taken as Cκ = 1.7 in the present study.
Comparing the longitudinal and transverse spectra provides a criterion to check
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Figure 6. Root mean square values of velocity fluctuations at t = 0.210 s: (a) u′
1,rms(x, t) at

different x2 layers, (b) u′
2,rms(x, t) at different x2 layers with the same legend as (a), and

(c) u′
3,rms(x, t) at different x3 layers. For clarity, only one fifth of the values are plotted. Lines

in (a) and (b) give the typical values in the lower 1.5 cm strip in (x1, x2)-plane measurements
which are influenced by bottom effect and thus discarded in analysis.

the local isotropy of the turbulence (e.g. Elsner & Elsner 1996). The six curves show
fairly good agreement, except for the high-wavenumber range, which verifies that
the initial equilibrium turbulence is nearly isotropic (Monin & Yaglom 1971). The
slight ‘tail-up’ near the highest wavenumber in the spectra is caused by the PIV
measurement noise (Liu et al. 1994; Eggles et al. 1994). The homogeneity of the flow
at different scales is also verified by comparing energy spectra at different locations
(not shown). For such a nearly homogeneous isotropic turbulent flow, the dissipation
rate of the initial turbulence, ε0, can be estimated by curve-fitting equation (3.3) to
the measured spectra in the inertial range. Doron et al. (2001) gives a comparison of
several methods used to estimate ε from PIV data. The estimated dissipation rate and
other parameters of the initial turbulence are given table 1. The initial Kolmogorov
scale η0 is smaller than the resolution of the present experiment (δ ≈ 5η0). The Taylor-
scale Reynolds number based on the initial state of turbulence is Rλ ∼ 400, higher
than the value reported in Liu et al. (1999).

The estimated integral scale (l0 ∼ 13 cm) is larger than the size of sample area (9 cm).
Therefore, turbulence length-scales larger than the sample area cannot be resolved



Turbulence subjected to straining and destraining 133

Mean velocity 〈u1〉 −0.003 m s−1

〈u2〉 0.029m s−1

〈u3〉 −0.004 m s−1

Root mean square value of velocity fluctuations 〈u′
1,rms〉 0.084m s−1

〈u′
2,rms〉 0.076m s−1

〈u′
3,rms〉 0.074m s−1

Degree of anisotropy (x1 − x2 plane) 〈u′
1,rms〉/〈u′

2,rms〉 1.11

Degree of anisotropy (x1 − x3 plane) 〈u′
1,rms〉/〈u′

3,rms〉 1.13

Characteristic turbulence velocity u′ =
〈u′

1,rms 〉+〈u′
2,rms 〉+〈u′

3,rms 〉
3

0.078m s−1

Turbulence kinetic energy k0 = 3
2
u′2 0.0092 m2 s−2

Turbulence dissipation rate (from E11(κ1)) ε0 0.0035 m2 s3

Integral scale l0 ∼ u′3/ε0 0.13m

Taylor’s microscale λ0 ∼ u′√15ν/ε0 0.0050 m

Kolmogorov length scale η0 ∼ (ν3/ε0)
1/4 140 µm

Microscale Reynolds number Rλ ≡ u′λ0/ν 400

Table 1. Flow parameters of the initial equilibrium turbulence (t = 0.210 s), where values in
the x3 direction are from (x1, x3)-plane measurements.
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directly using the present data. However, their contribution to velocity variance is
accounted for using time averaging over the 1000 data sets.
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3.2. Mean flow

Figures 8(a) and 8(b) show some streamlines of the ensemble-averaged flow,
illustrating the stagnation-point-type mean flow patterns during time phases with
strong straining and destraining, respectively. The strain rate tensor of the mean
flow is evaluated using S11(x, t) = ∂〈u1(x, t)〉/∂x1, S22(x, t) = ∂〈u2(x, t)〉/∂x2, and the
characteristic strain rate is S ≡ (S11 − S22)/2. The time evolution of the spatially
averaged value of S is given in figure 9. The magnitudes of S11 and S22 are very
close to each other during the entire cycle, with S11 = −S22, as shown in figure 5 of
Chen et al. (2005). The small deviations from the spatially averaged value confirm
that the applied straining and destraining are nearly uniform across the sample area.
According to the sign of mean strain rate, the cycle can be divided into four regimes:
initial equilibrium: plane straining; relaxation; and plane destraining. The magnitudes
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Figure 10. Evolution of total deformation.

