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SUMMARY

This paper describes a general procedure for the solution of problems in
tructural dynamics. The method is capable of application to structures of
y degree of complication, with any relationship between force and dis-
lacement ranging from linear elastic behavior through various degrees of
nelastic behavior or plastic response, up to failure. Any type of dynamic
ading such as that due to shock or impact, vibration, earthquake motion, or
blast from a nuclear weapon, can be considered.

A method of numerical integration is described which for simpler cages
‘and for a relatively small number of degrees of freedom is suitable for use
with desk calculators. However the method is developed particularly for use
with high-speed digital computers. Consideration is given to various types of
damping, and to nonlinear behavior. A description is given of a method of
treatment of elasto-plastic members in flexure, including the development of
yield hinges. By suitable means of application of the loading, and with the
introduction of enough damping to prevent indefinite oscillatory motion, the
procedure can be used to determine the “static” behavior of a structure as it
progresses through various degrees of inelastic behavior up to collapse.

Although the general procedure described is suitable for use in the study’
of the response of structures to earthquake motions, a modified procedure is
described for handling the problem of a structure having time-dependent
boundary conditions, which permits the direct calculation of displacements in
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STRUCTURAL DYNAMICS 69
However, the structure may be an integral one, either a solid body or an as-
semblage of plates and other elements, in which the nodes may only define .
points on the structure for convenience in the placement of loads and masses.
It is necessary that the nodes be so chosen that the resistance of the structure.
to displacement of the nodes can be determinable, and that, if desired, the
influence of inelastic behavior or plastic behavior can be taken into account.
The structure is considered to be supported at its foundations at nodes also.
Although the method of analysis can take into account a situation in which
the masses change with time or with displacement, the procedure is presented
herein for masses which remain constant. No major change in concept or in
procedure is required to deal with the case of a variable mass-time relation-

ship.
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the structure relative to the ground displacement, # i in i
preting earthquake phenomena. ? » 10T convenience in inter-
The paper discusses the problem of structures

¢ C with curved members and
de§cr1bes in detail a method of dealing with arched or curved structures in
which the members are not permitted to change in length. The treatment of
such inextensible structures presents some difficulties in the general
treatment but methods are available for modifying the general procedure by

dynamic response of structures of various de rees of co i i

arches, domgs, stiffened rings, framed structgures, and sxix;g:)?:l;i:?:glgsnl:gs

Zystems, subjected. to various types of loading including nuclear bomb blast,

i;tlri:hquake foundation motions, random shock disturbances, wave action, an::l
pact and dynamic effects from moving vehicles. However, exam les ¢ f

the;(i:‘1 appli(l:{ations are not given, ’ ? °
_+2ework on which this Paper is based was su

Lllinois by the Mechanics Branch of the Office of %?v?le (;:;:::cgniversity o :

Method of Analysis

Step-by-Step Integration Procedure

Consider the plane structure shown in Fig. 1 which is made up of weight-
less but deformable elements supporting lumped masses. The deformable ele-
ments of the structure in this particular instance are shown as either beams

or bars which act under axial loading. However, much more complex structur-
al types can be considered. All the elements shown are deformable and conse-

INTRODUCTION
zontal direction. The points of support, such as at A and B, may also move

both vertically and horizontally. In particular, these points may move in such
a way that deformations and stresses are introduced in the structure by rela-
ive motion of the points of support on the foundation. Any of the masses may
have acting on it a force in any direction, or component forces in the hori~
zontal and vertical directions. :
The mass at M in Fig. 1 is shown removed from the structure in Fig. 2. In
Fig. 2a the point of attachment of the mass is indicated, and the positive di-
rections of the resisting force exerted by the structure, R, and the dis- Co
lacement of the structure, x, are indicated. In Fig. 2b the mass is shown as
free body with the positive directions of P, R, and x indicated. Although thi;
. mass is shown as being acted on by only a horizontal force, in general it could
. have a vertical component of force acting on it also in which case it would
have a component of motion and a component of resistance in the vertical .di.
ection. The sign convention that is chosen is determined by the arbitrary
hoice of the positive direction of the force P. The positive directions of x .
and of the resisting force R acting on the structure are taken as the same :
or P, and the positive direction for the resisting force R acting on the f :
body mass M is opposite in sense to that of the resisting force R acting on.th
tructure.
The positive directions of the acceleration a, the velocity v, and the dis
lacement x are all the same. In general we will have for each possible com
. ponent of direction of motion of the mass a displacement, velocity, accel
_ation, resisting force, and applied force. The resisting forces R at any 4
f time are defined in such a way as to be that system of forces which a;
» quired to pull the weightless deformable structure into a deflection con
ation defined by the instantaneous values of the displacement x at thy

nstant of time.

o &n;s; g;g:ralTﬁrigciI;Ies and methods for dynamic analysis are considered
. € basic method of analysis is a general st
of integration of the equations of moti 16 applicable fer ary oD Method
teg on, and is applicable to any struct ‘
consisting of a group or series of concent sses stppe '
] rated or “lumped” m
on a deformable structure For conveni ¥ bo conmraares
. ence, the structure b i "
to be a framework with joints or #n ‘ .7 be appting cred
‘ odes” at which forces b i
at which magses may be ini reus of foeod, OF
. : 3 placed. Any finite number of degrees of f
be considered, but it ig essential in the procedure that thi forces rle‘:;iciig;nd Itrcl)a

achieve in the calculations.

The structure may be made u i i
T ¢ P of individual members co
at joints which would then be considered as the nodes of thensr;;(t:‘t(:eti:ggeﬂler
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The sign convention and notation are chosen so as to make it apparent that
the masses M modify or filter the forces P and transmit them to the structure
in modified form as R. If the forces P are applied very slowly there is only

a small acceleration and R is approximately equal to P. If the forces are ap-
plied quickly the difference between R and P can be very large. All the
stresses in the structure are defined by the system of forces R.. The
structure can be analyzed statically for these forces. In general the forces R
may continue to exist even after the forces P have dropped to zero. Similar-
¥, R may be defined by the foundation displacements as well as by the de-
flections of the masses, even when no force P acts on the masses. :
In general all of the quantities so far defined are functions both of position
n the structure and of time. If we consider a time t; and designate the values
of all of the various parameters including displacements and forces at that A
ime with a subscript n, such as Ry, our problem becomes that of defining the
displacements xp4] and forces Rp41 as well as the velocities vyy1 and ac-
elerations ap,q at a time tp,1, which differs from t, by the time interval h.
In the argument which follows we shall deal with a single mass in a single
direction, but we might just as well deal with the whole set of masses and
their possible displacements and designate the various directions with ad~- -
ditional subscripts m such as in R, ,,,. However in the discussion which
ollows we shall drop the second subscript for convenience, remembering that
for each of the degrees of freedom for each mass we have a set of equations
similar to the general set presented here. The derivation which immediately
ollows is described in terms of a situation where damping does not exist, for -
onvenience. Later the procedure will be revised to include damping forces..
In general at any time, (consequently omit the subscript n), the acceleration
8 given by the relation: :

a=(P-RI/M (1)

