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Implication of Mismatch Between
Stress and Strain-Rate in
Turbulence Subjected to Rapid
Straining and Destraining on
Dynamic LES Models
Planar straining and destraining of turbulence is an idealized form of turbulence-
meanflow interaction that is representative of many complex engineering applications.
This paper studies experimentally the response of turbulence subjected to a process
involving planar straining, a brief relaxation and destraining. Subsequent analysis quan-
tifies the impact of the applied distortions on model coefficients of various eddy viscosity
subgrid-scale models. The data are obtained using planar particle image velocimetry
(PIV) in a water tank, in which high Reynolds number turbulence with very low mean
velocity is generated by an array of spinning grids. Planar straining and destraining
mean flows are produced by pushing and pulling a rectangular piston towards and away
from the bottom wall of the tank. The velocity distributions are processed to yield the time
evolution of mean subgrid dissipation rate, the Smagorinsky and dynamic model coeffi-
cients, as well as the mean subgrid-scale momentum flux during the entire process. It is
found that the Smagorinsky coefficient is strongly scale dependent during periods of
straining and destraining. The standard dynamic approach overpredicts the dissipation
based Smagorinsky coefficient, with the model coefficient at scale � in the standard
dynamic Smagorinsky model being close to the dissipation based Smagorinsky coefficient
at scale 2�. The scale-dependent Smagorinsky model, which is designed to compensate
for such discrepancies, yields unsatisfactory results due to subtle phase lags between the
responses of the subgrid-scale stress and strain-rate tensors to the applied strains. Time
lags are also observed for the SGS momentum flux at the larger filter scales considered.
The dynamic and scale-dependent dynamic nonlinear mixed models do not show a sig-
nificant improvement. These potential problems of SGS models suggest that more re-
search is needed to further improve and validate SGS models in highly unsteady
flows. �DOI: 10.1115/1.1989360�
1 Introduction

In most engineering applications, turbulent flows are regularly
subjected to strong large-scale mean deformation. Examples in-
clude turbulent flows inside contracting or expanding channels,
flows inside pumps, flows around propellers, etc. When the
turbulence-to-mean-shear time scale ratio is large enough, namely
S ·k /�→� �S is the mean strain; k�0.5�ui�ui�� is the turbulence
kinetic energy with �·� denoting the averaging operation; and � is
the dissipation rate�, the evolution of turbulence can be predicted
by rapid-distortion theory �RDT�, which neglects the nonlinear
terms in the evolution equation of turbulence, thus the equation
can be solved analytically �e.g., Ref. �1��. However, in many en-
gineering flows, the turbulence-to-mean-shear time scale ratio is
large, but not large enough to apply RDT.

The interactions between turbulence and strong mean straining
flow have already been studied extensively. Townsend �2�, Keffer
�3�, and Tucker and Reynolds �4� conducted hot-wire measure-
ments of decaying grid turbulence inside a specially designed,
distorting section of wind tunnel. Lee and Reynolds �5� performed
direct numerical simulations �DNS� of turbulence response to sev-
eral types of irrotational straining, including planar and axisym-
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metric straining. The simulations were performed at a Taylor mi-
croscale Reynolds number, Re�=u� /�, of less than 100, where u
is the characteristic turbulent fluctuation and � is the Taylor mi-
croscale.

Presently, large eddy simulation �LES� is the most rapidly de-
veloping turbulence prediction technique. Thus, it is of consider-
able interest to study the effects of straining on turbulence from
the point of view of LES. Liu et al. �6� studied scale interactions
and evolution of statistics of subgrid-scale �SGS� variables of in-
terest in LES during axisymmetric distortion with S ·k /��7 and
Re��290. They concluded that the simple Smagorinsky eddy-
viscosity SGS model overpredicts the SGS dissipation, i.e., the
flow of energy to scales smaller than the filter scale, during strong
straining, and that mixed model formulations improve the model
performance. The moderate Reynolds number and limited data of
the Liu et al. study prevented detailed tests of the popular dynamic
model �7�. Due to limitations of their experimental setup, Liu et
al. only studied the effect of axisymmetric straining, and there was
no possibility to study return-to-isotropy, relaxation, or destrain-
ing.

In the present study we experimentally investigate the evolution
of flow variables in a cycle consisting of planar straining, relax-
ation, and destraining. Such a scenario is a simplification of many
engineering flows, e.g., turbulence passing around a propeller
blade. There, the turbulence is strained near the leading edge of

the blade, and the deformation is partially reversed during the
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pressure recovery region, towards the trailing edge of the blade. If
the flow is not massively separated, and the blade is long �almost
2D�, 2-D irrotational straining �stagnation point flow� is a reason-
able idealization. The main focus of this study is the response of
the Smagorinsky model at various filter scales, and the perfor-
mance of the dynamic and scale-dependent dynamic Smagorinsky
models in reproducing the measured evolution of the Smagorinsky
coefficient. A brief review of LES modeling issues, including the
Smagorinsky and nonlinear mixed SGS models, is given in Sec. 2.
Also discussed are the standard dynamic and scale-dependent dy-
namic approaches to determine the model coefficients. Details
about the experimental facility and instrumentation are presented
in Sec. 3. The characteristics of mean flow and turbulence before
straining are documented in Sec. 4. The evolution of SGS dissi-
pation, and a priori tests of the Smagorinksy and nonlinear mixed
models are shown in Sec. 5. The performance of the Smagorinsky
model for prediction of SGS momentum flux is quantified in Sec.
6. Conclusions are presented in Sec. 7.

