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Abstract
The peak-locking effect causes mean bias in most of the existing
cross-correlation based algorithms for PIV data analysis. This phenomenon
is inherent to the smooth curve-fitting through discrete correlation values,
which is used to obtain the sub-pixel part of the displacement. Almost all of
the existing effective methods to solve this problem require iterations. In this
paper we introduce a new technique for obtaining sub-pixel accuracy, which
bypasses the sub-pixel curve fitting, and eliminates the peak-locking effect,
but does not require iterations. The principles of the ‘correlation mapping
method’ (CMM) are based on the following logic: if one uses a bi-cubic
interpolation to express the second image based on the first one and the
unknown displacement, the correlation between them becomes a third-order
polynomial of the displacement, whose coefficients depend on the first
image. Matching this polynomial with the measured correlation provides an
equation for the displacement for each point of the correlation map. A
least-squares fit to the correlation values in the vicinity of the correlation
peak (e.g. 5 × 5 points) provides an estimate for the particle displacement,
including its sub-pixel part. We combine the new correlation mapping
method with corrections for particle image distortion (PID) to further reduce
the uncertainty in the velocity measurements. Three iterations typically
achieve converged results. The CMM-PID method is tested using synthetic
and experimental data. The peak-locking bias disappears in all cases. Even
the ‘random’ error is substantially smaller than that obtained using a
conventional sub-pixel curve fit. Issues related to streamline curvature and
uncertainty in estimates of velocity gradients are also discussed.

Keywords: particle image velocimetry, peak-locking error, image
interpolation, particle image distortion, correlation mapping

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Particle image velocimetry (PIV) has become increasingly
popular over the past 15 years, and the principles of this
technique are already well documented, e.g. by Adrian (1991),
Westerweel (1997) and Raffel et al (1998). The accuracy of
PIV measurement depends on several factors, including the

properties of target flow fields, the properties and concentration
of seed particles, the optical setup, the data acquisition
system, the image interrogation technique, post-processing,
etc. Substantial efforts have already been invested in studying
the influence of these factors on the results and on the
improvements achieved by optimizing them. The error
introduced during image interrogation has received the most
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attention since it provides the widest latitude for development
of optimization tools (Keane and Adrian 1990, Westerweel
1997, Huang et al 1997, Lecordier et al 2001). International
collaboration has also been organized to explore the benefit
and deficiency of different processing techniques by analysing
the same set of images (Stanislas et al 2003).

The uncertainties associated with PIV measurements can
be classified into two categories: random error and bias error.
The influence of random error can be reduced by statistical
analysis using a sufficiently large ensemble set. The bias error,
on the other hand, may still contaminate the results even after
averaging (Huang et al 1997, Westerweel 1997, Christensen
2004), and typically generates a semi-regular, deterministic
pattern in averaged results (Fincham and Spedding 1997).
In the present study, we introduce an improved interrogation
algorithm to eliminate the most significant bias error, the so-
called ‘peak-locking error’.

In a typical PIV measurement, we record two images, G1

and G2, with a time delay of �t between them. To determine
the displacement in a certain sub-section of the sample area,
we select corresponding interrogation windows, g1 and g2, and
calculate the cross-correlation function, ϕ(m, n), defined as:

ϕ(m, n) =
M∑
i=1

N∑
j=1

g1(i, j)g2(i + m, j + n) (1)

where M and N are the sizes of the interrogation window in
pixels. The location of the peak in the distribution of ϕ(m, n)

gives the mean particle displacement within g1. To achieve
sub-pixel accuracy, a smooth curve is typically fitted through
3–4 points in the vicinity of the discrete correlation peak. We
will refer to this procedure as sub-pixel curve fitting (SPCF).
The commonly used methods include parabolic or Gaussian
curve fits (e.g. Willert and Gharib (1991), Raffel et al (1998)).
If the discrete peak is located at (mp, np), a parabolic SPCF
gives displacement, (U, V ), of


U = mp +
ϕ(mp − 1, np) − ϕ(mp + 1, np)

2ϕ(mp −1, np)−4ϕ(mp, np)+2ϕ(mp +1, np)

V = np +
ϕ(mp, np − 1) − ϕ(mp, np + 1)

2ϕ(mp, np −1)−4ϕ(mp, np)+2ϕ(mp, np +1)

(2)

while a Gaussian SPCF gives


U = mp +
ln ϕ(mp − 1, np) − ln ϕ(mp + 1, np)

2 ln ϕ(mp − 1, np) − 4 ln ϕ(mp, np) + 2 ln ϕ(mp + 1, np)

V = np +
ln ϕ(mp, np − 1) − ln ϕ(mp, np + 1)

2 ln ϕ(mp, np − 1) − 4 ln ϕ(mp, np) + 2 ln ϕ(mp, np + 1)
.

