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4.1 INTRODUCTION

A tuned mass damper (TMD) is a device consisting of a mass, a spring, and a damper

that is attached to a structure in order to reduce the dynamic response of the

structure. The frequency of the damper is tuned to a particular structural frequency so

that when that frequency is excited, the damper will resonate out of phase with the

structural motion. Energy is dissipated by the damper inertia force acting on the

structure. The TMD concept was first applied by Frahm in 1909 (Frahm, 1909) to

reduce the rolling motion of ships as well as ship hull vibrations. A theory for the

TMD was presented later in the paper by Ormondroyd and Den Hartog (1928),

followed by a detailed discussion of optimal tuning and damping parameters in Den

Hartog’s book on mechanical vibrations (1940). The initial theory was applicable for

an undamped SDOF system subjected to a sinusoidal force excitation. Extension of

the theory to damped SDOF systems has been investigated by numerous researchers.

Significant contributions were made by Randall et al. (1981), Warburton (1981, 1982),

Warburton and Ayorinde (1980), and Tsai and Lin (1993).
This chapter starts with an introductory example of a TMD design and a brief

description of some of the implementations of tuned mass dampers in building

structures. A rigorous theory of tuned mass dampers for SDOF systems subjected

to harmonic force excitation and harmonic ground motion is discussed next. Vari-

ous cases, including an undamped TMD attached to an undamped SDOF system, a

damped TMD attached to an undamped SDOF system, and a damped TMD

attached to a damped SDOF system, are considered. Time history responses for a
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218 Chapter 4 Tuned Mass Damper Systems

range of SDOF systems connected to optimally tuned TMD and subjected to har-

monic and seismic excitations are presented. The theory is then extended to MDOF

systems, where the TMD is used to dampen out the vibrations of a specific mode.

An assessment of the optimal placement locations of TMDs in building structures is

included. Numerous examples are provided to illustrate the level of control that can

be achieved with such passive devices for both harmonic and seismic excitations.

4.2 AN INTRODUCTORY EXAMPLE

In this section, the concept of the tuned mass damper is illustrated using the two-

mass system shown in Figure 4.1. Here, the subscript d refers to the tuned mass

damper; the structure is idealized as a single degree of freedom system. Introducing

the following notation

(4.1)

(4.2)

(4.3)

(4.4)

and defining  as the mass ratio,

(4.5)

the governing equations of motion are given by

Primary mass (4.6)

FIGURE 4.1: SDOF-TMD system.

ω2 k

m
-----=

c 2ξωm=

ωd
2 kd

md

-------=

cd 2ξdωdmd=

m

m
md

m
-------=

1 m+( )u
··

2ξωu
· ω2

u+ +
p

m
----- mu

··
d–=

c

p

m md

u

k kd

cd

u 1 ud

ConCh04v2.fm  Page 218  Thursday, July 11, 2002  4:33 PM



Section 4.2 An Introductory Example 219

Tuned mass (4.7)

The purpose of adding the mass damper is to limit the motion of the structure

when it is subjected to a particular excitation. The design of the mass damper

involves specifying the mass , stiffness , and damping coefficient . The

optimal choice of these quantities is discussed in Section 4.4. In this example, the

near-optimal approximation for the frequency of the damper, 

(4.8)

is used to illustrate the design procedure. The stiffnesses for this frequency combi-

nation are related by

(4.9)

Equation (4.8) corresponds to tuning the damper to the fundamental period of the

structure.
Considering a periodic excitation,

(4.10)

the response is given by

(4.11)

(4.12)

where  and  denote the displacement amplitude and phase shift, respectively.

The critical loading scenario is the resonant condition, . The solution for this

case has the following form:

(4.13)

(4.14)

(4.15)

(4.16)
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220 Chapter 4 Tuned Mass Damper Systems

Note that the response of the tuned mass is 90º out of phase with the response of the

primary mass. This difference in phase produces the energy dissipation contributed

by the damper inertia force. 
The response for no damper is given by 

(4.17)

(4.18)

To compare these two cases, we express Eq. (4.13) in terms of an equivalent

damping ratio:

(4.19)

where

(4.20)

Equation (4.20) shows the relative contribution of the damper parameters to the

total damping. Increasing the mass ratio magnifies the damping. However, since the

added mass also increases, there is a practical limit on . Decreasing the damping

coefficient for the damper also increases the damping. Noting Eq. (4.14), the rela-

tive displacement also increases in this case, and just as for the mass, there is a prac-

tical limit on the relative motion of the damper. Selecting the final design requires a

compromise between these two constraints. 