2 Large Eddy Simulation and SGS Stress Models
Proposed in the 1960s, large eddy simulation provides a prom-

ising approach to numerically study engineering flows with com-
plex geometry at high Reynolds number �8,9�. LES decomposes
the flow variables into resolved and unresolved �subgrid scale�
parts by applying a filtering operation given by

f̃�x,t� =	
D

f�x�,t�G��x,x��dx�, �1�

where D is the computational domain and G� is a filtering kernel
with a characteristic scale �. For incompressible flows, the filtered
Navier-Stokes equations solved in LES are

�ũi

�xi
= 0,

�2�
�ũi

�t
+ ũj

�ũi

�xj
= −

�

�xj

 p̃

�
�ij + �ij� + �

�2ũi

�xj
2 ,

where the subgrid-scale �SGS� stress, �ij, is defined as

�ij = uiuj
˜ − ũiũj . �3�

The SGS stress must be modeled properly in order to close the
equation system �2�.

Scale interactions, such as energy transfer between resolved and
SGS scales, referring to scales larger and smaller than �, respec-
tively, are fundamental physical phenomena in turbulent flows.
Understanding the processes underlying the energy transfer in a
turbulent field is important in successful application of LES. The
influence of the SGS stresses on the resolved flow field is reflected
in the transport equation of resolved and/or subgrid kinetic energy
�10�. The so-called sub-grid scale energy dissipation,

	� = − ��ijS̃ij� , �4�
where

S̃ij =
1

2
� �ũi

�xj
+

�ũj

�xi
 �5�

is the resolved strain-rate tensor, plays a vital role in these equa-
tions. The SGS dissipation enters as a sink in the transport equa-
tion for mean resolved kinetic energy, and as a source term in the
equation for unresolved kinetic energy �10�. It thus quantitatively
describes the net energy transfer between resolved and subgrid
scales. While the overall trend of energy transfer is typically from
resolved to subgrid scales �forward scattering�, there are locations
in the flow field where the subgrid scales return energy to resolved
scales �back scattering� �10,11�. In the inertial range, the mean

SGS dissipation is dominant in the energy budget. Thus, its key
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features must be reproduced properly by SGS models.
Many different SGS models have been proposed �see reviews in

Refs. �8,12��. The most popular are of the eddy-viscosity type

�ij
Smag = − 2�TS̃ij , �6�

where �T is the scalar eddy viscosity which relates the deviatoric
part of the SGS stress to the resolved strain. The Smagorinsky
model �13� is a representative of this class with

�T = �CS
���2�S̃� , �7�

where CS
� is the �Static� Smagorinsky coefficient and �S̃�

=�2S̃ijS̃ij. The so-called nonlinear mixed SGS model was pro-
posed by applying a Taylor series expansion of ũi and adding the
Smagorinsky model as a dissipative term �14–16�:

�ij
NL = − 2�CS,NL

� ��2�S̃�S̃ij +
1

12
�2�ũi

�xl

�ũj

�xl
�8�

with a model coefficient CS,NL
� �the subscript “NL” denotes the

nonlinear mixed model�. Other widely used models are reviewed
in Ref. �15�.

The performance of SGS models can be evaluated by a priori
tests, and by a posteriori tests �17�. In a priori tests, some selected
features of the modeled stresses, �ij

mod�x , t�, are compared with the
“real” SGS stresses, �ij�x , t�, calculated using its definition, i.e.,
Eq. �3�. Since a necessary condition for LES to be considered
successful is that it yield correct energetics of the resolved flow,
SGS models can be tested a priori by comparing the relevant
effect of the SGS stresses upon the energetics, namely by com-
paring the measured mean SGS dissipation with the modeled

mean SGS dissipation, −��ij
modS̃ij� �18�.

Experiments have provided data for a priori tests of SGS mod-
els, typically in flow fields whose Reynolds numbers are higher
than those provided by DNS. For example, Liu et al. �11� applied
particle image velocimetry �PIV� in a turbulent jet at Re��310,
and studied the performance of several SGS models. O’Neil and
Meneveau �19� conducted hot-wire measurements in a turbulent
plane wake at Re��500. Tao et al. �20� evaluated the statistical
geometry of subgrid-scale stresses based on 3-D holographic PIV
measurement in a duct flow at Re��260. Porte-Agel et al. �21�
and Kleissl et al. �22� performed a priori tests using field experi-
mental data of atmospheric boundary layer, collected by arrays of
sonic anemometers. These investigations have provided consider-
able insight into the underlying physics of SGS dynamics, and
quantified the effects of various flow parameters, such as stratifi-
cation �22�.