(3)

As has already been pointed out in several papers, such a curve
fit causes a bias towards discrete values of displacement (Raffel
et al 1998, Fincham and Spedding 1997, Christensen 2004),
which is referred to as ‘peak-locking error’. The displacement
calculated using SPCF shows a strong preference towards
integer values, and the error has a periodic pattern with a
typical amplitude of 0.15 pixels that peaks at ±0.25 pixels, as
shown in figure 1. The peak-locking error increases when
the diameter of the particle image is less than two pixels
(Westerweel 1997). Such a bias causes substantial errors
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Figure 1. The distribution of the sub-pixel part of the error caused
by using parabolic sub-pixel fitting while analysing a synthetically
generated image of a stagnation point flow.

in mean derivatives, and as shown recently by Christensen
(2004), significantly affects both the single and multi-point
turbulence statistics.

Several methods have been proposed to remedy the peak-
locking effect. For example, Roesgen (2003) explored the
optimal sub-pixel interpolation scheme and recommended
using a Sinc function. Several papers have introduced
methods, which are based on increasing the image size
artificially by interpolation of pixel values, and by applying the
sub-pixel peak fitting to the refined correlation maps instead
of the original coarse grids. Lecordier et al (1999) proposed
an iterative grid refinement method; Gui and Wereley (2002)
applied continuous window shifting; Wereley and Gui (2003)
and Gui and Seiner (2004) proposed a central difference image
correction method. Fincham and Delerce (2000) introduced
a peak anti-aliasing, spline transformed interrogation scheme,
which also involves interpolation, but does not involve sub-
pixel fitting to the correlations. These methods seem to be
effective to varying degrees, but cause substantial increase
in data processing time. Roth and Katz (2001) attempted to
utilize sub-pixel histogram equalization as a post-processing
step. This method artificially removes the periodic pattern of
the bias but lacks any physical support.

In this paper, we introduce a new approach to eliminate
the peak-locking error that bypasses the sub-pixel curve fitting
operation, and does not require artificial window enlargement
and/or iterations, at least as long as we do not correct for
window deformation. The principles of this method are
presented in detail in section 2. Treatment of distorted
interrogation windows is discussed in section 3. In section 4,
we report an implementation of the new method on different
synthetic and experimental images. The results are compared
with those of parabolic and Gaussian SPCF methods.

2. The correlation mapping method

2.1. Principles of the technique

The local displacement (U, V ) can be decomposed into an
integer part, (uint, vint), and a sub-pixel part, (u, v), i.e.
0 � u, v < 1 (pixels). For simplicity, in the following
analysis we focus on the sub-pixel part. During analysis, the
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integer part of the displacement can be easily determined by
finding the location of the peak in the discrete correlation map.
Under ideal conditions, i.e. no particle pattern distortion, no
out-of-plane motion and no noise, the intensity distribution in
the second interrogation window, g2, is uniquely determined
by the first window, g1, and the local displacement. Thus,
ϕ(m, n) is uniquely determined by g1 and (U, V ). During a
virtual displacement of (u′, v′), the virtual second exposure,
g2′ , is:

g2′(i, j) = g1(i − u′, j − v′) (4)

and, the virtual correlation between g1 and g2′ , ϕ′(m, n), is

ϕ′(m, n, u′, v′) =
M∑
i=1

N∑
j=1

g1(i, j)g1(i − u′ + m, j − v′ + n).

(5)

As the virtual displacement approaches the real one,
ϕ′(m, n, u, v) approaches ϕ(m, n). Thus, the real
displacement can be found by minimizing the difference
between ϕ(m, n) and ϕ′(m, n, u, v). Since the equality
between ϕ and ϕ′ applies to every point on the correlation map,
one obtains a series of equations with u and v as unknowns.
We obtain an ‘optimal’ value for u and v by using a least-
squares fit to minimize the difference between ϕ and ϕ′ in the
vicinity of the correlation peak. To successfully implement
this approach, the following questions need to be answered:
(i) How to construct the virtual second exposure, g2′ , and
from it, the value of ϕ′; (ii) How to minimize the difference
between ϕ and ϕ′, which provides the optimal value of the
displacement.

2.2. Construction of g2′ by sub-pixel image interpolation

Equation (4) is a sub-pixel image interpolation problem. This
topic has been addressed in many digital image processing
books, e.g. Bracewell (1995) and Teuber (1993), and has been
applied extensively in iterative image deformation methods
for PIV analysis, e.g. Scarano (2002) and Stanislas et al
(2003). The popular interpolation schemes range from first-
to fourth-order two-dimensional polynomials, to a Cardinal
Sinc function, to a cubic-spline interpolation, etc. As
addressed in many studies, a good sub-pixel interpolation
scheme should avoid loss, addition and biasing of image
information (e.g. Scarano 2002). For the specific application
in PIV, the centre location of the interpolated particle must
be accurately reproduced without bias. In this paper, we
examine the effectiveness of first- to third-order polynomials,
i.e. bi-linear, bi-parabolic and bi-cubic interpolations.
Figure 2 shows the pixels involved in these interpolation
methods to obtain the greyscale value at (p + u′, q + v′) from
neighbouring values at integer locations. Since the discussion
of the inherent inaccuracies associated with each method is
not the main issue of this paper, we provide the details on the
process of evaluating them in appendix A.