It is assumed that at time t, we know the values of the displacement and . -
the velocity as well as the acceleration, but we know nothing about the situ-
tion at time tp41. Although there are methods of numerical integration w
ermit us to make estimates, at least for small time intervals, of the dig-
lacements and velocities at the later time knowing only the situation at th
arlier time, these methods which do not take account of the change in res
ng force during the time interval are not as accurate as the method descr
erein. o
The method presented here was derived by the writer and first presented
n Ref, 1. The relations which follow are given in terms of the acceleration
t the end of the interval, ap41, although this is not in general known. A dis-~~
ussion of how the procedure can be handled in spite of thig fact will be given
subsequently. Two parameters, ¥ and 3, are introduced to indicate how much i
f the acceleration at the end of the interval enters into the relations for ve-.
ocity and displacement at the end of the interval. The relations which are
dopted are given below:

Varl =V t (1= 9) ah+y a

2

- 1 2
xn+]—xn+vnh+(E-B) anh +Ban+h

1

t will be shown subsequently that unless the quantity ¥ is taken as 1/ 2
| 18 a spurious damping introduced, proportional to the quantity
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- Now for convergence in a sequence of calculations the quantity p must be
_humerically less than 1. The critical value, for convergence, of the time
_interval h¢ can then be computed from Eq. (9) by setting the right-hand side
. numerically equal to 1, with the result:

n=-l_#1_' , (10)
T 2n B

ritical values of the convergence limit as a function of 8 are contained in
“Table 1,

For practical purposes the time interval would ordinarily be taken as
smaller than that which corresponds to pure oscillation, or p = -1, in order to
insure rapid enough convergence. I p = -0.32, the errors will be reduced to
one per cent of their original value in four steps or four cycles of iteration.

It would appear that, since for small values of 8 the convergence is most
rapid, the lower values of 8 would be best to use. However other consider-
ations affect the choice. The most important of these is the matter of stability
which is discussed in the next section.

For a complex system, it can be shown that the rate of convergence is de-
pendent upon the frequency or the period of the highest mode of the system. -
Consequently, the time interval used must be related to the shortest period of
.vibration, or the period in the highest mode of vibration, for the lumped mass
system, Since stability also depends on a similar criterion, it appears that
‘the greater the number of masses into which a system is broken down the
shorter will be the permissible time interval for numerical calculation of the
dynamic response of the system.
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y - 1/2

It can be seen that if ¥ is taken as zero a negative damping results, which will :
involve a self-excited vibration arising solely from the numerical procedure,
Similarly, if ¥ is greater than 1/2 a positive damping is introduced which will
reduce the magnitude of the response even without real damping in the
problem. Taking account of the fact that ¥ must equal 1/2, we can rewrite .
Eq. (2) as follows: ' :

Vel =V, F anh/Z +a,

/2 @

Application of the General Procedure
In general unless 8 is 0 we may proceed with our calculation as follows:

(1) Assume values of the acceleration of each mass at the end of the inter-
val, :

(2) Compute the velocity and the displacement of each mass at the end of
the interval from Egs. (4) and (3), respectively. (Unless damping is

", Ppresent it is not necessary to compute the velocity at the end of the
Ainterval until step (5) is completed.)

(3) For the computed displacements at the end of the interval compute the
resisting forces R which are required to hold the structural framework
in the deflected configuration.

(4) From Eq. (1) and the applied loads and resisting forces at the end of
the interval recompute the acceleration at the end of the interval.

(5) Compare the derived acceleration with the assumed acceleration at the
end of the interval, If these are the same the calculation is completed,
If these are different, repeat the calculation with a different value of as-
sumed acceleration. It will usually be best to use the derived value ag
the new acceleration for the end of the interval.,

Stability and Errors in Numerical Computation

In order to study the stability of the numerical integration procedure, let
us consider the special case of a simple system, a mass with one-degree-of-
freedom without external force acting on it. For such a condition, and for
some initial displacement and velocity, the motion of the system should be a
pure oscillation, with a circular frequency of vibration as given by the re~
lation

The rate of convergence of the process toward equality of the derived and
assumed accelerations is a function of the time interval h. For a single-
degree-of~freedom system having a circular frequency of vibration w, the
ratio of the error in derived acceleration to the error in assumed acceler-
ation, (where the error is the difference between a value and the “correct”
value), is given by the relation:

error in derived acceleration

of = & (11)

.in which K is the spring constant and M the mass. The relationship between
‘the acceleration and the displacement is given by: ‘

- = 2,2
error in assumed acceleration pP=-Puh (5) 2 (12)
a = =w X %
Eq It(;)s convenient to define the quantity wh by the symbol § according to With the above relations, and with the use of the symbol &2 as defined by
- 02 , 2
- 2 9
h =8 Q7 = eme—— 13)
- (6) | . (13)
With this notation Eq. (5) can be rewritten as: ’ e can derive a difference equation relating the values of three successive
0 = - ﬁ92 (7 isplacements of the system. The equation in general terms is:
. X - 2 : ;
Since the circular frequency w is related to the period T by the relation et T (2 ) Xpap + (7 - %) o g = xqop) =0 (14)
w=2 _ (8) . From the general relations between finite differences and derivatives, it
T A

an be seen that the last term on the left of this equation corresponds to a
ctor times the velocity of the system, and consequently can be interpreted
8 a viscous damping term even though the system was defined as having

Eq. (7) can be rewritten as follows:
2

o = - b © |
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no damping. This spurious last term can be eliminated by the choice of
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7Y =1/2. In this case the general difference equation can be rewritten as: TABLE 1
xn“ -2 - az) x o+ x -0 (15) CONVERGENCE AND STABILITY LIMITS
n n=1 ;
The general solution of the finite difference equation, Eq. (15), can be
written in the case where the quantity ¢¢2 is less than 4. In this case, define Item Values of 8
a quantity ¢ by the relation: 0 112 178 176 "

a=2sin ¢/2 (16

The solution of Eq. (15) can then be written in the form Convergence Limit, h/T inf.  0.551 0.450 0.389 0.318

X =Acos Ot/ +B sing e/ 1y ; Stability Limit, h/T 0.318  0.389 0.450 0.55]  inf.