The static Smagorinsky model �13� is expressed by employing
a scale-invariant constant for CS, and its value is CS�0.16 �23�. It
is well known that a constant scale-invariant coefficient is not
appropriate in complex engineering flows �e.g., Ref. �15��. Ger-
mano et al. �7,24� proposed a dynamic Smagorinsky model to
determine the model coefficient locally from the resolved scales.
A test filter at scale 
� �typically 
=2� is adopted and the model
coefficient is determined using �24�

�CS
�,DM�2 =

�LijMij�
�MijMij�

, �9�

where Lij = ũiũj − ũi · ũj and Mij =−2�2�
2�S̃¯ �S̃¯ij − �S̃�S̃ij�, and � �¯ in-
dicates filtering at 
�. The averaging is done over spatial domains
of statistical homogeneity or by following a fluid element in time,
as in the Lagrangian dynamic model �25�. A central assumption of
the traditional dynamic model is scale invariance, i.e., CS

�=CS

�

�15�. For complex flows, where this assumption is not valid �as
will be seen to occur during straining of turbulence in the present
analysis�, a new scale-dependent dynamic model was proposed by
Porte-Agel et al. �26�. In this approach, the ratio of the coefficient

at two scales
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� =
�CS


�,DM�2

�CS
�,DM�2 �10�

is introduced as another variable �a scale-dependence correction
factor�, to be determined dynamically. Implementation of this
model involves a second test-filtering at a larger scale, 
2�, and
an assumption that the scale-dependence correction factor is in
itself scale-invariant, i.e.,

� =
�CS


�,DM�2

�CS
�,DM�2 =

�CS

2�,DM�2

�CS

�,DM�2 . �11�

As shown in Porte-Agel et al. �26�, substituting in a pair of Ger-
mano identities �7� at both test-filter scales provides a solution for
� from a polynomial equation, which is constructed from the first
test filtering at a scale 
�, and the second test filtering at scale


2� �denoted by � �ˆ �. Then, the tensor Mij =−2�2��
2�S̃¯ �S̃¯ij

− �S̃�S̃ij� is evaluated with the actual value of �. Solution of the
polynomial equation can be quite cumbersome, especially in con-
junction with the Lagrangian dynamic model. To simplify the for-
mulation, Bou-Zeid et al. �27� proposed to utilize the observation
�28,26� that the standard dynamic model yields the model coeffi-
cient appropriate to the test-filter scale, and not to that of the basic
grid filter scale, i.e.,

�CS

��2 � �CS

�,DM�2 =
�LijMij�
�MijMij�

, �12�

where Mij is evaluated assuming that �=1. This observation was
made in the scale-dependent cases, when the filter scale tends to
the Kolmogorov scale �28�, or to the integral scale near a solid
wall �28�. One of the objectives of the present work is to test
whether this observation holds also in the case of strained turbu-
lence. Since in LES we require the coefficient at scale � and not
at 
�, by using a second test-filter, we can write

�CS

2��2 � �CS


�,DM�2 =
�QijNij�
�NijNij�

, �13�

Fig. 1 Schematic description of „a… the e
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�CS
�,SDDM�2 =

�CS
�,DM�4

�CS

�,DM�2 . �14�

The aforementioned dynamic approaches can also be used to de-
termine the eddy-viscosity coefficient in the nonlinear mixed
model, Eq. �8�, and one obtains

�CS,NL
�,DM�2 =

�LijMij� − �YijMij�
�MijMij�

, �15�

where

Yij =
1

12
�2�
2�ū̃i

�xl

�ū̃ j

�xl
−

�ũi

�xl

�ũj

�xl

 .

Moreover, if the scale-dependent dynamic approach is applied, the
nonlinear mixed model coefficient can be determined by

�CS,NL
�,SDDM�2 =

�CS,NL
�,DM�4

�CS,NL

�,DM�2 �16�

with

�CS,NL

�,DM�2 =

�QijNij� − �ZijNij�
�NijNij�

,

where

Later in this paper we use PIV data to evaluate the evolution of
measured and modeled SGS dissipation at various scales, and the
resulting impact on the modeled coefficients introduced in this

erimental facility and „b… the activity grid
xp
section.
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3 Experimental Setup

3.1 Facility. A schematic description of the test facility is
shown in Fig. 1. The experimental setup is composed of two sub-
systems. The first one generates homogeneous, isotropic turbu-
lence �initial equilibrium turbulence� at moderately high Reynolds
numbers. The turbulence is generated using symmetrically located
four active grids driven by four synchronized motors whose oper-
ating parameters are adjusted to obtain near zero mean velocity
prior to straining. The second subsystem applies uniform
straining-relaxation-destraining on the turbulence by translating a
piston vertically at prescribed velocities. The piston occupies al-
most the entire width of the tank. The dimensions of the water
tank are 325 cm �L��125 cm �H��20 cm �W�. The sample area
�10�10 cm2� is located near the center-bottom of the tank, as
indicated by dashed lines in Fig. 1. Windows below and on both
sides of the sample area provide optical access for PIV
measurement.