Of the three above-mentioned methods, the bi-cubic
interpolation has the least bias when the sub-pixel
displacement is less or more than 0.5. Thus, we opt to proceed
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Figure 2. Pixels involved in different image interpolation schemes.
(a) Bi-linear, (b) bi-parabolic and (c) bi-cubic.

using bi-cubic image interpolation, i.e.

g(p + u′, q + v′) = C
(p,q)

1 · u′3 · v′3 + C
(p,q)

2 · u′3 · v′2

+ C
(p,q)

3 · u′2 · v′3 + C
(p,q)

4 · u′2 · v′2 + C
(p,q)

5 · u′3 · v′

+ C
(p,q)

6 · u′ · v′3 + C
(p,q)

7 · u′3 + C
(p,q)

8 · v′3

+ C
(p,q)

9 · u′2 · v′ + C
(p,q)

10 · u′ · v′2 + C
(p,q)

11 · u′2

+ C
(p,q)

12 · v′2 + C
(p,q)

13 · u′ · v′ + C
(p,q)

14 · u′

+ C
(p,q)

15 · v′ + C
(p,q)

16 . (6)

Specific values for the coefficients, Ck , are provided in
appendix B.
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Figure 3. (a) Exact correlation map ϕ(m, n) for a displacement of (0.0, 0.4), (b) bi-cubicly interpolated virtual correlation map ϕ′(m, n)
with the same displacement, (c) ϕ(m, n)/ϕ and (d ) ϕ′(m, n)/ϕ′.

2.3. Matching of correlation map

This section examines the relationship between ϕ(m, n) and
ϕ′(m, n), while focusing only on the sub-pixel part of the
displacement. Figure 3 compares ϕ(m, n) to ϕ′(m, n) in the
vicinity of the correlation peak of a 32 × 32 pixel window
using synthetic image pairs with uniform particle displacement
of (0.0, 0.4), and bi-cubic interpolation (equation (6)) to
calculate ϕ′(m, n). The first window, g1, contains randomly
distributed Gaussian particles, with mean diameter, dp, of 2.4
pixels, at a concentration of 0.03 particles per pixel. Clearly
ϕ′(m, n) captures almost all the features of ϕ(m, n) when
the estimated displacement (u′, v′) approaches the exact one
(u, v). However, the virtual correlation peak is slightly lower
than the exact value due to the interpolation error discussed
in appendix A. To correct this problem, we normalize both
correlation maps with their mean values, and then match the
values of ϕ(m, n)/ϕ with those of ϕ′(m, n)/ϕ′ at every (m, n),
where the overbar denotes averaging over all (m, n). The
effect of normalization is illustrated in figures 3(c) and (d ).
Normalizing the peaks reduces the difference between the
original and interpolated peaks. However, subsequent tests
have indicated that the normalization has minimal impact on
the velocity measurements, and the method works equally well
without it.

For a bi-cubic interpolation, substituting equation (6) into
equation (5), one obtains

ϕ′
C(m, n, u′, v′) = �

(m,n)
C1

· u′3 · v′3 + �
(m,n)
C2

· u′3 · v′2

+ · · · + �
(m,n)
C16

(7)

where the 16 coefficients are


�
(m,n)
Ck

=
M∑
i=1

N∑
j=1

g1(i, j) · C
(i+m,j+n)

k

k = 1, 2, . . . , 16.

(8)

One should attempt to minimize the difference between
ϕ(m, n) and ϕ′(m, n) around the correlation peak. In the
present paper, we focus on a 5 × 5 pixel area, where the
most useful information exists. The choice of 5 × 5 pixels
is somewhat arbitrary, and larger areas can also be used. To
find the ‘optimal’ values of u and v, we use a least-squares
fit that minimizes the difference between the virtual and exact
correlation values. The procedure consists in finding (u′, v′)
that minimizes the squared residue, ε(u′, v′), defined as:

ε(u′, v′) =
2∑

m=−2

2∑
n=−2


ϕ(m, n)

ϕ

− �
(m,n)
C1

· u′3 · v′3 + �
(m,n)
C2

· u′3 · v′2 + · · · + �
(m,n)
C16

�
(m,n)
C1

· u′3 · v′3 + �
(m,n)
C2

· u′3 · v′2 + · · · + �
(m,n)
C16




2

.