Example 4.1:   Preliminary design of a TMD for a SDOF system 

Suppose  and we want to add a tuned mass damper such that the equivalent

damping ratio is . Using Eq. (4.20), and setting , the following relation

between  and  is obtained:

(1)

The relative displacement constraint is given by Eq. (4.14):

(2)

û
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û
p̂

k
---  

1
2ξe

-------- 
 =

ξe

m

2
----- 1

2ξ
m
------

1
2ξd

--------+ 
  2

+=

m

ξ 0=

10% ξe 0.1=

m ξd

m

2
----- 1

2ξ
m
------

1
2ξd

--------+ 
  2

+ 0.1=

ûd
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Section 4.2 An Introductory Example 221

Combining Eq. (1) and Eq. (2) and setting  leads to

(3)

Usually,  is taken to be an order of magnitude greater than . In this case, Eq. (3)

can be approximated as

(4)

The generalized form of Eq. (4) follows from Eq. (4.20):

(5)

Finally, taking  yields an estimate for :

(6)

This magnitude is typical for . The other parameters are

(7)

and from Eq. (4.9)

(8)

It is important to note that with the addition of only  of the primary mass,

we obtain an effective damping ratio of . The negative aspect is the large rela-

tive motion of the damper mass; in this case,  times the displacement of the pri-

mary mass. How to accommodate this motion in an actual structure is an important

design consideration. 

A description of some applications of tuned mass dampers to building struc-

tures is presented in the following section to provide additional background on this

type of device prior to entering into a detailed discussion of the underlying theory.
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ûd

-----

 
 
 

0.05= =

kd mk 0.02k= =

2%

10%

10

ConCh04v2.fm  Page 221  Thursday, July 11, 2002  4:33 PM



222 Chapter 4 Tuned Mass Damper Systems

4.3 EXAMPLES OF EXISTING TUNED MASS DAMPER SYSTEMS

Although the majority of applications have been for mechanical systems, tuned
mass dampers have been used to improve the response of building structures under
wind excitation. A short description of the various types of dampers and several
building structures that contain tuned mass dampers follows.

4.3.1 Translational Tuned Mass Dampers

Figure 4.2 illustrates the typical configuration of a unidirectional translational
tuned mass damper. The mass rests on bearings that function as rollers and allow
the mass to translate laterally relative to the floor. Springs and dampers are inserted
between the mass and the adjacent vertical support members, which transmit the
lateral “out-of-phase” force to the floor level and then into the structural frame.
Bidirectional translational dampers are configured with springs/dampers in two
orthogonal directions and provide the capability for controlling structural motion in
two orthogonal planes. Some examples of early versions of this type of damper are
described next.

• John Hancock Tower (Engineering News Record, Oct. 1975)

Two dampers were added to the 60-story John Hancock Tower in Boston to reduce
the response to wind gust loading. The dampers are placed at opposite ends of the
fifty-eighth story, 67 m apart, and move to counteract sway as well as twisting due to
the shape of the building. Each damper weighs 2700 kN and consists of a lead-filled
steel box about 5.2 m square and 1 m deep that rides on a 9-m-long steel plate. The
lead-filled weight, laterally restrained by stiff springs anchored to the interior col-
umns of the building and controlled by servo-hydraulic cylinders, slides back and
forth on a hydrostatic bearing consisting of a thin layer of oil forced through holes
in the steel plate. Whenever the horizontal acceleration exceeds 0.003g for two con-
secutive cycles, the system is automatically activated. This system was designed and
manufactured by LeMessurier Associates/SCI in association with MTS System
Corp., at a cost of around 3 million dollars, and is expected to reduce the sway of
the building by 40 to 50%. 