Active grids have been proven to be an effective method to
generate high Reynolds number isotropic turbulence. For ex-
ample, Makita �29� utilized an agitator wing array driven by step-
ping motors in a wind tunnel. Mydlarski and Warhaft �30� em-
ployed the same idea to study the characteristics of turbulence
with Re� varying from 50 to 473. Liu et al. �6� introduced the four
rotating grids inside a small water tank to generate high-intensity
turbulence with very little mean flow. The present rotating grid is
shown in Fig. 1�b�. It has four blades made of perforated metal
plates with a solidity of 40%. Each grid is independently driven
by a 1

2 horsepower ac motor, with variable frequency inverter
providing speed control. The grids can be maintained at a stable
speed up to 500 rpm. The speed of each grid is adjusted separately
to optimize the homogeneity of turbulence in the test section, as
determined from repeated measurements. For all the data dis-
cussed in this paper, the bottom two grids are operated at a con-
stant speed of 450 rpm and the top two at 375 rpm. The differ-
ences in speed are needed to achieve acceptable spatial uniformity
of the turbulence.

When the piston moves vertically, the flow pattern under it
becomes a 2-D stagnation-point flow with spatially uniform strain
rate. The resulting strain rate tensor is

S�t� = S�t��1 0 0

0 − 1 0

0 0 0
� , �17�

where S�t� is the strain rate magnitude. Moreover, if the piston
elevation, h�t�, is exponential in time, i.e.,

h�t� = He−S�t−t0� �18�
the strain rate is also time independent.

The bottom surface of the piston has rounded corners to prevent
possible flow separation which is critical when the flow is de-
strained. The piston is driven by a motion control system through
a lever with a magnification ratio of 3. The motion control system
consists of an Exlar GS60-1010 linear electric actuator, an Emer-
son MX-1600 brushless drive, and an Emerson AXIMA 2000 pro-
grammable motion control module, as illustrated in Fig. 2. The
dynamic load rating of the actuator is 21,200 N, and its maximum
velocity is 1.018 m/s. The stroke of the actuator is 25.4 cm, i.e.,
the maximum displacement of the piston is 76.2 cm. The trajec-
tory of the piston is programmed through the motion control mod-
ule, enabling us to adjust the relevant parameters and to obtain
different trajectories. Two honeycombs �8.0 cm thick, 1.0 cm cell
diameter� are placed near the top part of the water tank to alleviate
the influence of surface waves.

The trajectory of the piston designed for this study is shown in
Fig. 3. In each cycle, the piston moves downward to generate
straining, rests for some time �relaxation�, and then moves upward

to generate destraining. Details of the actual piston’s trajectory
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and its effect on the flow will be analyzed in the next section. The
trajectory of the piston is monitored by a high-speed video camera
�Kodak Ektapro EM� operating at 250 frames per second, as
shown in Fig. 2. Results confirm that the motion control system is
repeatable. The rms value of variance between piston trajectories
in different runs at any given time is about 2 mm.

3.2 Instrumentation. Particle image velocimetry �PIV� is
used to measure the velocity field. The flow field is seeded with
hollow glass beads �median diameter 10 m, specific gravity 1.1�.
The light source is a dual-head Nd-YAG laser �532 nm,120 mJ�
whose beam is expanded to a sheet and illuminates the x1-x2 plane
along the centerline of the tank. A Kodak ES-4.0 digital camera,
with 2048 pixel�2048 pixel resolution, operating at 5 Hz under
double-exposure mode, is used to record images. The sample area
is 9.0�9.0 cm2 of which the upper 9.0�7.5 cm2 is used during
the analysis. The lower 1.5 cm part shows some bottom effects
and thus is discarded. The analysis consists of image enhance-
ment, followed by cross correlation to determine the velocity
�31,32�. The size of interrogation windows is 32�32 pixel. With
50% overlap, the vector spacing is 0.7 mm. A total of 120�100
vectors are obtained from each image pair.

As shown in Fig. 2, the motion control system and the PIV
measurement are synchronized in order to obtain repeated mea-

Fig. 2 Schematics of the instrumentation and control system
Fig. 3 Piston motion trajectory
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surements at exactly the same time in every cycle. Repeated mea-
surements enable us to calculate the ensemble statistics as a func-
tion of phase in the piston cycle. Since the present camera
operates up to 5 Hz under the double-exposure mode, the tempo-
ral resolution of the measurements is 0.2 s. To increase the tem-
poral resolution of the statistics, we record sequences at varying
initial delay. The data are obtained at a total of 48 phases during
the trajectory cycle providing a temporal resolution of 0.05 s.
Since no frequency spectra or time derivative are needed, this
resolution is appropriate for this study. At every time step, the
measurement is repeated 1000 times, which provides a good en-
semble set for statistical analysis and statistical convergence. The
minimum interval between adjacent repeated measurements is set
to 3 min, so that the background turbulence in later runs is not
influenced by the history of previous runs.

The typical conservative uncertainty of the instantaneous data is
0.2 pixels, and the relative uncertainty is about 2% �for a charac-
teristic displacement of 10.0 pixels�. Consequently, the uncer-
tainty in the mean velocity �ensemble set of 1000� is 0.06%, and
the rms value is 0.4%. The uncertainty in terms involving mean
velocity gradient is about 0.5%. Further details on errors and un-
certainties in the present analysis procedure are presented in Roth
et al. �31� and Roth and Katz �32�. Extended discussion on uncer-
tainties in PIV data analysis can be found in Refs. �33–35�, etc.