This can also be stated in terms of a pseudo period Tg, and an initial dis-
‘placement x, and a parameter B which is of the same form as a velocity. Th
result is: '

X = x_ cos 2111:/TS + B sin ZJU:/TS (18)

The stability limit criterion, corresponding to a value of 2 = 4, can be ex-
ressed in terms of the time interval also. The relation between o and 9 in
Eq. (13) can be expressed as:

2
This may be compared with the exact solution, X, which is given by Eq. (19): 0% - ; £ (24)
' . - B :
v
X = Xy €08 20t/T + =2 sin xe/7 | Irom which the stability limit hg can be written as:
It can be seen that the approximate solution, Eq. (18), is similar to the 2xh .2 (25)
exact solution and gives precisely the same response for an initial dis- T NT - g
placement, but gives a different period from that of the actual system. The . vhich. can be simplified to the form:
value of the pseudo period Tg is given by the relation: ; ‘ h , :
T. = 2nh/g (20) . (26)
s : ‘ T h - AB
The relation between the pseudo period Tg and the true period T is: y ues of the stability limit are shown in Table 1 as a function of 8.
T/T =6/ From Table 1, it can be seen that for values of B greater than 1/8, if the

ime interval is chosen for convergence the numerical procedure will always
 be stable. However, for values of B less than 1/8, convergence does not in-
ire stability. Lack of stability gives no warning of difficulty, but introduces
spurious increasing oscillation into a system which may be in oscillation
yway. Therefore an inexperienced computer may not recognize the diffi-
ty. Moreover, an instability in the higher modes only may not even be ap-
ent to an experienced computer. Consequently it appears that unless other
teps are taken to insure stability, one should limit the time interval by the
bility criterion rather than by the convergence criterion.

The following approximate formula may be used for a simpler definition of th
relative value of the pseudo and the real period of vibration:

T/T =~ 1 - (1 -128) 62724 - (17 - 1208 + 72082) o"/5760 - . .

The response of the system to an initial velocity is given by the second
term in Eq. (18), The relationship between this response and the true re-
sponse to an initial velocity, as shown by the second term in Eqg. (19), is indi
cated in Eq. (23):

B -1/2
v/w=[l+(13-}’-)92] s~ lhzn

Tpretation of Parameter 8

A method very much similar to that described here for 8 = 0 has been dis-
sed in Ref. 2. A method corresponding in many respects to that for

1/12 has been given in Ref, 3. However, the general treatment previously
sented is different from that given here, particularly in the treatment of
starting of the motion. A method similar to that for 8 =1/4 was first
sented by S. Timoshenko in Ref. 4. However, he did not carry the pro-

re to the point of generalizing it for other than simple one-degree-~of-
dom systems, nor did he develop the conditions on stability and .
ergence. :

o

@3

If 3 is exactly equal to 1/ 4, the maximum velocity response is correct but if
it is different from 1/4 there is an incorrect maximum velocity response.

Values of the errors in the period and of the errors in maximum respons
to an initial velocity are given in Tables 2a and b for several values of 8
and for a range in values of h/T. There is also given in Table 2c the rate of
convergence for the corresponding tabular entries. For a gsystem with a
number of degrees of freedom, the limits are expressed in terms of the
shortest period of the system.

When .2 > 4, the solution of Eq. (15) oscillates without bounds, and the
“calculation does not yield results even in remote agreement with the exact
solution. The solution is said to be “unstable”,




76 _ July, 1959 ' EM M. 3 STRUCTURAL DYNAMICS ‘ m

TABLE 2
EFFECTS OF LENGTH OF INTERVAL ON ERRORS DUE TO NUMERICAL PROCEDURE \ ] : a.
c l n+l
O
Values of B b=t Y el oY S =t P PSRt
h/T 0 1712 1/8 1/6 174 b
2 a JR——
* (a) Relative Errors in Period 8 n Le =I/8
0.05 ~0.00L4 ~0.0001} 0.002 0.00k4 0.008 ©
0.10 -0.017 -0.0003 0.008 0.017 0.033 ]
0.20 -0.076 -0.006 0.028 0.059 0.121
0.25 -0.130 -0.015 0.038 0.087 0.179 1." h Ifn+l lhme
0.318 ~0.363 -0.045 0.047 0.129 0.273 -l
0.389 * -0.220 0.035 0.170 0.222 .
0.450 % *® -0.100 0.195 0.480 . .
Fig. 3. Consistent Variations of Acceleration
(b) Relative Errors in Maximum Response to an Initial Velocity in a Time Interval
0.05 0.012 0.008 0.006 0.004 0
0.10 0.052 0.034 0.025 0.017 0 .
0.20- 0.209 0.166 0.116 0.073 0 M,=0
S 0.25 - 0.61k 0.306 0.202 0.122 0 Sy P R R| ,—-\l P
0.318 inf. 0.732 0.4k 0.225 0 §—|: i — 1 - — 1
0.389 # inf. 1.000 0.414 0 } : S, ./
0.450 * % ‘inf. 0.732 0 ng Pl-sI -
(c) Rate of Convergence 823 qu PZ R2 Rz / \Ma PZ
0.05 0 0.008 0.012 0.016 0.025
0.10 0 0.033 0.049 0.066 0.099 [~ Sea\_/
0.20 ] 0.132 0.197 0.263 0.395
0.25 0 0.206 0.308 0.411 0.617 R M«=0
Paemh N
0.318 0 0.333 0.500 0.667 1.000 P3 R3 3/ N3 Ps
0.389 %* 0.500 0.750 1.000 1.500 e - \ J
0.k50 * % 1.000 1.333 2.000 Soz .-
Values indicated are beyond limit for stability. ’
» y Ss Mg P Ra R4 Mg Pg
) | | Be
It is interesting to note the correspondence between 3 and the variation i - S
acceleration during the time interval. Although a physical relationship is no 4 )
possible for all values, for at least four values of B it is possible to define
consistent variations of acceleration in the time interval. Three of these ar i
shown in Fig. 3. It appears that a choice of 8 = 1/6 corresponds to a linear b

variation of acceleration in the time interval; a choice of 8 = 1/4 corresponds
to a uniform value of acceleration during the time interval equal to the mean !
of the initial and final values of acceleration; and a value of 8 = 1/8 corre-
sponds to a step function with a uniform value equal to the initial value for th
first half of the time interval and a uniform value equal to the final value for
the second half of the time interval.

Fig. 4. Structure with Absolute and Relative
Damping L
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(3) Now apply the net resistance, corresponding to the difference between
the applied force and the damping force, to the structure and determine
the displacements of the structure at all points when the prescribed dis-
placements are put in at the points where masses exist.