(9)

Other approaches are also possible, e.g. by creating some bias
favouring high correlation values. In the present study, we use
an increment of 0.01 pixel in u′ and v′ to find the minimal
residue. For the purpose of comparison, the same procedure
is also used with the bi-parabolic and bi-linear interpolations.
Since the procedure introduced here attempts to minimize the
combined errors of all the correlation values around the peak,
we refer to it as the correlation mapping method (CMM).
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In summary, application of CMM, using bi-cubic
interpolation, consists of the following steps:

(1) Calculating ϕ(m, n) for a given interrogation window.
(2) Determining the integer part of the measured

displacement, (uint, vint), based on the location of the
discrete peak of ϕ(m, n).

(3) Calculating the coefficients of ϕ′,�(m,n)
Ck

using
equation (8) and appendix B, based on the values of g1

around (uint, vint).
(4) Finding the optimal values of u′ and v′, uopt and vopt, that

minimize the squared residue defined in equation (9).
(5) The total displacement is (uint + uopt, vint + vopt).

Compared with the other remedies to peak-locking, which
are discussed briefly in the introduction, the correlation
mapping method does not involve sub-pixel curve fitting, and
does not require a refined grid. Furthermore, depending on the
selected area, it can match the entire vicinity of the correlation
peak. Before proceeding with examples of implementation,
the next section combines CMM with methods that correct for
particle image deformation.

3. Particle image distortion

In a flow field with high velocity gradients, the relative position
of particle patterns contained in the interrogation window
changes between exposures. As a result, the correlation
peak broadens, deforms or becomes fragmented, degrading
the measurement accuracy. To solve this problem, Huang
et al (1993) introduced the particle image distortion (PID)
technique. Similar methods have been discussed since then in
many papers, e.g. Lin and Perlin (1998), Hart (2000), Scarano
and Riethmuller (2000), Nogueira et al (2001), Wereley and
Meinhart (2001), Florio et al (2002), Stanislas et al (2003),
Scarano (2002), Wereley and Gui (2003), and Gui and Seiner
(2004). In the present study, we combine the correlation
mapping method with PID, abbreviated here as CMM-PID.

The application of CMM-PID can be summarized as:

(1) CMM is first applied without distortion correction to
obtain the first iteration of the displacement (U, V )1.

(2) The local displacement gradients, ∂U/∂x, ∂U/∂y,

∂V/∂x and ∂V/∂y, are determined using a 5-point
least-squares finite-difference scheme (Raffel et al 1998,
Foucaut and Stanislas 2002).

(3) Every pixel within the interrogation window is shifted
with respect to the window centre (xc, yc), creating
another image, g′

1, whose greyscale distribution is

g1′(x, y) = g1(x − δU(x, y), y − δV (x, y)) (10)

where, using a first-order approximation,


δU(x, y)� ∂U

∂x

∣∣∣∣
(xc,yc)

(x − xc) +
∂U

∂y

∣∣∣∣
(xc,yc)

(y − yc)

δV (x, y)� ∂V

∂x

∣∣∣∣
(xc,yc)

(x − xc) +
∂V

∂y

∣∣∣∣
(xc,yc)

(y − yc).

(11)

Bi-cubic interpolation is used to determine the values of
g1 between discrete pixels.

(4) Step 1 is repeated, using images g′
1 and g2 to obtain

the result of the next iteration (U, V )2. This process
is repeated until the results converge.
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Figure 4. Error of uniformly translated image pairs: (a) 3-point
parabolic and Gaussian SPCF; and (b) CMM with different
interpolation methods. Symbol: mean error. Error bar: rms error.

4. Applications and uncertainty analysis

4.1. Analysis of synthetic images

The correlation mapping method is applied to several PIV
images, both synthetic and experimental. The results are
compared with the exact values as well as with the output
of sub-pixel curve fitting methods (equations (2) and (3)). The
synthetic image pairs are generated by randomly distributing
Gaussian particles in the first image at a mean number density
of 0.03 particles per pixel. The particle diameters and peak
intensities have random Gaussian distributions with a mean
diameter of 2.4 pixels and mean greyscale of 190. The second
exposure is obtained by shifting the particles according to the
simulated displacement pattern. The greyscales in the particles
of the second exposure also have Gaussian distributions,
i.e. we do not interpolate the first image to generate the second
image.

To expedite the processing, we first determine the location
of the discrete correlation peak using a typical correlation
software discussed in Roth et al (1999) and Roth and Katz
(2001), and then use CMM to determine the sub-pixel value.
For all the results presented in this section, the interrogation
window size is 32 × 32 pixels, and the vector spacing is 16
pixels (50% overlap).