of peak straining and destraining are both about 3.5 s−1. The maximum turbulence-
to-mean-strain time ratio is Smaxk0/ε0 ∼ 9.5. The evolution of total distortion, e(t),
defined in § 1 and calculated by using trapezoidal integration, is shown in figure 10.
The total deformation reaches nearly 6, i.e. an initially square fluid parcel is deformed
into a thin horizontal rectangle, which is six times as long as its initial size. Also, the
deformation is nearly reversed by the end of the cycle.

4. Results
4.1. Evolution of Reynolds stresses and turbulence production

After calculating the turbulent velocity variances (or the negative of the kinematic
Reynolds stress), 〈u′

iu
′
j 〉, at every point, we determine their spatial mean and r.m.s.

values over the sample area. The temporal evolution of the spatial mean of 〈u′
iu

′
j 〉 is

presented in figure 11. Because of the two-dimensional nature of the present planar
PIV, only 〈u′

1u
′
1〉, 〈u′

2u
′
2〉, and 〈u′

1u
′
2〉 are obtained (in future experiments, it would be

of interest to measure the response of the velocity variances in the third direction).
During the entire cycle, all three terms display good spatial homogeneity, as reflected
from the narrow standard deviation, except near the end, after t ∼ 2.4 s. The shear
term is virtually zero everywhere, in accord with expectation when the principal axes
of applied strain rate align with x1 and x2. During the first half of the straining
phase, with increasing strain magnitude, 〈u′

1u
′
1〉 decreases while 〈u′

2u
′
2〉 increases, i.e.

the principal axes of the Reynolds stress tensor are aligned with those of the straining
when the initial turbulence is isotropic (Gence & Mathieu 1979, 1980). Both terms
reach their peak/trough values around tε0/k0 ∼ 0.5, which indicates a clear delay
with respect to the timing of peak straining tε0/k0 ∼ 0.4. After that, until the end
of the relaxation regime, 〈u′

2u
′
2〉 decreases gradually and 〈u′

1u
′
1〉 stays approximately

constant. At the end of the relaxation regime, 〈u′
1u

′
1〉 and 〈u′

2u
′
2〉 still differ from

each other, showing that the turbulence has not yet returned to a fully isotropic
state. When the straining is absent, the turbulent velocity variance evolves towards its
original isotropic state, but does not reach it. During the destraining regime, 〈u′

1u
′
1〉

responds promptly to the applied destraining and increases from its previous plateau
value, while 〈u′

2u
′
2〉 continues the trend of decreasing, reaching a minimum value later
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than the peak destraining. The values of 〈u′
1u

′
1〉 increase during the entire destraining

phase. Since the principal axes of the applied destraining are perpendicular to those
of the straining phase, the Reynolds stress tensor seems to adjust itself under the
influence of destraining, first by returning to the isotropic state, and then by aligning
with the principal axes of the destraining.

The homogeneity of turbulence during the whole cycle is further investigated by
comparing the spatial average of the variances in four equal-sized subsets of the
sample area. The subsets are four horizontal rectangles A, B, C and D, as shown in
figure 12. During the entire straining and destraining cycle, the turbulence remains
reasonably homogeneous. Only at t > 2.5 s are there systematic differences visible for
〈u′

2u
′
2〉.