{4) Compute the acceleration at the end of the interval that is required to
give the displacement determined in the preceding step. ‘

(5) Compare the acceleration so computed with the one initially assumed
and repeat if necessary. -

This procedure is considerably more complex than that which is used when
masses exist at all nodes. Consequently, it may be better to put in an actual
small mass than to make the mass zero. However, if damping forces are not
acting at points where there are zero masses, then it is relatively simple to
handie the problem directly.
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It can also be shown that 8 = 0 corresponds to double pulses of acceleration
at the beginning and end of the time interval with each double pulse consisting
of a part equal to 1/2 of the acceleration times the time interval, one occur-
ring just before the end of the preceding interval and the other just after the
beginning of the next interval. '

Treatmént of Damping

Damping of various kinds may exist in a structural system. Damping
forces may be proportional to velocity, or to some power of the velocity, or
they may be of a frictional type, or in some cases they may be even pro-
portional to displacement or relative displacement. Damping may be “abso-
lute”, and depend on the particular motion or velocity of the mass with re-
spect to ground, or “relative” and depend on the motion or velocity of the mass
with respect to some other point on the structure. A structure with several
points having damping forces is shown in Fig. 4. If masses M; and M3 are
different from zero, then the damping forces can be applied to the masses, as
indicated on the right-hand side of the figure, and the calculation is made in
the following way: : :

‘After the acceleration at the end of the interval is assumed, the velocity at .
the end of the interval and the displacement are computed from Egs. (4) and
(3). The complete motion of the system is now defined at the end of the inter :
val, and regardless of the kind of damping, the damping force is determinable, :
With the damping force placed on the mass in the proper direction, the ac-
celeration at the end of the interval is now computed taking into account the
damping force as well as the applied force and the resisting force. If this is
different from the assumed acceleration the calculation is repeated.

As in the case with zero damping, the resisting forces acting on the
structure are computed from the displacement of the structure at the end of
the interval. The damping forces acting on the masses are computed from ;
ge displacements or velocities of the masses in accordance with the damping _

w used.

It can be seen that in the case of damping a value of B = 0 presents no real
advantages over any other choice of 8 because of the fact that the acceleratiol
still has to be assumed at the end of the interval in order to compute the ve-
locity or other parameters which determine the damping forces at the end of
the interval.

For those cases where there are no masses at points where damping force:
or external forces are applied, the situation is more compléx. Fig. 4 illus-
trates this by applying forces to the two zero masses, My and M3. It is neces
sary in these cases that the resisting force be equal to the algebraic sum of
the external load and the damping force, and this resisting force is then ap-
plied to the structure and except for its dependence on the damping force re-
mains at this particular value, regardless of the displacements. However, it
is now necessary to compute the accelerations and velocities of the point on
the structure in order to find the damping force. This can be done in the
following way for the points where the mass is Zero:

(1) Assume a value of acceleration of the mass point even though the mass

¢ Recommended Time Interval and Choice of 8

In any set of calculations in which an error in any one step makes all

i subsequent steps incorrect, it is desirable to have a self checking procedure.

L Consequently the procedure described herein works best where it is used with
a converging system of approximations because under these conditions the
calculations in any one time interval are repeated several times with slightly
different values of the numbers involved. A close agreement between the re-
sults of successive calculations is in general a sufficient check on the accu-

| racy of the numerical work when the work is done on a desk calculator. (Such
a check may not be necessary on a high-speed computer.) It can be seen,
therefore, that a value of 8 = 0, where there is no damping, is not necessarily
a good choice because a separate check will be required in these cases to in-
sure accuracy.

Studies of the effect of damping and of negative spring constants such as
those corresponding to a decrease in load with increase in displacement, indi-
cate that better results are obtained with values of 8 in the range from 1/6

| to 1/4 than in the range below 1/8. In general, with a time interval of the -
order of 1/5 to 1/6 of the shortest natural period of vibration, the rate of con-
vergence will be rapid enough for all practical purposes, and the errors will
be small enough to be tolerable for every combination of damping or negative
spring constant that appears to be practicable.

As a structure goes into the inelastic range, in general the periods of vi-
bration all become longer and the shortest period becomes longer as well.
For purely plastic resistance at the limit condition of an elasto-plastic
structure, the period is infinitely long. Consequently the time interval can be-
come considerably longer as plastic action develops in the structure. It is

¢ generally desirable to increase the time interval in accordance with the change
in the structural rigidity as the structure becomes inelastic. However, it is

| not always convenient to compute the shortest period of vibration fora
structure which goes partly into the plastic range. Consequently it is desir-
able to establish the conditions which govern the choice of time interval on
some measurable behavior of the structure which is a natural function of the
method of calculation. Since in general it is not practicable to consider

is zero. ) . modal behavior for structures which are not elastic, it is not desirable nor
(2) Compute the velocity and displacement of the point and determine the - convenient to separate the individual modes of action of the structure. _
damping force. With the use of a value of 8 greater than 1/8, the more convergence of the

sequence of calculations is sufficient to insure stability and the rate of
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: joi i Either moment distri-
2) Relax the joints by permitting them to rotate. [
@ bution or some other technique of calculation can be used to determine

the final moments in all the. members.

: The shears and axial forces can now be computed in all the members,tind
one can compute the horizontal and vertical components of the forces on the

pins which hold the structure in the displaced conf.iguration. These forces,

reversed in direction, are the resisting forces acting on the structu‘re.

If the structure is not elastic, it is possible to make the calculation for any
known load-deformation or axial-displacement deformation or curvature-
moment relationship. The technique of the calculations is unchanged. How;
éver, for nonlinear behavior it is essential that one take account properly o
 -the direction of loading in a member or element so as to be sure thg,t the ele-
¢ ment is continuing to deform in the same direction vt(ith the appropriate re-
duced stiffness, and to determine when it is recovering or unloa.ding with th:z‘

i appropriate increased stiffness. A test of the direction of relative deformation
: i e made to determine this. )
canhf Zagtlrjl’u}:ature such as shown in Fig. 5, where masses might be c_onsniered
placed at all the joints of the structure, it is usually neither convenient nor
desirable to consider the most general situation in which the masses can be
displaced horizontally as well as vertically. The reason ‘for this is that the
period of vibration of the masses in the horizontal d1re.ct101} is very short
compared with the period of vibration in the vertical direction. If one were
to solve the problem with the general procedure, one would have Fo use an ex-
tremely short time interval which would make the calculati‘on tedious.
In such cases it is usually desirable to consider a restricted type of d‘efor-
mation of the structure to reduce the number of degrees of freedom. Tl_us‘
can be done by connecting the masses to the structure by means of vertical
links as shown in Fig. 5, and specifying that only vertical forces can act on the
masgses which in turn are considered to move only vertically. The links are
considered to remain vertical by making them long enough so that the hori-
zontal motions of the truss joints do not introduce an angle into the link be-
tween the truss joint and the mass.
In the structure shown in Fig. 5 the number of degrees of freedom with a
mass at each node would be 20. However for the system shown only 5 degrees
of freedom are needed. Both the difficulty in the calculation and the number
of repetitions of calculations for a given duration of motion will be greatly 19—
creased if the 20 degree-of-freedom structure is used. However, some diffi-
culty in computing the resistance functions in Fig. 5 is encountered because
| it is not possible directly to determine the changes in length of all the
members from only the vertical component of displacement of the lower chord
of the truss. ) .
In cases of this sort, it is possible to proceed in a slightly different fashion
by determining either directly, or by inversion of the influence matr%x for the
structure, the set of forces required to produce the given set of vertical dis-
placements. In the general case, one can summarize the calculations as