FIGURE 4.2: Schematic diagram of a translational tuned mass damper.

md

Direction of motion

Support

Floor beam
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Section 4.3 Examples of Existing Tuned Mass Damper Systems 223

• Citicorp Center (Engineering News Record, Aug. 1975, McNamara 1977,

Petersen 1980) 

The Citicorp (Manhattan) TMD was also designed and manufactured by LeMes-
surier Associates/SCI in association with MTS System Corp. This building is 279 m
high and has a fundamental period of around 6.5 s with an inherent damping ratio

of 1% along each axis. The Citicorp TMD, located on the sixty-third floor in the
crown of the structure, has a mass of 366 Mg, about 2% of the effective modal mass
of the first mode, and was 250 times larger than any existing tuned mass damper at
the time of installation. Designed to be biaxially resonant on the building structure

with a variable operating period of , adjustable linear damping from 8
to 14%, and a peak relative displacement of , the damper is expected to
reduce the building sway amplitude by about 50%. This reduction corresponds to

increasing the basic structural damping by 4%. The concrete mass block is about
2.6 m high with a plan cross section of 9.1 m by 9.1 m and is supported on a series of
twelve 60-cm-diameter hydraulic pressure-balanced bearings. During operation, the
bearings are supplied oil from a separate hydraulic pump, which is capable of rais-

ing the mass block about 2 cm to its operating position in about 3 minutes. The
damper system is activated automatically whenever the horizontal acceleration
exceeds 0.003g for two consecutive cycles and will automatically shut itself down

when the building acceleration does not exceed 0.00075g in either axis over a
30-minute interval. LeMessurier estimates Citicorp’s TMD, which cost about 1.5
million dollars, saved 3.5 to 4 million dollars. This sum represents the cost of some
2800 tons of structural steel that would have been required to satisfy the deflection

constraints.

• Canadian National Tower (Engineering News Record, 1976)

The 102-m steel antenna mast on top of the Canadian National Tower in Toronto
(553 m high including the antenna) required two lead dampers to prevent the
antenna from deflecting excessively when subjected to wind excitation. The damper

system consists of two doughnut-shaped steel rings, 35 cm wide, 30 cm deep, and
2.4 m and 3 m in diameter, located at elevations 488 m and 503 m. Each ring holds
about 9 metric tons of lead and is supported by three steel beams attached to the
sides of the antenna mast. Four bearing universal joints that pivot in all directions

connect the rings to the beams. In addition, four separate hydraulically activated
fluid dampers mounted on the side of the mast and attached to the center of each
universal joint dissipate energy. As the lead-weighted rings move back and forth,

the hydraulic damper system dissipates the input energy and reduces the tower’s
response. The damper system was designed by Nicolet, Carrier, Dressel, and Asso-
ciates, Ltd., in collaboration with Vibron Acoustics, Ltd. The dampers are tuned to
the second and fourth modes of vibration in order to minimize antenna bending

loads; the first and third modes have the same characteristics as the prestressed con-
crete structure supporting the antenna and did not require additional damping.

• Chiba Port Tower (Kitamura et al., 1988)

6.25 s 20%±
1.4 m±
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224 Chapter 4 Tuned Mass Damper Systems

Chiba Port Tower (completed in 1986) was the first tower in Japan to be equipped

with a TMD. Chiba Port Tower is a steel structure 125 m high weighing 1950 metric

tons and having a rhombus-shaped plan with a side length of 15 m. The first and

second mode periods are 2.25 s and 0.51 s, respectively for the x direction and 2.7 s

and 0.57 s for the y direction. Damping for the fundamental mode is estimated at

0.5%. Damping ratios proportional to frequencies were assumed for the higher

modes in the analysis. The purpose of the TMD is to increase damping of the first

mode for both the x and y directions. Figure 4.3 shows the damper system. Manu-

factured by Mitsubishi Steel Manufacturing Co., Ltd., the damper has mass ratios

with respect to the modal mass of the first mode of about 1/120 in the x direction

and 1/80 in the y direction; periods in the x and y directions of 2.24 s and 2.72 s,

respectively; and a damper damping ratio of 15%. The maximum relative displace-

ment of the damper with respect to the tower is about  in each direction.