To compare the present data with RDT prediction, we evaluate the normalized
Reynolds stresses, rij , defined as

rij =
〈u′

ju
′
j 〉

〈u′
ju

′
j 〉t0

, (4.1)

where the subscript t0 denotes the initial value at t = 0.210 s. The standard anisotropy
tensor

bij =
rij

rll

− 1
3
δij (i, j = 1, 2, 3) (4.2)

is replaced in the present study by a two-dimensional surrogate to avoid making
assumptions about the missing out-of-plane components, i.e.

bij =
rij

r11 + r22

− 1
2
δij (i, j = 1, 2). (4.3)

The results are shown in figures 13 and 14, together with the prediction of RDT. The
RDT calculations used in the present study are described in Appendix A.
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RDT gives the correct trend of the response of r11 and r22 when straining is
applied, but overestimates r22 and underestimates r11, thus over-predicting the degree
of anisotropy. The peak of r22 predicted by RDT appears later than that obtained from
the measurements. As the relaxation starts, the measured b22 (note that b11 = −b22)
begins to decrease, i.e. it returns to an isotropic state slowly, but does not reach isotropy
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Figure 15. Evolution of turbulence production Ψ = −〈u′
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1〉S11 − 〈u′
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at the end of the relaxation phase (incomplete relaxation). When the destraining is
applied, the rapid response forces the Reynolds stresses back to isotropy first, and then
continuously to anisotropy, this time with b11 >b22. In summary, RDT qualitatively
predicts the correct trends of the response of Reynolds stresses, but the magnitudes
are comparable to the experimental data only at initial times.

The evolution of energy exchange between mean flow and turbulence, Ψ , as defined
in equation (1.1), is shown in figure 15. We can only calculate the in-plane components,
but since the mean flow is two-dimensional, the production rate is approximated very
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well from the in-plane components. During the straining period, Ψ follows the
amplitude of applied strain, which reveals that straining causes energy exchange
from mean flow to turbulence, as expected. Once the straining stops, Ψ goes to
zero since ∂〈ui〉/∂xj ∼ 0. During the destraining period, Ψ first goes to a negative
value, returns to zero, and then reaches a positive peak, which is much smaller
than the peak value during the straining phase. Detailed examination of the data
verifies that the strong negative value of Ψ at the beginning of destraining phase is
not caused by spatial non-homogeneity or measurement uncertainty. Such a global
backscattering, i.e. turbulent structures returning energy back to the mean flow, is also
observed by Gence & Mathieu (1979) in their wind-tunnel experiments, when a second
distortion is applied immediately after the first one, and the principal axes of the two
distortions are perpendicular. Using 〈S11〉 = −〈S22〉, the production can be written as
Ψ = (〈u′

2u
′
2〉 − 〈u′

1u
′
1〉)S(t). Thus, a negative Ψ occurs when destraining (S(t) < 0) is

applied on anisotropic turbulence with 〈u′
1u

′
1〉 < 〈u′

2u
′
2〉, and Ψ returns to zero when

the turbulence crosses through the isotropic state. Note that RDT predicts a strong
negative Ψ during the destraining phase, whose peak amplitude (Ψ/ε0|max = −16.0) is
comparable with that during straining (not shown).

4.2. Evolution of SGS stresses and SGS dissipation

Using equation (1.2), a two-dimensional top-hat filter with scale ∆, i.e. a filter kernel

G∆(x1, x2) =

{
1/∆2 if |x1| < ∆/2, |x2| < ∆/2,

0 otherwise,
(4.4)

is applied on the velocity field in order to investigate scale-interactions of turbulence
in an LES framework. Figure 16 shows the evolution of 〈τ11〉 and 〈τ22〉, the ensemble-
averaged sub-grid stresses, for three filter scales, ∆ =25η0, ∆ =50η0 and ∆ =100η0.
As expected, the mean SGS shear stress, 〈τ12〉, is virtually zero everywhere (not
shown). For homogenous turbulence, 〈τii〉/(ε0∆)2/3 (no summation in i) should be
scale-independent if ∆ is within the inertial range (Liu et al. 1999; Pope 2000). During
the whole cycle, the present ∆ =25η0 curve clearly falls below the other two, because
∆ =25η0 already approaches the viscous dissipation range. Conversely, the ∆ =50η0

and ∆ =100η0 curves are close to each other, but are not equal, over the entire cycle.
Similar to equation (4.3), the two-dimensional surrogate of the anisotropy tensor

of mean SGS stresses is defined here as:

bτ
ij ≡

rτ
ij

rτ
11 + rτ

22

− 1
2
δij , (4.5)

where rτ
ij is the stress normalized by its initial value:

rτ
ij ≡ 〈τij 〉

〈τij 〉t0

. (4.6)