4 Flow Characterization

4.1 Mean Flow. Prior to straining, the flow consists of the
grid generated turbulence, whereas during the straining one can
identify the stagnation point flow along with the turbulence. The
characteristics of the mean flow are evaluated by calculating an
ensemble mean of velocity components, U1�x , t� and U2�x , t�, at
every point. Figure 4 shows some streamlines of the mean flow at
t=1.160 s and t=2.160 s, corresponding to the times with strong
straining and destraining, respectively. The mean flow is of
stagnation-point-type in both cases.

The strain rate of mean flow is then evaluated from the data
using central finite differencing:

�S11�x,t� = �U1�x,t�/�x1,

S22�x,t� = �U2�x,t�/�x2,
�

�19�
S = �S11 − S22�/2.

The evolution of the spatially averaged strain rate of mean flow is
presented in Fig. 5. The error bars represent the standard deviation
of the local values from the spatially averaged strain, i.e., the
applied straining and destraining are nearly uniform across the
field of view. According to the sign of mean straining, the cycle
can be divided into four regimes: initial equilibrium, plane strain-
ing, relaxation, and plane destraining. The magnitudes of peak
straining and destraining are both about 3.5 s−1.

4.2 Initial Equilibrium Turbulence. The fluctuating velocity
components are calculated from the measured velocity, ui�x , t�,
using Reynolds decomposition:

ui��x,t� � ui�x,t� − Ui�x,t� . �20�
The mean and rms values of the initial equilibrium turbulence,

Ui and ui
rms= �ui�ui��

1/2 �no summation over i�, are analyzed based
on the data ensemble at t=0.210 s. The mean values of the two
velocity components, U1�0.003 m/s and U2�0.029 m/s, are
much weaker than the mean velocity applied by straining and
destraining. The initial spatial mean of the rms velocity fluctua-
tions are u1

rms�0.084 m/s and u2
rms�0.076 m/s. Their spatial dis-

tributions, shown in Fig. 6, display good spatial homogeneity for
both components. The homogeneity at different scales is also veri-
fied by comparing energy spectra at different locations in the field
�not shown�. Figure 7 shows the one-dimensional kinetic energy

spectra of the initial equilibrium turbulence. The spectra are cal-
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culated using data along four lines near the image center, horizon-
tal lines for �1 and vertical lines for �2. The ensemble mean
velocity of every point is subtracted, and the data are linearly
detrended, i.e., the mean linear trend of the finite instantaneous
data �determined through least-square fit� is subtracted from the
original values. This procedure maintains only the fluctuating
components with nearly periodic boundary conditions for spectral
analysis. There is no additional windowing assuring minimal im-
pact on the variance, as discussed in Ref. �36�. The spectra are
calculated using fast Fourier transforms �FFTs�, and then averaged
over the four lines, and over the 1000 realizations in the ensemble
set. Two longitudinal, E11��1� and E22��2�, and two transverse,
3
4E11��2� and 3

4E22��1�, spectra in both directions, are presented.
The four curves show fairly good agreement except at the high
wave number range, which verifies that the initial equilibrium
turbulence is nearly isotropic �37�. In the inertial range of homo-
geneous isotropic turbulence

E11��1� = 18
55C��2/3�1

−5/3 �21�

where C� is the Kolmogorov constant, taken as C�=1.7 in the

Fig. 4 Mean flow streamline patterns at „a… t=1.160 s and „b…
t=2.160 s
present study. With the available 1-D spectra, one may estimate
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the dissipation rate by curve-fitting a − 5
3 slope line to the data. The

estimated initial dissipation rate for the present result is �0
�0.0035 m2/s3.

Other turbulence parameters of the initial equilibrium turbu-
lence may be estimated based on �0 and characteristic turbulence
rms velocity u��u1

rms+u2
rms� /2�0.08 m/s. The results are: inte-

gral scale, l0�u3 /�0=0.13 m; turbulent kinetic energy, k0

=3/2 ·u2=0.0096 m2/s2; Taylor’s microscale, �0�u�15� /�0
=0.0052 m; Kolmogorov length scale, �0���3 /�0�1/4�130 m;
and the microscale Reynolds number, Re��400. The turbulence-
to-mean-strain time scale ratio is evaluated as Smax·k0 /�0�9.5.

5 Evolution of Mean SGS Statistics
As in Liu et al. �6�, we use a two-dimensional top-hat filter with

scale �, defined as

G��x1,x2� = � 1

�2 if �x1� �
�

2
& �x2� �

�

2
,

0 otherwise.
� �22�

The filtered velocities and SGS stresses are then calculated ac-
cording to Eqs. �1� and �3�. Convolutions are evaluated in the
physical space.