Reductions of around 30 to 40% in the displacement of the top floor and 30% in

the peak bending moments are expected. 
The early versions of TMDs employ complex mechanisms for the bearing and

damping elements, have relatively large masses, occupy considerable space, and are

quite expensive. Recent versions, such as the scheme shown in Figure 4.4, have

been designed to minimize these limitations. This scheme employs a multiassem-

blage of elastomeric rubber bearings, which function as shear springs, and bitumen

rubber compound (BRC) elements, which provide viscoelastic damping capability.

The device is compact in size, requires unsophisticated controls, is multidirectional,

and is easily assembled and modified. Figure 4.5 shows a full-scale damper being

subjected to dynamic excitation by a shaking table. An actual installation is con-

tained in Figure 4.6.

FIGURE 4.3: Tuned mass damper for Chiba-Port Tower. (Courtesy of J. Connor.)

1 m±
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Section 4.3 Examples of Existing Tuned Mass Damper Systems 225

FIGURE 4.4: Tuned mass damper with spring and damper assemblage.

FIGURE 4.5: Deformed position—tuned mass damper. (Courtesy of J. Connor.)

FIGURE 4.6: Tuned mass damper—Huis Ten Bosch Tower, Nagasaki. (Courtesy 
of J. Connor.)
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226 Chapter 4 Tuned Mass Damper Systems

The effectiveness of a tuned mass damper can be increased by attaching an aux-

iliary mass and an actuator to the tuned mass and driving the auxiliary mass with the

actuator such that its response is out of phase with the response of the tuned mass.

Figure 4.7 illustrates this scheme. The effect of driving the auxiliary mass is to produce

an additional force that complements the force generated by the tuned mass and

therefore increases the equivalent damping of the TMD (we can obtain the same

behavior by attaching the actuator directly to the tuned mass, thereby eliminating the

need for an auxiliary mass). Since the actuator requires an external energy source,

this system is referred to as an active tuned mass damper. The scope of this chapter is

restricted to passive TMDs. Active TMDs are discussed in Chapter 6.

4.3.2 Pendulum Tuned Mass Damper

The problems associated with the bearings can be eliminated by supporting the

mass with cables which allow the system to behave as a pendulum. Figure 4.8(a)

shows a simple pendulum attached to a floor. Movement of the floor excites the

pendulum. The relative motion of the pendulum produces a horizontal force that

opposes the floor motion. This action can be represented by an equivalent SDOF

system that is attached to the floor, as indicated in Figure 4.8(b).
The equation of motion for the horizontal direction is 

(4.21)

where T is the tension in the cable. When  is small, the following approximations

apply:

(4.22)

Introducing these approximations transforms Eq. (4.21) to

FIGURE 4.7: An active tuned mass damper configuration.
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(4.23)

and it follows that the equivalent shear spring stiffness is

(4.24)

The natural frequency of the pendulum is related to by

(4.25)

Noting Eq. (4.25), the natural period of the pendulum is

(4.26)

The simple pendulum tuned mass damper concept has a serious limitation.

Since the period depends on L, the required length for large Td may be greater than

the typical story height. For instance, the length for Td = 5 s is 6.2 meters whereas the

story height is between 4 and 5 meters. This problem can be eliminated by resorting to

the scheme illustrated in Figure 4.9. The interior rigid link magnifies the support

motion for the pendulum and results in the following equilibrium equation:

FIGURE 4.8: A simple pendulum tuned mass damper.
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228 Chapter 4 Tuned Mass Damper Systems

(4.27)

The rigid link moves in phase with the damper and has the same displacement

amplitude. Then, taking u1 = ud in Eq. (4.27) results in

(4.28)

The equivalent stiffness is Wd/2L, and it follows that the effective length is equal to

2L. Each additional link increases the effective length by L. An example of a pen-

dulum-type damper is described next.