As is evident from figure 17, the anisotropy increases with filter scale, and its evolution
during the cycle follows the evolution of mean strain, which is different from the
evolution of the Reynolds stress anisotropy tensor, shown in figure 14. During the
straining period, bτ

11 follows the evolution of the applied strain at all three filter scales.
At the starting point of the relaxation period, although 〈τ11〉 and 〈τ22〉 do not return
to the initial state (figure 16), bτ

11 shows isotropy from this time on, lasting until the
end of the relaxation period. During the destraining period, bτ

22 decreases in a manner
that is similar to that of bτ

11 during the straining period; but the behaviour of 〈τ11〉
during the destraining period does not even qualitatively resemble the behaviour of
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〈τ22〉 during straining. Both 〈τ11〉 and 〈τ22〉 exhibit a delayed response to the applied
straining.

Following Liu et al. (1999), the measured instantaneous velocity is decomposed into
turbulent and mean parts due to the applied straining:

ui(x, t) = uT
i (x, t) + uM

i (x, t), (4.7)

where the mean part is given by

uM
i (x, t) = (−1)i+1S(t)

(
xi − x0

i

)
, (4.8)

and (x0
1 , x

0
2 ) is the location of stagnation point. Thus, the SGS stresses can be separated

into three parts: turbulent; cross-term; and the applied straining parts:

τij (x, t) = τ T
ij (x, t) + τC

ij (x, t) + τM
ij (x, t). (4.9)

The turbulent part is:

τ T
ij (x, t) = AuT

i uT
j −euT

i eu
T
j . (4.10)

The cross-term, representing the interaction between turbulence and applied straining,
is:

τC
ij (x, t) =

(
AuT
i uM

j −euT
i eu

M
j

)
+

(
AuT
j uM

i −euT
jeu

M
i

)
, (4.11)

and the SGS stress generated by the applied straining is:

τM
ij (x, t) = AuM

i uM
j −euM

i eu
M
j . (4.12)

Liu et al. (1999) investigated the dependence of 〈τ T
ij 〉, 〈τM

ij 〉, and 〈τC
ij 〉 on ∆, and

concluded that when the filter scale is small, the mean turbulence part, 〈τ T
ij 〉, dominates

the total SGS stress. In the following discussion, we examine the effect of each term
on the SGS dissipation.

A two-dimensional surrogate of the SGS dissipation, Π∆ (equation (1.4)), is
evaluated based on the available data, i.e.

Π2D
∆ = −(〈τ11

eS11〉 + 〈τ22
eS22〉 + 2〈τ12

eS12〉). (4.13)

Its evolution at three filter scales is presented in figure 18. Prior to straining,
the SGS dissipation is nearly scale-independent, as expected in the inertial range.
However, during straining, the SGS dissipation significantly increases with filter scale,
owing to the non-equilibrium condition. Then, during the relaxation regime, all three
curves nearly collapse, suggesting a scale-independent behaviour under the unforced
relaxation conditions. The most salient feature of this plot is that the dissipation
peak in the destraining period is significantly lower than the peak in the straining
period, although the amplitudes of the straining and destraining are about the same.
Furthermore, the SGS dissipation has a minimum during the destraining phase, which
is lower even than the initial values. These apparent inconsistencies may be related
to the reverse energy transfer mechanism discussed in § 4.1. From figure 19, the
contributions of τ T

ij , τM
ij , and τC

ij to the SGS dissipation are clearly depicted: τ T
ij is the

dominant one, and the two mean terms (−〈τM
11
eS11〉 and −〈τM

22
eS22〉) cancel each other’s

contribution to the total SGS dissipation.