Starting with 256 × 256 pixel synthetic images simulating
a uniform translation of 0.0 to 1.0 pixels, CMM with bi-linear,
bi-parabolic and bi-cubic interpolations is compared to SPCF.
The errors are summarized in figure 4. It is evident that both
SPCF methods give a biased result, with the amplitude of the
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Figure 5. (a)–(c) Horizontal displacement along the x-direction, and (d )–( f ) the corresponding error (�U) versus the sub-pixel part of U,
obtained from analysis of synthetic images simulating a stagnation point flow. (a) and (d ) Parabolic SPCF, (b) and (e) Gaussian SPCF, and
(c) and ( f ) bi-cubic CMM.

mean error associated with the Gaussian fit being lower than
that of the parabolic fit. The same trend is also reported in
Scarano and Riethmuller (2000) and Roesgen (2003). The bi-
parabolic CMM gives the worst mean bias, even compared to
the SPCF results. This error is caused by an inherent bias in the
interpolation of images, as described in appendix A. The abrupt
change in magnitude and sign of the error is caused by a change
in the pixels used in the bi-parabolic interpolation when the
sub-pixel displacement crosses 0.5 (figure 2(b)). Conversely,
the bi-linear CMM shows a significant improvement with only
a slight bias with a magnitude of about 0.01 pixel. This very
small error is also caused by an interpolation error. The bi-
cubic CMM seems to eliminate the mean peak-locking bias
completely. Both the bi-linear CMM and bi-cubic CMM
reduce the rms values of the error significantly from 0.02–
0.04 pixels in the SPCF data to 0.000–0.003 pixels. Based
on this trend, the bi-cubic scheme is chosen as the only
interpolation method in the following applications of CMM.

Synthetic stagnation point flow is another ideal case to
validate PIV analysis algorithms, due to the linearity of the
velocity profile. Figure 5 compares the results of SPCF and
bi-cubic CMM using 1024 × 1024 pixel synthetic image pairs
simulating a stagnation point flow with ∂U/∂x = 0.008.
In this case, we do not use PID corrections. Clearly, the
bi-cubic CMM gives a smoother velocity profile, without

the semi-regular deterministic error pattern that characterizes
both SPCF methods, i.e. it successfully eliminates the peak-
locking effect. The rms value of the CMM error, σ�u, is ∼
0.01 pixels, while the values of both SPCF methods are about
0.04 pixels.

4.2. Analysis of Oseen vortex images

Huang et al (1993) applied the PID technique on synthetic
Oseen vortex images, with the following tangential and radial
displacements:


uθ(r, θ) = 	

2πr

[
1 − exp

(
− r2

4νt

)]
· �t

ur(r, θ) = 0.

(12)

Thus, we also apply the bi-cubic CMM-PID on Oseen vortex
images with 	 = 750 000 (pixel)2/s, �t = 0.02 s and
νt = 7500 (pixel)2. Again, the image size is 1024 ×
1024 pixels. Figures 6 and 7 compare the exact values of uθ

and ur with the ones calculated using SPCF (Gaussian) without
PID and using CMM-PID, respectively. The improvements
with PID iterations are also presented. It is evident that CMM-
PID is much more accurate than SPCF, and that the uncertainty
decreases with PID iterations. Figure 8 compares the pdfs of
errors in horizontal displacement over the entire image. The
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Figure 6. Results of analysing an Oseen vortex using Gaussian sub-pixel curve fitting: (a) uθ , (b) ur , (c) error in uθ , �uθ and (d ) error in
ur,�ur .

CMM-PID results seem to converge quickly, as determined
by the very little difference between the second and third
iterations. The rms values of the error for the different methods
are: 0.08 pixels for parabolic SPCF, 0.07 pixels for Gaussian
SPCF, 0.06 pixels for CMM-PID iteration 1, 0.01 pixels for
CMM-PID iteration 2 and 0.01 pixels for CMM-PID iteration
3. The removal of peak-locking bias in the CMM-PID results
is demonstrated in figure 9.

Examination of the error in figures 7(e) and (g) reveals a
small negative bias of uθ that peaks around r = 150, with a
maximum magnitude of 0.04 pixels. To identify the source of
this bias error, the flow simulated by the Oseen vortex images
is decomposed into two elements: one simulating a pure solid
body rotation, and the other simulating a 1D planar flow, which
has a displacement profile similar to that in equation (12), i.e.


U(x, y) = 	

2π(y + 0.5)

[
1 − exp

(
− (y + 0.5)2

4νt

)]
· �t

V (x, y) = 0.

(13)

We refer to the latter as a ‘planar Oseen flow’. This procedure
separates the effects of streamline curvature from the curvature
of the displacement distribution.