follows:
(1) Compute the vertical displacements of each of the masses for individual

unit values of vertical force at each of the masses in turn. The set of
values obtained is designated as the influence matrix for deflection of

the structure.
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convergence will be an adequate criterion for the time interval. Consequent--
ly, one can establish a rate of convergence based on the number of iterations
which it is desirable to make in a time interval and then examine the rate of
convergence of the actual calculations as the calculations progress. For ex- -
ample, if it is desired to have three significant figure accuracy in dis-
placement and velocity, three significant figures in the acceleration are also
desirable, A rate of convergence such that the error is less than one part in ;
a thousand at the end of three cycles would imply a rate of convergence of 10
Per cent or 0£0.10. By reference to Table 1c it can be seen that a ratio of
time interval to natural period of the order of 0.10 for B =1/4 will insure this
rate of convergence, Similarly, a time interval slightly longer will be ade~- ]
quate for 8 =1/6. However, it appears that these time intervals will introduce
errors of the order of 2 per cent to 3 per cent in the period. I this is not ad
missible, then a faster rate of convergence can be established to keep the
error in the period down as well.

Let us say for example that a time interval consistent with a rate of con-
vergence of 10 per cent is desirable and that three cycles of iteration will
bormally be considered convenient so as to bring the results to an error of
less than one part in a thousand at the end of the third cycle. Then a fourth
cycle will verify that this is in fact the case. Under these conditions, then,
We can assume a time interval and run through the calculations several times
If the desired rate of convergence is not obtained, we have obviously assumed

lations. If the time interval is made smaller in accordance with the estimate
of convergence, and if convergence is now in fact obtained with about three to
four cycles of iteration, then this time interval can be used in subsequent
steps. If however the time interval chosen leads to convergence in only two
or three cycles, we have probably taken too short a time interval and in the
next cycle in the calculations we may choose to use a longer time interval.
With this type of procedure, and with continual reexamination of the time
interval in terms of the rate of convergence, one can take account of the
change in the characteristics of the structure without loss in accuracy and
without supplementary calculations. The procedure described above can
readily be programmed for 2 high-speed digital computer. However, an upper
limit on the time interval is usually desirable to avoid difficulty in terms of
accounting appropriately for the variations in the applied loading,

Calculation of Resistance

For the general case of 3 framed structure with either flexural or axial
resistance, and with deformation in all of the members, it is a relatively
simple matter to perform the calculation for the resisting forces if the dis-
placements are given. All that ig required is to take the set of displacements -
at a given time instant, pull the joints of the structure into the corresponding
+ configuration, compute the axial forces in the members from the changes in
length between the nodes, and compute the moments in the members by a
process which involves two stages as follows:

(1) Consider the joints locked against rotation and determine the fixed end
moments in all of the members corresponding to the deformations,
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(2) From these influence coefficients, compute the set of forces on the
structure for given values of the displacements. The calculation in-
volves solving a set of simultaneous equations for each set of values of
displacement. This can be systematized by “inverting” the influence
matrix to obtain the stiffness matrix for the structure, which represents
the forces acting on each of the masses for a unit displacement of each
of the masses in turn, If this inversion is performed once, the matrix
of values can be applied to any set of displacements to determine the re-
quired resisting forces.

(3) The coefficients in the influence matrix will change when any elements
in the structure become plastic. Consequently the calculation of the
influence matrix and the inversion of the matrix to obtain the stiffness
matrix must be performed for each change in stiffness that occurs dur-
ing the history of the structure. It may be desirable to make the calcu-
lations by a “relaxation® procedure for more complex structures of this
type. However, in principle the structure can always-be analyzed to find
the forces consistent with a given set of deformations,

It might be pointed out that for a beam of the same span as in Fig. 5, with
series of masses acting on it, it is not necessary to use the influence matrix
d invert it to find the stiffness matrix. The structure can be analyzed di-
ctly by pulling the joints into the deflected configuration, Iocking them
ainst rotation, and then distributing the fixed end moments corresponding to
ese deformations to find the shears in the members and the consequent
rces acting on the masses. Although in such a case there would be theoreti-
ally 10 degrees of freedom, 5 of the degrees of freedom are associated with
horizontal axial deformations in the beam, and these are not “coupled” with
the vertical deformations because of the nature of the system. This obser-
tion is tru€ only for a straight beam. In a later discussion, the procedure
plicable to an arched beam will be described. )

The structure in Fig. 5 is one of several special cases which require a
ightly modified form of treatment. Another case concerns any structure
ith constraints on the deformation of some of the members. Such a structure
ght be a polygonal arch which is considered to deform only in flexure and
hich is not considered to have any axial deformation of the arched members,
this case also the number of degrees of freedom are reduced, but the
eatment must be somewhat different from that for the truss because the
mber of constraints may reduce the number of degrees of freedom even be-
W the number corresponding to a mass at each node prescribed to move in
particular direction. Further discussion of this topic is contained in the
st chapter of this paper.

Both Figs. 4 and 5 show structures with zero masses at some of the nodes.
general procedure for such structures can be discussed. In general, one
n handle the problem in the following way when damping forces are not

esent. The modification for damping is readily made as has been discussed
eviously.

(1) Assume values of acceleration only at the joints where masses exist
and in the direction in which the masses can move.

(2) Compute the displacements of the masses, but not the displacements of
the joints not having masses.

(3) Let the joints without masses be free to deflect but apply to these joints
the external forces which are applied at these points. I these external
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n interior load applied dynamically. Then we will in effect have a prescribed
isplacement of joint E which can be considered to be an external hinged sup-
port as shown. Consequently, our method of treatment is general and can deal
ith internal loads as well as loads applied at the joints.
. At some time t, the structure has been analyzed with the result that we
have determined the plastic hinges which exist at that time and, as a conse-
uence, we have determined the velocities, displacements, and resisting forces
n the structure. We can also determine from the final configuration and
moments in the structure at that time the rotations of the joints Oj and the ro-
tions at the plastic hinges 6,. If we have analyzed the structure by moment
istribution, the fixed end moments can be computed and distributed and from
comparison of the fixed end moments and final moments the rotations at
ach end of each member can be determined. The rotation of a joint is the
ame as the rotation of the ends of all members meeting at that joint which do
ot have plastic hinges. The “kink” or relative angle between a member hav-
ng a plastic hinge at the joint and the angle of the joint is measured by the
difference between 0, and 6j. The kink angle is of importance in determining
hether the member is loading or unloading at that joint.