4.3. Transition between subgrid and Reynolds-averaged variables

This section focuses specifically on how the SGS variables tend to the RANS variables
as ∆ increases towards the integral scale, l0. To perform this analysis, the SGS stress is
calculated over a wide range of filter scales, from 25η0 up to 430η0. At the largest filter
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scale of ∆max = 430η0 = 0.06 m, strips of width ∆max/2 = 0.03 m must be excluded from
the analysis. For consistency at all scales, the analysis is thus restricted to a rectangle
with x1 ∈ (−0.012 m, 0.012 m) and x2 ∈ (0.062 m, 0.072 m) so that the convolutions
that require data at x1 ± ∆/2 are well defined for all ∆ considered. Figure 20 shows
the evolution of bτ

11 at different scales. The response lag of bτ
11 to the applied straining

and destraining varies with filter scale. The small scales respond faster than the large
scales, which indicates a mechanism more consistent with RDT than the ‘energy
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Figure 20. Evolution of SGS stress anisotropy (bτ
11, bottom contour) at different filter scales

as well as the Reynolds stress anisotropy (b11, middle contour). Dash lines connect the peak
values of bτ

11 during straining and destraining periods.

cascade’ process in which the energy is first fed into the large scales before it cascades
to small scales.

When the LES filter scale ∆ is large enough in a spatially homogeneous flow,
namely, when ∆ approaches the integral scale, the resolved velocityeui approaches the
mean velocity 〈ui〉, and the SGS part, ui −eui , tends to the fluctuating velocity u′

i . As
a consequence, the SGS stress τij tends to the Reynolds stress 〈u′

iu
′
j 〉 (e.g. Pope 2000),

as verified in figure 20 both in trends of magnitude and in the delayed response. Note
that in our present data, l0/η0 ∼ 928.

Next, a similar scale-dependent analysis is performed for Π2D
∆ as a function of ∆.

Because of the finite size of the resolved velocity field, it is not possible to compute
eSij at the regular coarse grid (see figure 5) when ∆ > 33δ (∆ > 165η0). Thus, to obtain
Π2D

∆ at larger filter scales, the velocity derivatives are evaluated on a semi-coarse grid
(∆′ = 5δ). The results are shown in figure 21. As ∆ approaches l0, the trends of the
mean SGS dissipation clearly tend toward the turbulence production. Overall, Π2D

∆

is smaller in magnitude than Ψ because several terms are not included. In isotropic
turbulence, we can show that Π2D

∆ = 7/15Π3D
∆ , thus it is expected that Π2D

∆ is a
significant underestimate of the real SGS dissipation. The peak value of Ψ/ε0(∼ 5)
and the peak value of Π∆/ε0(∼ 3) are consistent with this ratio. Another possible
contribution to the difference is the fact that our largest ∆ is still smaller than the
integral scale.
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Figure 21. Evolution of two-dimensional surrogate mean SGS dissipation at different filter
scales (Π2D

∆ , bottom contour) and the turbulence production (Ψ , middle contour). Dashed lines
enclose the back-scattering region at the beginning of the destraining period.

Global SGS back-scatter (Π∆ < 0) occurs at the beginning of the destraining phase
when the filter scale is large enough, at about ∆ =300η0 ∼ l0/3. The magnitude
and timing of the negative peak converges to that of the negative production
(Ψ < 0, RANS back-scattering) as ∆ increases. Such global back-scattering presents
a challenge for most SGS models, especially the eddy-viscosity type models, which
inherently cannot model negative production. This problem applies also to dynamic
and scale-dependent dynamic Smagorinsky models. Owing to such a reversal in energy
transfer at large scale, the SGS dissipation at small scales during the destraining period
is also much lower than that during the straining period.