The CMM-PID results of the solid body rotation images
do not reveal any bias, and the uncertainty of the third iteration
is about 0.01 pixels (not shown). The results for the planar
Oseen images are shown in figure 10. When the PID is
applied using a first-order approximation for the deformation
(equation (11)), the bias occurs in the region with significant
curvature (figure 10(b)), as one may note by comparing it

with the distribution of dU/dy. If one adopts a second-order
distortion correction in PID, i.e. replaces equation (11) with:




δU(x, y)� ∂U

∂x

∣∣∣∣
(xc,yc)

(x − xc) +
∂U

∂y

∣∣∣∣
(xc,yc)

(y − yc)

+
1

2

∂2U

∂x2

∣∣∣∣
(xc,yc)

(x − xc)
2 +

∂2U

∂x∂y

∣∣∣∣
(xc,yc)

(x − xc)(y − yc)

+
1

2

∂2U

∂y2

∣∣∣∣
(xc,yc)

(y − yc)
2

δV (x, y)� ∂V

∂x

∣∣∣∣
(xc,yc)

(x − xc) +
∂V

∂y

∣∣∣∣
(xc,yc)

(y − yc)

+
1

2

∂2V

∂x2

∣∣∣∣
(xc,yc)

(x − xc)
2 +

∂2V

∂x∂y

∣∣∣∣
(xc,yc)

(x − xc)(y − yc)

+
1

2

∂2V

∂y2

∣∣∣∣
(xc,yc)

(y − yc)
2

(14)

the bias disappears, as demonstrated in figure 10(c). Thus,
the aforementioned bias in Oseen vortex results occurs in the
region where a first order approximation is insufficient to
correct for window deformation. This conclusion has also
been confirmed by varying the velocity gradient in the vortex
core. As shown in figure 11, the bias with linear PID increases
with second order derivative, i.e. deceasing radius of curvature,
but it disappears if one utilizes a second order PID correction.
At least for the profile in equation (13), the bias exceeds the
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Figure 7. Results of CMM-PID analysis of Oseen vortex images: (a) and (b) uθ and ur for iteration 3, respectively; (c) and (d ) �uθ and
�ur of PID iteration 1; (e) and ( f ) �uθ and �ur of PID iteration 2; and (g) and (h) �uθ and �ur of PID iteration 3.

present ±0.01 pixel scatter level when δ · d2U/dy2 > 0.01,
where δ is the size of the interrogation window.

The displacement errors in figure 10(c) range from −0.01
to +0.01 pixels. The limits of this scatter are equal to the
presently selected resolution for the bi-cubic interpolation
scheme and least-squares fit, both of which have resolutions
of 0.01 pixels. This error range can be further reduced by
using a higher resolution, of course at the cost of increasing
processing time. Sample tests using a resolution of 0.002
pixels reduce the scatter range by five times (results not
shown).

4.3. Application of CMM-PID to experimental flow images

Bi-cubic CMM is also implemented to analyse experimental
data of a turbulent flow. The 2048 × 2048 pixels images of a
nearly homogeneous isotropic turbulence flow field with weak
mean velocity are recorded under the experimental conditions
described in Chen et al (2005). Figure 12 presents the
measured velocity field. It contains 121×121 velocity vectors
calculated using 32 × 32 pixel interrogation windows. The
mean diameter of particle images is about 3.0 pixels. Since
we do not know the exact results, the data are evaluated using
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CMM-PID (iteration 3).
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Figure 12. An experimental velocity field of turbulent flow
analysed using CMM-PID, iteration 3.
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Figure 13. Histograms of the measured horizontal displacement
component (left) and its sub-pixel part (right) of the experimental
turbulent flow shown in figure 12. The bin size is 0.05 pixels.
(a) Parabolic SPCF, (b) Gaussian SPCF and (c) CMM-PID
(iteration 3) with first-order distortion correction.

histograms of measured displacement and its sub-pixel part,
shown in figure 13. The bias towards integer values is evident
in both SPCF histograms, but does not exist in the CMM-PID
data.

Next, 2048 × 2048 pixel experimental PIV images
obtained in a circular Couette flow facility (unpublished work
by van Hout et al) are analysed using both SPCF and CMM-
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Figure 14. Average vorticity distribution of an experimental
Couette flow obtained based on analysis of five image pairs using
(a) parabolic SPCF and (b) CMM-PID (iteration 3) with first-order
distortion correction.

PID. The window and particle size are the same as the
first sample. In this set the tangential displacement varies
from 0 to 50 pixels over the field of view, indicating the
existence of strong velocity gradients. The typical distortion
within a single interrogation window is about 1 pixel. The
histograms of measured displacements are similar to those
shown in figure 13 and thus not shown. The vorticity,
� = ∂U/∂y − ∂V/∂x, calculated using a second-order finite
differencing, and averaged over five images, is shown in
figure 14. The well-organized chequered pattern in the SPCF
results, with amplitudes of oscillation reaching 35% of the
local values, is caused by the peak-locking error. Conversely,
one can detect only a very slight pattern in the CMM-PID data,
with amplitude of about 5% of the local values. Clearly, use of
CMM-PID causes a substantial improvement in the accuracy
of the vorticity measurements.