It is considerably simpler to deal with the structure in each interval by
making calculations of the change in the structure. In other words, one works
ith the change in displacements during the interval as defining the fixed end
moments at the end of the interval and the final moments so computed are the
hanges in moment to be added to the original moments in the various
members. In this process one can deal with the elasto-plastic hinges as actu-
al hinges if the structure is loading during the interval and the hinges will be
emoved if the structure is-unloading during the interval. '

Three situations require consideration:
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forces are zero, no restraints and no loads are applied at the massless
nodes. ;

(4) We now have a system with prescribed deflections at some points only
and with prescribed loads at other points. It may be pointed out that a
some particular joint for example there may be a prescribed vertical

- displacement and a prescribed zero horizontal load, if we consider that

only vertical displacement of the mass is to be considered at that point..

(5) We now require the calculation of the resisting forces at the masses i
the direction of motion. In general this can be done by an influence ]
coefficient procedure in which we apply unit forces at the masses which.
are displaced, one at a time, and compute the displacements at these
masses. We use these influence coeifficients to write a set of equations ;
which in effect says that the product of each unknown reaction force at .
each mass multiplied by the influence coefficient for deflection at each .
of the masses, and summed for each of the masses individually, leads
to a deflection at each mass equal to the prescribed deflection minus
the deflection in that direction at that mass due to the prescribed forces
acting at the nodes where no masses exist.

(6) The solution of this set of equations yields the desired results. We m
now have to complete the calculation by determining the displacements
at the massless nodes of the structure if these are required for any
other purpose. In most instances they will not be needed and need not
be determined. Where damping forces exist, however, we will need
these displacements so that we can determine the velocities and acceler:
ations at these points in order to check on the values of the damping
forces dependent on these quantities.

Non-Elastic Behavior (1) If the total moment, including the original moment plus the increment
i i in moment during the interval, at the end of any member exceeds the
plastic hinge moment, then a hinge must be placed in that member.

(2) I a hinge exists in a member and the increment in kink angle in the
member at the joint at the end of the interval is in the same direction
as the preceding total kink, then the hinge remains.

(3) If the kink angle in what was originally a plastic hinge should decrease,
then the plastic hinge must be removed,

General Comments

For trusses the problem of inelastic behavior of the members is a relativ
ly simple and straightforward one. One need take into account only the change
in deformation of the members in each time interval to determine whether th
plastic action is continuing or the member is unloading elastically. Having
knowledge of the load-deformation characteristics of the member, the re-
quired force in each member can be determined and the restraining forces o
the resisting forces in the structure are directly determinable. Although the
general concept for framed members is the same, there are some difficultie
which require consideration,

The structure is modified by adding, keeping, or removing the plastic -
nges originally assumed for the calculation at the end of the interval, in ac-
ord with the above criteria, and the calculation repeated until the conditions
 obtained are consistent.

Only in unusual cases can there be plastic hinges in all members meeting -
t a joint. Such a case is shown at D in Fig. 6. In such an instance the joint
rotation can be assumed to remain at its value at the time the last members
it the joint become plastic. (It is clear that in such a joint at least two
mbers must become plastic finally, and at least two members must simul- .
eously “unload” and have the hinges removed.)

The only other special case that needs consideration is that shown by the
mber F in which both ends develop plastic hinges. Such a member can be
onsidered to have end rotations the same as those which existed prior to the
evelopment of the last hinge in the member,

In some cases it may be desirable to study the formation of plastic hinges
a structure as the loading on the structure is applied, more or less

Elasto-Plastic Frames

The method for dealing with elasto-plastic behavior in frames is describe
here. Consider a general framework consisting of members acting in flexur
as shown in Fig. 6a. At some stage in the deformation, the moment at the
ends of the members shown as black dots in the figure has reached the plasti
limit moment. One or several of the members meeting at a joint may be loa
ed to the plastic limit moment. '

It is general enough to consider members which are not loaded internally
and in which the moments arise from a prescribed set of displacements of th
joints. In a situation such as that shown at E in the figure we might have had
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“gtatically”, or applied and released in various ways. This can be done very
simply by specifying a relatively slow rate of application of the loading, corr
sponding to a maximum being reached in not less than twice the natural perio
of vibration in the fundamental mode. It is usually convenient to introduce
damping so as to avoid oscillatory motion during or following the loading
cycle. The masses can be taken arbitrarily small in such a calculation if we
are not concerned with the dynamic response, so as to make the fundamental
period relatively short.

O O

F=My M P
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Time-Dependent Boundary Conditions

In general if the boundaries or supports of a structure move with time no
change is required in the method of calculation and the general procedures d
scribed herein are directly applicable. However, there are instances where
it is desirable, or convenient, to deal with the motion of the elements of the
structure relative to the base or foundation of the structure, rather than in
absolute terms. Such situations arise commonly in earthquake motions. The
method described herein is useful primarily in those cases where the foun-
dation moves as a single unit and where motion of the foundation of the
structure with all masses equal to zero would not introduce stresses in the
structural framework.

Consider the structure shown in Fig. 7 where the base can move as a unit
in the horizontal direction. Let the motion of the base be defined as a functig
of time by the quantity y. The motions of any of the masses in the structur
are defined by x. Let us assume that the axial deformations of the member
can be neglected and that we have only flexural deformations to consider.
such cases, we can lump the masses at each floor level at one point as shown
The more general case offers no difficulties, however.

If now we apply to the structure with masses on it a force ¥, in accordal
with the relation

////4 m 7777

Fig. 7. Structure with Time- Dependent
Boundary Conditions
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then the structure and the foundation will move as a unit with no relative di
placement between the two.

If now we apply to the structure considered supported on a fixed foundat:
a force P, defined by the relation

P=pP-F

we have changed the problem from one in which there are external forces ar
a time-dependent boundary motion into one in which we have external force
and no boundary motion. The displacements for the modified forces P will
designated by u, where

(b} Structure with All Modes
Coupled

Uus=x-y (

it can be seen, of course, that the total motions of the masses, x, are the s
of the relative motions u plus the foundation motions y, and the total loads
plied are the external forces P, Consequently, the procedure is valid.