4.4. Evolution of energy spectra and RDT predictions

The homogeneity of turbulence during the entire cycle enables detailed investigation
of energy at different scales by examining the evolution of one-dimensional energy
spectra. Figure 22 presents the evolution of E11(κ1) and E22(κ1), and the corresponding
RDT predictions by using a model spectrum (see Appendix A). Figure 23 shows the
details of the evolution for three characteristic values of κ1, corresponding to low
(case A), middle (case B), and high (case C) inertial range wavenumbers, respectively.
The case B curves represent the scale where the time scale of the turbulence
is comparable to that of the applied straining, i.e. (∆2

s /ε0)
1/3 ∼ 1/S, namely

∆s =
√

ε0/S3 ∼ 9 mm. In case A, the turbulence turnover time is larger than that
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Figure 22. Evolution of the experimental: (a) E11(κ1) and (b) E22(κ1), and prediction of RDT:
(c) E11(κ1) and (d) E22(κ1). For reference to figure 23: case A, κ1η0 = 0.02; case B, κ1η0 = 0.10;
case C, κ1η0 = 0.50.

of the applied straining, i.e. more consistent with the RDT requirements, and in case
C, (∆2

s /ε0)
1/3 < 1/S.

RDT gives relatively good predictions of E11(κ1), especially at large scales, during
the straining and relaxation regimes. During the destraining phase, the prediction at
small scales is better. As the relaxation starts, E11(κ1) at large scales maintains nearly
constant values since there is no mean strain to produce additional turbulence, while
the small-scale structures are still active, dissipating energy. Thus, during this period
RDT captures the evolution of energy at large scales more accurately than at small
scales. During the initial stage of destraining, where back-scattering exists (figure 21),
E11(κ1) grows at all resolved scales.

RDT predicts the correct increase of E22(κ1) until the first half of the straining
process. After that point, RDT gives an excessively large prediction of E22(κ1) at all
scales. E22(κ1) starts decreasing at the end of the straining phase. The ‘forced’ decrease
of E22(κ1) during the back-scattering phase is manifested here by a faster decay rate
than the ‘free’ decay during the relaxation phase. E22(κ1) increases slightly during the
second half of destraining.

5. Summary and conclusions
This experimental study examines the response of turbulence to a cycle consisting of

planar straining, relaxation and planar destraining. The experimental facility enables
us to produce flows with the following characteristics. (a) Initial conditions consisting
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Figure 23. Evolution of one-dimensional power spectra at different wavenumbers (symbols)
and the corresponding RDT prediction (lines). (a) E11(κ1) and (b) E22(κ1). Vertical dashed lines
mark the timings of straining and destraining peaks, while the vertical dotted lines mark the
start and end of the relaxation period, respectively. Case A, κ1η0 = 0.02; case B, κ1η0 = 0.10;
case C, κ1η0 = 0.50.

of a high turbulence level with weak mean flow. (b) The initial turbulence follows
the Kolmogorov −5/3 spectrum in most of the measured range of wavenumbers,
with good local isotropy. (c) The initial turbulent Reynolds number is relatively high,
Rλ ∼ 400. (d) A moving piston creates two-dimensional stagnation-point flow in the
sample area with near spatially uniform strain rate. (e) The maximum characteristic
turbulence-to-mean-strain time scale ratio is Smaxk0/ε0 ∼ 9.5.

Data are obtained using planar PIV and the response of turbulence is studied in
both RANS and LES frameworks. The data are compared with RDT predictions in
both frameworks during the entire applied straining cycle. The following observations
are made.

(a) The turbulence displays good spatial homogeneity during almost the complete
straining–relaxation–destraining process, as confirmed by comparing the response of
Reynolds stresses at different sections of the sample area.
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(b) Once the straining is applied on the initially isotropic turbulence, as expected
from RDT, 〈u′

1u
′
1〉, the stress in the extended direction, decreases and 〈u′

2u
′
2〉, the

compressed component, increases. The principal axes of the Reynolds stress remain
aligned with those of the applied straining. During the relaxation regime, the Reynolds
stress starts recovering towards the original isotropic state, but does not reach it when
the destraining is applied (incomplete relaxation). The destraining first forces the
Reynolds stresses back to an isotropic state, and then aligns the principal axes of
the Reynolds stress with those of the destraining, i.e. 〈u′

2u
′
2〉 decreases and 〈u′

1u
′
1〉

increases. RDT predicts the correct trend of Reynolds stresses until the straining
peak, but deviates from the experimental results after that point owing to turbulence
relaxation.