• Crystal Tower (Nagase and Hisatoku, 1990)

The tower, located in Osaka, Japan, is 157 m high and 28 m by 67 m in plan, weighs

44000 metric tons, and has a fundamental period of approximately 4 s in the north-

south direction and 3 s in the east-west direction. A tuned pendulum mass damper

was included in the early phase of the design to decrease the wind-induced motion

of the building by about 50%. Six of the nine air cooling and heating ice thermal

storage tanks (each weighing 90 tons) are hung from the top roof girders and used

as a pendulum mass. Four tanks have a pendulum length of 4 m and slide in the

north-south direction; the other two tanks have a pendulum length of about 3 m

and slide in the east-west direction. Oil dampers connected to the pendulums dissi-

pate the pendulum energy. Figure 4.10 shows the layout of the ice storage tanks that

were used as damper masses. Views of the actual building and one of the tanks are

presented in Figure 4.11 on page 230. The cost of this tuned mass damper system

was around $350,000, less than 0.2% of the construction cost.

FIGURE 4.9: Compound pendulum.
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Section 4.4 Tuned Mass Damper Theory for SDOF Systems 229

A modified version of the pendulum damper is shown in Figure 4.12 on page
231. The restoring force provided by the cables is generated by introducing curva-
ture in the support surface and allowing the mass to roll on this surface. The vertical
motion of the weight requires an energy input. Assuming θ is small, the equations
for the case where the surface is circular are the same as for the conventional pen-
dulum with the cable length L, replaced with the surface radius R.

4.4 TUNED MASS DAMPER THEORY FOR SDOF SYSTEMS

In what follows, various cases ranging from fully undamped to fully damped condi-
tions are analyzed and design procedures are presented.

4.4.1 Undamped Structure: Undamped TMD 

Figure 4.13 shows a SDOF system having mass  and stiffness , subjected to both
external forcing and ground motion. A tuned mass damper with mass  and stiff-
ness  is attached to the primary mass. The various displacement measures are ,
the absolute ground motion; , the relative motion between the primary mass and
the ground; and , the relative displacement between the damper and the primary
mass. With this notation, the governing equations take the form 

FIGURE 4.10: Pendulum damper layout—Crystal Tower. Takemaka Corporation.
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(4.29)

(4.30)

where  is the absolute ground acceleration and  is the force loading applied to

the primary mass. 

FIGURE 4.11: Ice storage tank—Crystal Tower. (Courtesy of Takemaka 
Corporation.)
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The excitation is considered to be periodic of frequency ,

(4.31)

FIGURE 4.12: Rocker pendulum.

FIGURE 4.13: SDOF system coupled with a TMD.
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(4.32)

Expressing the response as 

(4.33)

(4.34)

and substituting for these variables, the equilibrium equations are transformed to

(4.35)

(4.36)

The solutions for  and  are given by
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ûd
p̂

kd

-----

mρ2

D1

---------- 
  mâg
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(4.43)

(4.44)

This choice isolates the primary mass from ground motion and reduces the response

due to external force to the pseudostatic value, . A typical range for  is 

to . Then the optimal damper frequency is very close to the forcing frequency.

The exact relationship follows from Eq. (4.42).

(4.45)

We determine the corresponding damper stiffness with

(4.46)

Finally, substituting for , Eq. (4.44) takes the following form:

(4.47)

We specify the amount of relative displacement for the damper and determine

 with Eq. (4.47). Given  and , the stiffness is found using Eq. (4.46). It should

be noted that this stiffness applies for a particular forcing frequency. Once the mass

damper properties are defined, Eqs. (4.37) and (4.38) can be used to determine the

response for a different forcing frequency. The primary mass will move under

ground motion excitation in this case.

4.4.2 Undamped Structure: Damped TMD

The next level of complexity has damping included in the mass damper, as shown in

Figure 4.14. The equations of motion for this case are
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The inclusion of the damping terms in Eqs. (4.48) and (4.49) produces a phase shift

between the periodic excitation and the response. It is convenient to work initially with
the solution expressed in terms of complex quantities. We express the excitation as

(4.50)

(4.51)

where  and  are real quantities. The response is taken as

(4.52)

(4.53)

where the response amplitudes,  and , are considered to be complex quantities.