For more complex systems, one must modify this procedure by taking i
account the displacements at each of the several points of support, and defins
ing the quantity y for the motion of the masses as being the motion at that
point on a massless structure consistent with the foundation motions. In th

Fig. 8. Examples of Different Types of
Coupling Between Modes
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' ‘case of a beam, for example, 8imply supported at one end and hinged at the
. other where the hinged end is constrained to move vertically in accordance
- with some time-dependent condition, the displacements of the masses along
" the length of the beam are proportional to the end displacement and are equal
. to that end displacement multiplied by the ratio of the distance from the simy
. ‘support to the mass divided by the length of the beam. The same method of
* analysis applies, and the modified forces will give the relative displacement:
of the beam, relative to boundaries fixed in position. ‘

In this case, and in other cases where no stresses are introduced in the -
weightless beam by the boundary motions, the entire solution is straight-
forward and all of the stresses can be obtained from the modified system.
However, in more complex cases where the boundary motions may introduce
stresses in the massless system, the general principles are applicable but thi
total stresses must then be determined by adding the stresses in the massless,
system with boundary motions to the stresses in the system with fixed bound;

" ries and with modified forces. In such instances, the problem of plastic be--
havior introduces complexities which may be unwieldy and it is not desirable
to work with the replacement system. In all cases it is possible to work with

the original system directly with the general methods that have been de-
scribed.
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(@) Arch Considered
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(b) Constraint Relation for Zero
Extension of BC

Curved Frames and Arches

General Procedure

Fig. 9. Extensible and Inextensible Arched
Structures

Consider the two structures shown in Fig. 8. In Fig. 8a, a beam is shown
with two masses. These masses may move vertically with consequent flexur:
of the beam or horizontally with consequent axial deformation. There is no
coupling between these sets of motions. There are two degrees of freedom 1
each set or type of motion and four degrees of freedom altogether. The verti

. cal motions can be dealt with as if in a two~degree-of-freedom system and th
axial motions can be dealt with also as in a two-degree-of-freedom system
with neither being considered to-have influence on the other. However, in th
structure shown in Fig. 8b, neither pure vertical nor pure horizontal motio
of each mass is possible. In general, all four modes of motion or all four d
grees of freedom are coupled, and the structure requires treatment as if it
were a four-degree-of-freedom system.

However, in the structure shown in Fig. 8b, if it is desired to avoid axial
deformation of the bars, only one mode of motion is possible, with the mass
to the left moving down to the right and the mass to the right moving up and
the left. The system has only one degree of freedom, and can be analyzed a
such although the method of analysis requires some care in order to avoid
introducing motions that are inadmissible,

Inextensible Members—Constraint Relations

Consider the structure shown in Fig. 9a. Here there are three interior
masses and if the members are considered inextensible there will be two de
grees of ireedom. We arrive at this number by considering the total numbe
of degrees of freedom of the system if the members were capable of defor-
mation, namely 6, and subtracting from this number the number of constrai
conditions or in this case the number of inextensible members, namely 4.

&Y sh

Fig. 10. Symmetrical Loading Producing No
Displacement in an Inextensible Arch

89
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For any one of these members, such as BC, the condition that the defor-
mations at the joints correspond to no change in length of member BC can be
expressed in terms of the relative displacement of joint C compared with
joint B and the slope of the member BC. For small deformations, where 6x
and 0y represent the horizontal and the vertical motion of point C with respec
to point B, and where 4V and JH represent respectively the vertical differ-
ence in elevation between C and B and the horizontal distance between C and
B, the relationship that the relative deformation involve no change in length
can be expressed as follows: '
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symmetrical loading producing no displacement. . Consequently, one can arrive
at a loading consisting of a downward load at C and equal horizontal loaQS with
no upward load at joints B and D. There are two other independent loadmg_s
which are anti-symmetrical. From combinations of the four loadings, various
types of loading patterns can be derived.

The advantage of having the constraint conditions stated in this way is that
now we can add any of these types of loadings to any set of resistances or of
external loadings so as to preserve the number of degrees of freedom of the
structure at the proper number, in this particular case two. In other words,
o __®V (30) after the two independent displacements are decided on such as th_e.hoz:izonta,l
By SH i .and vertical displacement at joint B in Fig. 9, and thé corresponding dis-

placements at C and at D are determined consistent with these, then both the
external forces and the resistance can be modified by adding force patterns
similar to those in Fig. 10, (plus the two anti-symmetrical loadings), so as to
make the accelerations in the various directions of all of the masses con-
sistent. .

' Consistency in the vertical displacements during the interval requires con-
sistency in the vertical accelerations at the end of the interval. Since the dis-
placements at the beginning of the interval have been made consistent, and
since the velocities and accelerations at the beginning of the interval are con-
"sistent, we need only insure that the accelerations at the end of the interval

are properly consistent. In order for these to be properly consistent, they
must obey the same relationship that the displacements obey. In other words,
we have the same relationships among the accelerations in the various di-
rections at the joints or nodes as we have constraint relations corresponding
to zero extension of the members. It is a simple matter to adjust the resist-
ing forces by adding the proper components of loadings so as to make the net
acceleration at all of the masses consistent.

As a by-product of the results shown in Fig. 10, one can apply the principle
of virtual work to find relationships among the displacements at the various -
joints. For any pattern of loading which produces no displacement, the
product of the loadings in the pattern times the displacements in any set of
consistent displacements of the structure in the direction of the loadings in
the pattern must be zero. This follows from the principle of virtual work di-
rectly. In the case of an arch the vertices of which lie in a parabola, as in
Fig. 9, the loadings at the three vertices, as shown in the upper part of
Fig. 10, will be equal. This implies that the sum of the vertical deflections at
B, C, and D, taken as positive downward, must be zero. A similar relation-
ship can be arrived at from the loadings in the lower part of Fig. 10 or from
each of the load conditions considered.

This equation can be interpreted as meaning that the deformation is such that
point C moves perpendicularly to member BC.

A similar constraint relation can be written for each of the bars. If the
total deformations are expressed in terms of the increments in the defor-
mation, one can find four relations among the three horizontal and three verti
cal displacements of point B, C, and D. These will be somewhat more com-
plex but the relations can be written in any case. The number of independent
relations which it is possible to write in this case will be equal to the number
of constraint conditions, namely four, With four relations among six dis-
placements, it appears that there are only two independent displacements re-
maining. These can be chosen as any two components of displacement, and
the calculations carried through in the usual way, but with only two masses
and two directions of motion considered. By the use of the constraint relation:
ships, when the two deflections which are independent are assumed the re-
maining deflections can be readily computed, and the entire pattern of defor
mation of the structure established,

However, it is possible to develop a more direct procedure for determining
the relationships for the resisting force components and for the displacements;
This can be done by noting that there are certain patterns of loading on the '
structure which produce only axial stresses in the members. For these load-
ing components no deformations of the arch can take place. It is obvious that
one type of loading would correspond to axial forces directed along the length
of any one of the members. This can be expressed also in terms of the verti~
cal and horizontal components at the two ends of the member such that the
resultant lies along the length of the member. ,

By considering four component loadings corresponding to loadings produc-
ing axial force in only one member at a time, one arrives at four independent
load conditions which produce no displacement in the arch in Fig. 9. These
can be combined in various ways. One obvious combination consists in a
pattern of only vertical forces at the interior nodes. These of course would
be resisted by vertical and horizontal reactions at the ends but these do not
enter into the picture if the ends do not move. This pattern of loading is shown
in the upper part of Fig. 10. A second pattern of loading in the lower part of
Fig. 10 consists of the two sets of loadings which produce tension only in the
outer members of the arch. If the structure is symmetrical, and if the loads
B and D are made equal, then the loading pattern will be symmetrical. The .
loading pattern in the upper part of Fig. 10 will always be symmetrical for a
symmetrical structure. These two loadings represent the two independent
types of symmetrical loadings producing no displacement in the inextensible
arch of Fig. 9. Of course any combination of these two loadings will also be a;

Reduction in Number of Effective Degrees of Freedom

The operations above suggest a modification for the approximate dynamic
analysis of an arch which is inextensible. Consider the arch shown in Fig, 11
which is the same as in Fig. 9 except that the masses are carried by vertical
links, which remain vertical, in the same manner as in the truss in Fig. 5.