(c) When the destraining is applied on the anisotropic turbulence remaining after
the incomplete relaxation, global negative production occurs, implying that turbulence
loses energy to the mean flow (back-scatter). This negative production is caused by
a mismatch between the orientation of straining and the magnitude of Reynolds
stresses generated by prior processes.

(d) The SGS stresses approach the trends of Reynolds stresses as the filter scale
increases. The lag in response of the SGS stresses to the applied straining increases
as ∆ increases. This lag causes several problems in application of scale-dependent
dynamic models, as described in Chen et al. (2005). At large scales, the SGS dissipation
is negative (back-scatter) during the initial stage of destraining, and approaches that
of turbulence production at large scales. This global energy back-scattering would be
a challenge to all eddy-viscosity type SGS models.

(e) RDT gives correct overall predictions of one-dimensional spectra only until the
peak straining. Subsequent deviations are due to relaxation, expected to occur for
turbulence at the time scales prevalent in the present experiment.

(f ) The data obtained in the present experimental study can also be used for
detailed tests of RANS and LES models, which will be undertaken in future studies.

It would be of interest in future studies to establish how the turbulence response
depends on possible variations to the straining history, the Reynolds number, and the
level of initial isotropy.

The authors would like to acknowledge research engineers, Y. Ronzhes, for his help
in facility design and construction process, and S. King, for assistance in integrating the
instrumentation system. This research is sponsored by the Office of Naval Research,
under grant number N0014-03-0361, monitored by program officer Dr R. Joslin.

Appendix A. Application of rapid distortion theory
The evolution of one-dimensional energy spectra can be obtained by integrating

the three-dimensional spectra according to

E11(κ1, t) =

∫ ∞

−∞

∫ ∞

−∞
Er

11(κ, t) dκ2 dκ3. (A 1)

Er
11 is given by RDT prediction (Batchelor & Proudman 1954; Lee, Piomelli &

Reynolds 1986):

Er
11(κ, t) =

E(κ, 0)

4πκ2

1

χ4

[(
e2
3/e

2
2

)
κ2

2

(
κ2

1 + κ2
2

)
+

(
e2
2/e

2
3

)
κ2

3

(
κ2

3 + κ2
1

)
+ 2κ2

2κ
2
3

]
, (A 2)
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where e1(t) = 1/e2(t) = e(t) = exp(
∫ t

t0
S(t) dt) and e3(t) = 1 for planar straining, and

χ2 = κ2
1/e

2
1 + κ2

2/e
2
2 + κ2

3/e
2
3. E(κ, 0) is the initial spectrum taken here as (Pope 2000)

E(κ, 0) = Cκε
2/3
0 κ−5/3fL(κl0)fη(κη0) (A 3)

with

fL(κl0) =

(
κl0

[(κl0)2 + 6.78]1/2

)11/3

(A 4)

and

fη(κη0) = exp
(
−5.2

{
[(κη0)

4 + 16]1/4 − 2.0
})

. (A 5)

The integral scale, l0, and Kolmogorov scale, η0, are given in table 1. The variance
can be evaluated in spherical coordinates with x3 as the axial direction according to

〈u′
1u

′
1〉(t) =

∫ ∞

0

( ∫ π

0

(∫ 2π

0

Er
11(κ, t) dθ

)
sin ϕ dϕ

)
κ2 dκ. (A 6)

Then, the normalized Reynolds stress rij is obtained by integrating (A 6) over θ and
ϕ, i.e.

r11 =
〈u′

1u
′
1〉

〈u′
1u

′
1〉t0

=
3

8π

∫ π

0

∫ 2π

0

e2 sin2 θ sin4 ϕ + 1
e2 cos2 ϕ(cos2 ϕ + sin2 ϕ cos2 θ) + 2 sin2 θ sin2 ϕ cos2 ϕ(

1
e2 sin2 θ cos2 ϕ + e2 sin2 θ sin2 ϕ + cos2 ϕ

)2

× dθ sinϕ dϕ (A 7)

All two-dimensional intergations are performed using the ‘dblquad’ routine in
Mathlab R©.
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