The real and imaginary parts of  correspond to cosine and sinusoidal input. Then

the corresponding solution is given by either the real (for cosine) or imaginary (for

sine) parts of  and . Substituting Eqs. (4.52) and (4.53) in the set of governing

equations and cancelling  from both sides results in

(4.54)

(4.55)

The solution of the governing equations is 

(4.56)

FIGURE 4.14: Undamped SDOF system coupled with a damped TMD system.
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icdΩ kd+[ ]ud– mΩ2– k+[ ]u+ mâg– p̂+=
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(4.57)

where

(4.58)

(4.59)

and  was defined earlier as the ratio of  to  [see Eq. (4.40)].
Converting the complex solutions to polar form leads to the following

expressions:

(4.60)

(4.61)

where the  factors define the amplification of the pseudo-static responses, and the

’s are the phase angles between the response and the excitation. The various H

and δ terms are as follows:

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

Also,

(4.67)
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(4.68)

(4.69)

(4.70)

(4.71)

For most applications, the mass ratio is less than about . Then the amplification

factors for external loading  and ground motion  are essentially equal. A

similar conclusion applies for the phase shift. In what follows, the solution corre-

sponding to ground motion is examined and the optimal values of the damper prop-

erties for this loading condition are established. An in-depth treatment of the

external forcing case is contained in Den Hartog’s text (Den Hartog, 1940).
Figure 4.15 shows the variation of  with forcing frequency for specific val-

ues of damper mass  and frequency ratio , and various values of the damper

damping ratio, . When , there are two peaks with infinite amplitude

located on each side of . As  is increased, the peaks approach each other

and then merge into a single peak located at . The behavior of the amplitudes

suggests that there is an optimal value of  for a given damper configuration (

and  or, equivalently,  and ). Another key observation is that all the curves

pass through two common points,  and . Since these curves correspond to dif-

ferent values of , the location of  and  must depend only on  and .
Proceeding with this line of reasoning, the expression for  can be written as

(4.72)

where the a terms are functions of , , and . Then for  to be independent of

, the following condition must be satisfied:

(4.73)

The corresponding values for  are

(4.74)
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Substituting for the a terms in Eq. (4.73), we obtain a quadratic equation for :

 (4.75)

The two positive roots  and  are the frequency ratios corresponding to points

 and . Similarly, Eq. (4.74) expands to

(4.76)

Figure 4.15 shows different values for  at points  and . For optimal

behavior, we want to minimize the maximum amplitude. As a first step, we require

the values of  for  and  to be equal. This produces a distribution that is

symmetrical about , as illustrated in Figure 4.16. Then, by increas-

ing the damping ratio, , we can lower the peak amplitudes until the peaks coin-

cide with points  and . This state represents the optimal performance of the

TMD system. A further increase in  causes the peaks to merge and the amplitude

to increase beyond the optimal value. 

FIGURE 4.15: Plot of  versus .
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Requiring the amplitudes to be equal at  and  is equivalent to the follow-

ing condition on the roots:

(4.77)

Then, substituting for  and  using Eq. (4.75), we obtain a relation between the

optimal tuning frequency and the mass ratio:

(4.78)

(4.79)

The corresponding roots and optimal amplification factors are

FIGURE 4.16: Plot of  versus  for .

0.85 0.9 0.95 1 1.05 1.1 1.15
0

5

10

15

20

25

30

H
2

r5
V
v

P Q

d !j dj

d ,j dj

r
1 opt

dj  opt

r
2 opt

H2 ρ fopt

P Q

1 ρ1
2

1 m+( )– 1 ρ2
2

1 m+( )–=

ρ1 ρ2

fopt
1 0.5m–

1 m+
--------------------------=

ωd opt
foptω=

ConCh04v2.fm  Page 238  Thursday, July 11, 2002  4:33 PM



Section 4.4 Tuned Mass Damper Theory for SDOF Systems 239

(4.80)

(4.81)

The expression for the optimal damping at the optimal tuning frequency is 

(4.82)

Figures 4.17 through 4.20 show the variation of the optimal parameters with the
mass ratio, .

The response of the damper is defined by Eq. (4.61). Specializing this equa-
tion for the optimal conditions leads to the plot of amplification versus mass ratio
contained in Figure 4.21. A comparison of the damper motion with respect to the
motion of the primary mass for optimal conditions is shown in Figure 4.22. 

FIGURE 4.17: Optimum tuning frequency ratio, .
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FIGURE 4.18: Input frequency ratios at which the response is independent of 
damping.