5.1 Mean SGS Dissipation. The evolution of mean SGS dis-
sipation is given in Fig. 8. In the present study, which is based on
2D PIV, a 2D surrogate is evaluated using only the available two-
dimensional terms:

	� = − ���11S̃11� + ��22S̃22� + 2��12S̃12�� �23�

The analysis is repeated at three filter scales: �=25�0, �=50�0,
and �=100�0. One can see that for these scales, the mean SGS
dissipation is positive at all times, i.e., there is no global backscat-
ter. During the initial stage, the SGS dissipation is nearly scale
independent, as expected in the inertial range. However, during
the straining and destraining periods, the SGS dissipation is
strongly scale-dependent. During the relaxation regime, 1.6s� t
�1.9s, all three curves collapse, suggesting a scale-independent
behavior during unforced relaxation conditions. One striking trend
is that the dissipation peak in the destraining period is signifi-
cantly lower than the peak in the straining period, although the
amplitudes of the straining and destraining are about the same.
The ratio of peak SGS dissipation during straining and destraining

Fig. 5 Evolution of mean strain, spatially averaged rate S11
„squares… and −S22 „triangles…. The error bars represent the
standard deviation of spatial distribution of S„t….
is about 2:1, well beyond the range that can be caused by mea-
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surement uncertainties. The cause of this trend is related to the
fact that the initial condition for the destraining differs from iso-
tropic turbulence since the relaxation to isotropy has not fully
ended. This phenomenon is studied in more detail in a separate
publication �35�.

5.2 Dissipation Based Smagorinsky Model Coefficient. The
dissipation based Smagorinsky model coefficient at different times
during the motion cycle can be computed by balancing the mean
SGS dissipation and the modeled one using the Smagorinsky
model, i.e.,

− ��ijS̃ij� = 2�CS
���2��S̃�S̃ijS̃ij� �24�

The coefficients obtained in this way guarantee the correct repro-
duction of mean energetics, and thus can be used to evaluate the
model coefficients determined using other approaches. The evolu-

tion of the term 2�2��S̃�S̃ijS̃ij� at three different filter scales is
presented in Fig. 9, again using a 2D surrogate evaluation based
on the PIV data, which involves three terms, as in Eq. �23�. The

Fig. 6 Spatial distribution of rms velocity fluctuations of the
initial turbulence „t=0.210 s… „a… u1 and „b… u2
dissipation based Smagorinsky model coefficient
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�CS
��2 =

− ��ijS̃ij�

2�2��S̃�S̃ijS̃ij�
�25�

is plotted in Fig. 10 for three different filter scales. The lines in
this figure �and subsequently in Figs. 11–17� represent running
averages using a five-point filter with the following weights:
�0:075; 0:175; 0:5; 0:175; 0:075�, centered around each point.
This process reduces the fluctuations in the original data, which is
shown as symbols. Another line representing the static Smagorin-
sky model coefficient, CS=0.16, is also shown. The main trends of
the dissipation based coefficient during the flow evolution are as
follows: after an approximately scale-invariant behavior before
straining, in which �CS

��2 is in a range between 0.026 and 0.032,
there is a sudden drop of �CS

��2 when the straining starts. The

cause is that 2�2��S̃�S̃ijS̃ij� responds slightly more quickly to the
applied strain than the SGS dissipation, which contains the SGS
stress. After the initial decrease, the coefficients increase above
the equilibrium value, with the deviation increasing with �. The
destraining period is similar, with a decrease in coefficient fol-
lowed by an increase. The relaxation period is also characterized

Fig. 7 Kinetic energy spectra of the initial equilibrium turbu-
lence „t=0.210 s…
Fig. 8 Evolution of mean SGS dissipation
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by a scale-dependent coefficient. The denominator decreases
faster than the real dissipation since the former depends signifi-
cantly on the applied strain, especially at large scales.

5.3 Dynamic Smagorinsky Model Coefficient. The Smago-
rinsky model coefficients determined by the standard dynamic
model �Eq. �9�, 
=2� at two different scales are shown in Fig. 11.
For the purpose of comparison, the corresponding dissipation
based Smagorinsky model coefficients at the same scale are also
plotted. For �=25�0, the dynamic Smagorinsky model signifi-
cantly overpredicts the coefficient during straining. Overpredic-
tion during straining is also observed at �=50�0. These results
imply that the dynamic Smagorinsky model overpredicts the SGS
dissipation. In fact, for �=25�0, using the static coefficient would
yield more accurate results than the dynamic Smagorinsky model.
For �=50�0, the dynamic Smagorinsky model overestimates the
coefficient during straining by as much as the static Smagorinsky
model underpredicts it.

As summarized in Sec. 1, prior work has shown that when the

Fig. 9 Evolution of the term T�=2�2
Š�S̃�S̃ijS̃ij‹ at different

scales

Fig. 10 Evolution of the dissipation based Smagorinsky
model coefficients „CS

�
…

2 at three different filter scales.
Squares+dash line: �=25�0, triangles+dashdot line: �=50�0,

�
diamonds+dashdotdot line: �=100�0, and solid line: CS =0.16.
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Smagorinsky model coefficient is scale dependent, the standard
dynamic Smagorinsky model yields the coefficient appropriate for
the test-filter scale �
��. To test this trend in the present data, Fig.
12 compares the Smagorinsky coefficient determined by the dy-
namic approach at scale � with the dissipation based Smagorinsky
coefficient at scale 2�. As is evident, the two curves agree with
each other very well during straining and destraining periods.
However, the agreement does not persisit for the entire time. In
particular, there are differences during the relaxation period, for
both �=25�0 and �=50�0.