. Here now we constrain the. masses to move only in the vertical direction.

. There are then only three degrees of freedom for the structure. If the

structure were extensible, we have reduced the number of degrees of freedom

from 6 to 3, but we have lost the horizontal motion of the masses. If we know

that these are unimportant or feel that they might be, or if we wish to permit
2
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Fig. 11. Scheme For Approximate
Dynamic Analysis of an Arch

Fig. 12.  Hexagonal Ring
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this approximation in order to find a quicker solution to the problem, as we
ight in the case of a very flat arch, we can work with this problem in the
same fashion that we solved the problem in Fig. 5 earlier. We need now find
nly the influence matrix and the corresponding stiffness matrix in order to
nd the solution. . i »

If, however, the arch is.inextensible, there are really only two degrees of
reedom of the structure and we have a system which apparently has three.
owever, by use of the fact that for the arch shown a set of loadings consisting
f equal vertical loads at each of the three joints will produce no deformation,
e arrive at the condition that the sum of the three vertical displacements
ust be zero. Then we could use this as a constraint condition which will
ermit us to work with only two independent vertical displacements. We can
efine the third vertical displacement in terms of the other two, and arrive at
consistent set of forces by adding to any set that we compute at the two inde-
endent joints a proper combination of three equal vertical loads so as to
ake the vertical accelerations at the three points consistent. Consistency
the vertical accelerations means consistency in the increments in de-
ections, which means that the vertical accelerations must also obey the rule
at the sum of the vertical accelerations at points 1, 2, and 3 as shown in
ig. 11 must be zero.

It can be seen that in general for an arch with N nodes, the number of de- .
rees of freedom for an extensible arch will be 2N, and for an inextensible
ch, N-1. The number of degrees of freedom for vertical motion at the nodes
ill also be N-1, .

xtensible and Inextensible Rings

I the ends of the arch are free to move, additional degrees of freedom are
troduced. These represent no real difficulty and can be considered either
for the extensible or inextensible case in a relatively simple manner. How-
.ever, more complexities are introduced in the case of a complete ring.
Consider, for example, the hexagonal ring in Fig. 12. There are six mass-
~es at the nodes of the ring. For other shapes or number of sides, the re-
lationships can readily be determined. In this particular case, it is clear that
.the number of degrees of freedom for an extensible ring is 12. However three
;of these are the rigid body motions for an object in a plane and produce no in-
ternal stresses. In the general extensible case of deformation, with two de-
grees of freedom for each mass, one would compute ordinarily 12 dis-
placements, one in each of the two directions at each of the 6§ masses. The
.statically required forces needed for consistent accelerations will automatical~
1y be achieved, and the system can be treated as if it had in fact 12 degrees of
‘freedom.

In the case of the inextensible ring, there are in the case of the hexagon
-six constraint relations corresponding to the six bars. This means that there
‘are essentially only 3 degrees of freedom for the system rather than 9 for the
.inextensible case. Here again the 3 rigid body motions correspond to no
stress in the system. However the system can be treated as if it had in fact
six degrees of freedom since the rigid body motions will automatically be
achieved. The six constraint relations must be used to insure consistent
values of acceleration and displacement,
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Miscellaneous Problems

Journal of the
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Space Frames and Space Structures

Space frameworks or space structures of a more complex character than
those generally described herein can be handled by. the same general princi-
ples. For a structure in space, there are in general 3 degrees of freedom fo
each mass at a node, and consequently 3 components of external force and re
sisting force which must be considered. This introduces complication only
in the order of magnitude of the calculations which are involved.

ULTIMATE STRENGTH CRITERIA FOR REINFORCED CONCRETE
Buckling

For structures in which axial loading produces secondary effects because
of the deflections of the parts of the structure, thereby increasing the
moments and the deflections for a given loading, the calculations are more
complex. In general, the resisting forces for a given amount of prescribed
deflection are reduced, in about the same ratio that the deflections for a given
loading are increased when buckling loads are present. This reduction in re-.
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SYNODPSIS

Criteria for ultimate strength of structural membe‘rs are derivgd by ‘de-
termining analytically the value of extreme compression gdge strain which re-
sults in a maximum value of moment or load. The following rectangular
members are considered: {a) homogeneous beams, (b) reinforced concrete
beams, and (c) eccentrically loaded reinforced concre?e columns. In all three
cases, uitimate strength so derived is in agreement with tests, and is a )
function of ohly the stress at the extreme compression edge and properties of
the cross=-section involved.

tively unwieldy. One can compute the resisting forces on the assumption tha
the buckling tendencies are negligible, and then for these resisting forces de
termine the relative deflections corresponding to the secondary effects of the
forces produced by the deflection of the structure. Then by reducing the re-
sisting forces in a more or less arbitrary manner, one can arrive at a set of
resistances which would account for the prescribed deflections. Although thi
method is not entirely satisfactory, it does give a means of taking into accou
approximately the buckling tendencies for complex structures. For simple
structures, the problems can sometimes be handled directly, The real diffi-
culty in the case of buckling problems is that buckling is a nonlinear effect
and the methods of calculation used to handle the calculations in each interval
in the process depend on linearity, within that interval at least.

INTRODUCTION

Ultimate strength of structural members is commonly dete.rmined on the
basis of the assumptions that plane sections remain plane during bending and
that stress is a function of strain only. Within the range of linear stress-'
strain relationship the stress distribution throughout a member is dete.rmmed
from the equations of equilibrium of forces and of moments toge'ther w11.:h the‘
requirement of linear distribution of -strains. If the stress-_stram re1a.t1onsh1p
is non-linear, simplifying assumptions, such as the parabolic, trapezmdal. or
rectangular stress distribution, are commonly introduced, or else the ultimate
strength design equations are derived empirically from test data. ' v
By another approach, the problem of ultimate strength may be studied ana-
lytically by finding the maximum value of certain load functions expressed in
terms of the internal resisting forces of the loaded member. This can be d(?ne
without defining mathematically the stress-strain relationship of the inelast}c
material. In this manner, criteria for ultimate strength may be derived which
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