In an attempt to identify the origin of the slight pattern in
the CMM-PID data, we also calculate and examine vorticity
distributions of the synthetic Oseen vortex (equation (12)).
The distributions of error in vorticity along the centre line
of the vortex, shown in figure 15, clearly indicate that the
CMM-PID errors are caused by discretization, i.e. by using
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Figure 15. Error in calculating the vorticity distribution,
�� = � − �exact, in a synthetic Oseen vortex (equation (12)), along
a line crossing the vortex core. Squares and dashed line: SPCF,
triangles: CMM-PID 3, and solid line: second-order finite
differencing of the exact velocity components.

second-order finite differencing to estimate the vorticity. In
fact, the distribution of CMM-PID error is almost equal to that
obtained from second-order finite differencing using the exact
values of the velocity.

4.4. Effect of background noise

The experimental images are often contaminated by noise,
introduced by different sources (e.g. Bracewell 1995). To
test the application of the correlation mapping method in the
presence of background noise, we added random Gaussian
noise to the synthetic images simulating a high-shear planar
Couette flow. For moderately contaminated synthetic images,
i.e. with a noise variance of 0.001, the rms errors of SPCF
and CMM-PID are 0.07 and 0.02 pixels, respectively. For
heavily contaminated images, with a noise variance of 0.005,
SPCF gives a rms error of 0.08 pixels, while the rms error of
CMM-PID is 0.04 pixels. In both cases, the CMM-PID results
are still better than those of SPCF. However, this analysis is
preliminary. Examination of noisy images along with effects
of out-of-plane motion will continue, and be addressed in
further publications.

5. Summary and conclusions

A new approach, the correlation mapping method, is
introduced in order to improve the sub-pixel accuracy, and
eliminate (or at least greatly reduce) the peak-locking effect
in PIV analysis. Using sub-pixel interpolation, this method
expresses the second exposure of an interrogation window
as a polynomial function with unknown displacement, whose
coefficients are determined by the greyscale distribution of the
first image. Thus, the correlation between this function and the
first exposure is also a polynomial of the displacement. This
virtual correlation function can be matched with the exact
correlation value at every point in the correlation map. A
least-squares method is used to find the optimal displacement
components that minimize the difference between the real and
virtual correlation values in a 5 × 5 pixel area surrounding the
discrete correlation peak. This method bypasses the smooth

sub-pixel curve-fitting in finding the correlation peak. Of
the three polynomial sub-pixel image interpolation methods
examined in this paper, the bi-cubic method provides the best
results. One may select other, more accurate, fitting methods,
such as Gaussian fitting, but we examine the new procedure
using the bi-cubic fit.

The CMM is also incorporated with the iterative PID
method to account the local velocity gradient. The combined
CMM-PID achieves further improvements in accuracy, along
with fast convergence after two to three iterations. In regions
with substantial curvature in displacement profile, a first-
order approximation for the image deformation becomes
insufficient, and it is necessary to apply PID using a second-
order correction. The bias using a first-order PID diminishes
with increasing radius of curvature of the displacement profile.
However, a radius of curvature smaller than 100 times the
interrogation window size creates a bias that exceeds the
interpolation scatter of 0.01 pixels.

The correlation mapping method is applied to different
PIV image pairs, obtained either experimentally or
synthetically, and the results are compared with sub-pixel
curve fitting methods using both parabolic and Gaussian fits.
In all cases CMM greatly reduces the peak-locking bias, and
also reduces the random error. Application of CMM-PID on
experimental turbulence images gives more balanced sub-pixel
displacement histograms. The chequered pattern in vorticity
distribution caused by peak-locking bias is also significantly
reduced. CMM also performs better in noisy images.

Before concluding, one should be reminded that the ±0.01
pixels uncertainty and bias-free results are obtained using 2D
synthetic images. Out-of-plane motion, non-uniform particle
distributions within an interrogation window and noise will
degrade the measurement accuracy in experimental data.
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Appendix A. Evaluation of interpolation schemes

As addressed in many studies, a good sub-pixel interpolation
scheme should avoid the loss, addition and biasing of image
information (e.g. Scarano 2002). For the specific application
in PIV, the centre location of the interpolated particle must
be accurately reproduced without bias. In order to select an
optimal interpolation method, we apply them on synthetic
images, which simulate sub-pixel translation of an individual
particle. We use a particle with a Gaussian greyscale intensity
distribution (Raffel et al 1998):

g(x, y) = I0 exp

(
− (x − x0)

2 + (y − y0)
2

1/8d2
p

)
(A.1)

where (x0, y0) is the particle centre, dp is the particle diameter
and I0 is the peak density. Our reference consists of
two synthetic images displaced by some sub-pixel distance
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Figure 16. Greyscale distribution across the centre of a Gaussian
particle, dp = 3.5 pixels, I0 = 240, located at (0.40, 0.40).