5.4 Scale-Dependent Dynamic Smagorinsky Model
Coefficient. The scale-dependent dynamic Smagorinsky model
requires filtering at scale 4�, and since 100�0 is the largest filter
size that we can apply to our data due to its finite extent, only the
�=25�0 case is amenable to analysis. Figure 13 presents the evo-
lution of model coefficient for the scale-dependent dynamic Sma-
gorinsky model computed according to Eq. �14�. The evolutions
of the dynamic and dissipation based Smagorinsky coefficients are
also plotted for comparison. Right after the peak straining, i.e.,
between t=1.2 s and t=1.4 s the scale-dependent dynamic Sma-
gorinsky model does give a slightly better estimation of the model
coefficient than the standard �scale-invariant� dynamic Smagorin-
sky model, in the sense that coefficient obtained by the scale-
dependent dynamic approach is lower �i.e., closer to the dissipa-
tion based coefficient� than the value obtained by the standard
dynamic approach. Nevertheless, during the initial stages of
straining up to the peak value, during the relaxation period, and
during destraining, the prediction is worse than that of the stan-
dard dynamic Smagorinsky model. To understand the origin of

Fig. 11 Evolution of standard dynamic model coefficients
„squares and dash lines… and comparison with the dissipation
based Smagorinsky model coefficients „triangles and dashdot
lines, given in Fig. 12…. „a… �=25�0 and „b… �=50�0.
this unexpected behavior, note that according to Eq. �14�, the
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scale-dependent dynamic Smagorinsky coefficients involves the
ratio of two dynamic Smagorinsky model coefficients, which are
very sensitive to small phase shifts in their time response to the
applied straining. To examine the phase difference, Fig. 14 com-
pares the evolution of the two dynamic Smagorinsky coefficients,
CS

�,DM and CS
2�,DM. As is evident, during the rise of straining and

destraining there is a small temporal phase mismatch between the

Fig. 12 Evolution of standard dynamic model coefficient at
scale � „squares and dash lines… compared to the evolution of
the dissipation-based Smagorinsky model coefficient at scale
2� „triangles and dashdot lines…. „a… �=25�0 and „b… �=50�0.

Fig. 13 Evolution of scale-dependent dynamic model coeffi-
cient CS

�,SDDM
„squares+dash line… in comparison to the

dissipation-based Smagorinsky model coefficient CS
�

„dotted
line…, and the standard dynamic model coefficient CS

�,DM
„triangles+dashdot line…. �=25�0 for all three curves.
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two curves. The coefficient at the larger scale rises slightly later,
and as a result it is actually smaller than the coefficient at the
smaller scale, even though the coefficient at the larger scale
reaches larger values later on. Such a small mismatch causes the
significant overprediction of model coefficient in Fig. 13.

In summary, for �=25�0 and for this particular flow, the dy-
namic and scale-dependent dynamic Smagorinsky models overre-
act to the applied distortion, and predict coefficients that would
perform worse than the static Smagorinsky model.

5.5 Model Coefficients in Nonlinear Mixed Model. Figure
15 shows the dissipation based model coefficient of the nonlinear
mixed model, CS,NL

� , determined by balancing the modeled and
real SGS dissipation, and by the standard dynamic approach at
two scales. They show limited improvement compared to the stan-
dard dynamic Smagorinsky model results �Fig. 11�. The coeffi-
cients of scale-dependent dynamic mixed model are given in Fig.
16. The scale-dependent dynamic approach again has a worse per-
formance, which can again be attributed to a response time mis-
match of the SGS stresses calculated at different filter scales.

5.6 Uncertainty Estimates of the Measured Model
Coefficients. The uncertainty associated with the aforementioned
model coefficients is difficult to evaluate formally using error
propagation concepts due to the very complicated processes in-
volving filtering, high-order moments, and differentiation, e.g.,
Eqs. �25�, �9�, and �14�. Instead, we adopt a Monte Carlo approach
to estimate the uncertainty and error propagation. Every vector of
instantaneous measurement is contaminated by a synthetically
generated noise, which follows a Gaussian distribution with zero
mean and a standard deviation simulating the 0.2 pixel uncertainty
of the PIV measurement. In other words, we add noise with de-
viation 0.0044 m/s to each velocity component. Using ten real-
izations of such randomly contaminated data, we observe relative
differences of at most 0.3% in the computed Smagorinsky coeffi-
cients. For the standard and scale-dependent dynamic Smagorin-
sky models of the same test cases, the differences in the coeffi-
cients were even lower, about 0.08%.