(u, v) using equation (A.1). We also use the bi-linear, bi-
parabolic and bi-cubic interpolation methods, to displace the
first image by (u, v). The expressions of bi-linear and bi-
parabolic interpolation are well documented, e.g. Pozrikidis
(1998) and Bracewell (1995), while bi-cubic interpolation
is described in equation (6) and appendix B. The intensity
distributions obtained using the three interpolation methods
are then compared with the exact Gaussian shifted intensity
distribution.

Figure 16 shows a 1D cross-section of the first exposure.
Figure 17 shows the interpolation errors, i.e. the difference
between the interpolated and the exact greyscales, of the
particle images displaced by 0.25, 0.50 and 0.75 pixels. The
bi-linear interpolation results at the discrete points closest to
the peaks (x = 1 pixel) are lower than those of the bi-parabolic
and bi-cubic greyscales. The errors of the bi-parabolic result
in the left and right neighbours of the peak have different
signs. For example, in figure 17(a), the greyscale at x = 0 is
overestimated, while the one at x = 2 is underestimated. In
figure 17(c), the value at x = 0 is underestimated while the
value at x = 2 is overestimated. The unevenly distributed error
creates a bias in the location of the particle centre that depends
on the sub-pixel displacement. The bias error associated with
bi-parabolic interpolation is even worse than the bi-linear
results. To explain the cause for this larger error, note that
when the sub-pixel location of the particle centre crosses 0.5,
four of the nine pixels used for calculating the bi-parabolic
interpolated value change. Thus, bi-parabolic interpolation
inherently utilizes pixels that are biased to one of the sides of
the particle centre.

Of the three interpolation methods discussed here, the
bi-cubic interpolation has the least error, and very little bias
with respect to the peak. Since the Gaussian distribution drops
drastically beyond twice the particle diameter, this simplified
analysis is relevant for typical PIV images containing multiple
particles.

Appendix B. Coefficients in bi-cubic
interpolation schemes

The 16 coefficients of the bi-cubic interpolation scheme,
equation (6), are:
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Figure 17. The interpolation error, i.e. the greyscale difference
between the interpolated and exact values, where the particle in
figure 16 is displaced horizontally by (a) 0.25 pixels, (b) 0.50 pixels,
and (c) 0.75 pixels. Asterisks: bi-linear interpolation, crosses:
bi-parabolic interpolation, diamonds: bi-cubic interpolation.
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6g(p + 2, q + 2)

C
(p,q)

10 = 1
12g(p, q − 1) − 1

2g(p, q) + 1
4g(p, q + 1)

+ 1
6g(p, q + 2) − 1

6g(p + 1, q − 1) + g(p + 1, q)

− 1
2g(p + 1, q + 1) − 1

3g(p + 1, q + 2)

+ 1
12g(p + 2, q − 1) − 1

2g(p + 2, q) + 1
4g(p + 2, q + 1)

+ 1
6g(p + 2, q + 2)

C
(p,q)

11 = 1
2g(p + 1, q) − g(p + 1, q + 1) + 1

2g(p + 1, q + 2)

C
(p,q)

12 = 1
2g(p, q + 1) − g(p + 1, q + 1) + 1

2g(p + 2, q + 1)

C
(p,q)

13 = + 1
36g(p − 1, q − 1) − 1

6g(p − 1, q)

+ 1
12g(p − 1, q + 1) + 1

18g(p − 1, q + 2) − 1
6g(p, q − 1)

+ g(p, q) − 1
2g(p, q + 1) − 1

3g(p, q + 2)

+ 1
12g(p + 1, q − 1) − 1

2g(p + 1, q) + 1
4g(p + 1, q + 1)

+ 1
6g(p + 1, q + 2) + 1

18g(p + 2, q − 1) − 1
3g(p + 2, q)

+ 1
6g(p + 2, q + 1) + 1

9g(p + 2, q + 2)

C
(p,q)

14 = 1
6g(p + 1, q − 1) − g(p + 1, q) + 1

2g(p + 1, q + 1)

+ 1
3g(p + 1, q + 2)

C
(p,q)

15 = 1
6g(p − 1, q + 1) − g(p, q + 1) + 1

2g(p + 1, q + 1)

+ 1
3g(p + 2, q + 1)

C
(p,q)

16 = g(p + 1, q + 1)
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