6 SGS Momentum Flux
In the previous section, the effectiveness of three typical SGS

models is evaluated by analyzing their ability to reproduce the
correct SGS dissipation. Besides SGS dissipation, other turbu-
lence statistics related to SGS physics are also of interest. The
mean SGS stress ��ij�, or SGS momentum flux, plays a significant
role in the mean momentum transport, as reflected in the ensemble

Fig. 14 Evolution of the coefficient CS
�,DM

„squares+dash line…
and CS

2�,DM
„triangles+dashdot line… for �=25�0, which are used

in the scale-dependent dynamic approach, Eq. „13…
average of the filtered momentum equation �Eq. �2��, when the
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filter scale is not negligibly small compared to the size of the
large-scale eddies. It has often been stated that the Smagorinsky
models cannot reproduce both SGS dissipation and the SGS stress
magnitudes simultaneously �see Refs. �1,15��. However, recently
Li and Meneveau �38� have shown theoretically, from a model
spectrum for strained turbulence, that as far as the mean SGS

Fig. 15 Evolution of standard dynamic coefficient „CS,NL
�,DM

…

2 of
Eq. „15… „triangles and dashdot lines… in the mixed model in
comparison with the dissipation-based model coefficient ob-
tained by balancing SGS dissipation „squares and dash lines….
„a… �=25�0 and „b… �=50�0.

Fig. 16 Evolution of scale-dependent dynamic nonlinear
model coefficient „CS,NL

�,SDDM
…

2 of Eq. „16… „triangles and dashdot
lines… in comparison with the dissipation-based nonlinear

model coefficients „squares and dash lines….
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stress, or mean momentum flux, is concerned, the predictions
from the Smagorinsky model should be fairly accurate.

We evaluate the mean SGS stress from the data. To focus upon
the anisotropy, we compute a 2-D surrogate of the anisotropy
tensor,

bij = ��ij� − 1
2 ��kk��ij . �26�

The same quantity is computed using the static Smagorinsky
model with CS

�=0.16. The results are presented at two filter scales
in Figs. 17�a� and 17�b�. It is evident that the anisotropy tensor
increases with � during straining and destraining. At both scales,
during straining and destraining, the Smagorinsky model predic-
tions are of the same order of magnitude as the real measured
values, in rough agreement with the analysis of Li and Meneveau
�38�, which states that in the presence of weak straining ��ij�
���ij

mod�. In more detail, however, the Smagorinsky model under-
predicts the real SGS mean stress by about 30% for �=25�0. The
result at �=100�0 shows a different behavior. The peak is pre-
dicted well during straining and overpredicted during destraining,
and the mean stress predicted by the Smagorinsky model shows a
premature response compared with the real SGS momentum flux.
This behavior is also consistent with the general observation that
the SGS stress response is delayed with respect to the applied
straining.

7 Conclusions
An experimental a priori study of various eddy viscosity SGS

models is performed on turbulence subjected to a sequence of

Fig. 17 Evolution of the modeled and dissipation-based mean
SGS stress anisotropy tensor terms „b11 and b22…. „a… �=25�0
and „b… �=100�0. Open squares+dash lines: b11, solid
squares+dotted lines: b11

mod, open triangles+dash lines: b22,
and solid triangles+dotted lines: b22

mod.
straining and destraining. The experiments subject initially homo-
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geneous isotropic turbulence to 2D irrotational straining, followed
by relaxation, and then by destraining. The turbulence is generated
using four active grids and a computer controlled piston creating a
stagnation point flow generates the straining. Planar PIV is used
for measuring the velocity. The data base, consisting of 1000 vec-
tor maps at every phase of the cycle, is used for statistical analy-
sis.

A priori tests are performed on three SGS models: Smagorin-
sky, standard dynamic, and scale-dependent Smagorinsky models,
as well as on the nonlinear mixed models. The dissipation based
Smagorinsky model coefficient is obtained by matching predicted
SGS dissipation with the real one. It shows strong scale depen-
dence during the straining-relaxation-destraining, while the turbu-
lence is in a strong anisotropic state. The model coefficients ob-
tained from both the standard and the scale-dependent dynamic
approaches overpredict the dissipation based Smagorinsky coeffi-
cient. The model coefficient at scale � in the standard dynamic
model is close to the dissipation based Smagorinsky coefficient at
scale 2�. Still, the scale-dependent dynamic model does not yield
improvements, and in some cases even worsens the predictions,
due to subtle phase lags between the responses at different scales.
The dynamic and scale-dependent dynamic nonlinear mixed mod-
els do not show an improvement, at least as far as evolution of the
coefficients is concerned. We conclude that the mismatch between
stress and strain-rate tensor responses to the applied straining
causes, in the present experiment, difficulties for turbulence mod-
eling based on a purely algebraic SGS closure.

It should be pointed out that the present measurements of coef-
ficients and comparisons are performed by neglecting the effects
of the third velocity component. Three-dimensional measurements
are needed to quantify the effects of this approximation, although
it appears unlikely that it could affect the observed mismatch be-
tween scales significantly.

The prediction of mean SGS momentum flux from the Smago-
rinsky model is correct in terms of order of magnitude, which is
surprising, but in agreement with a recent theoretical result of Li
and Meneveau �24�. However, the delayed response of the SGS
stress compared to the strain rate also affects the agreement of
mean stresses. The present results provide support for an approach
of involving a solution to additional transport equation for the
SGS kinetic energy, although such an approach requires specifi-
cation of three model parameters �see Ref. �39��.
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