FIGURE 4.19: Optimal damping ratio for TMD.
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FIGURE 4.20: Maximum dynamic amplification factor for SDOF system (optimal 
tuning and damping).

FIGURE 4.21: Maximum dynamic amplification factor for TMD.
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242 Chapter 4 Tuned Mass Damper Systems

Lastly, response curves for a typical mass ratio, , and optimal tuning

are plotted in Figure 4.23 and Figure 4.24. The response for no damper is also plot-

ted in Figure 4.23. We observe that the effect of the damper is to limit the motion in

a frequency range centered on the natural frequency of the primary mass and

extending about . Outside of this range, the motion is not significantly influ-

enced by the damper.

FIGURE 4.22: Ratio of maximum TMD amplitude to maximum system amplitude.

FIGURE 4.23: Response curves for amplitude of system with optimally tuned TMD.
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The maximum amplification for a damped SDOF system without a TMD,

undergoing harmonic excitation, is given by Eq. (1.32):

(4.83)

Since  is small, a reasonable approximation is

(4.84)

Expressing the optimal  in a similar form provides a measure of the equivalent

damping ratio  for the primary mass:

(4.85)

Figure 4.25 shows the variation of  with the mass ratio. A mass ratio of  is

equivalent to about  damping in the primary system.

FIGURE 4.24: Response curves for amplitude of optimally tuned TMD.
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The design of a TMD involves the following steps:

• Establish the allowable values of displacement of the primary mass and the

TMD for the design loading. This data provides the design values for

 and .

• Determine the mass ratios required to satisfy these motion constraints

from Figure 4.20 and Figure 4.21. Select the largest value of .

• Determine  form Figure 4.17.

• Compute :

(4.86)

• Compute :

(4.87)

• Determine  from Figure 4.19.

• Compute :

(4.88)

FIGURE 4.25: Equivalent damping ratio for optimally tuned TMD.
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Example 4.2:   Design of a TMD for an undamped SDOF system

Consider the following motion constraints:

(1)

(2)

Constraint Eq. (1) requires . For constraint Eq. (2), we need to take

. Therefore,  controls the design. The relevant parameters are

Then

4.4.3 Damped Structure: Damped TMD

All real systems contain some damping. Although an absorber is likely to be added

only to a lightly damped system, assessing the effect of damping in the real system

on the optimal tuning of the absorber is an important design consideration.
The main system in Figure 4.26 consists of the mass , spring stiffness , and

viscous damping . The TMD system has mass , stiffness , and viscous damp-
ing . Considering the system to be subjected to both external forcing and ground

excitation, the equations of motion are

(4.89)

(4.90)

FIGURE 4.26: Damped SDOF system coupled with a damped TMD system.
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Proceeding in the same way as for the undamped case, the solution due to
periodic excitation (both p and ug) is expressed in polar form:

(4.91)

(4.92)

The various H and δ terms are defined as follows:

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

The  and  terms are defined by Eqs. (4.70) and (4.71).
In what follows, the case of an external force applied to the primary mass is

considered. Since  involves ξ, we cannot establish analytical expressions for the
optimal tuning frequency and optimal damping ratio in terms of the mass ratio. In
this case, these parameters also depend on . Numerical simulations can be applied
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âgm

k
----------H8 eiδ8–=

H5

f
2 ρ2

–[ ]
2

2ξdρf[ ]2
+

D3

-----------------------------------------------------------=

H6

1 m+( ) f
2 ρ2

–[ ]
2

2ξdρf 1 m+( )[ ]
2

+

D3

-------------------------------------------------------------------------------------------------=

H7
ρ2

D3

----------=

H8
1 2ξρ[ ]2+

D3

------------------------------=

D3 f 2ρ2m– 1 ρ2–( ) f 2 ρ2–( ) 4ξξdfρ2–+[ ]{ 2=

           4+ ξρ f 2 ρ2–( ) ξdfρ 1 ρ2 1 m+( )–( )2+[ ] }

δ5 α1 δ7–=

δ6 α2 δ7–=

δ8 α3 δ7–=

δtan 7 2
ξρ f 2 ρ2–( ) ξd fρ 1 ρ2 1 m+( )–( )+

f 2ρ2m– 1 ρ2–( ) f 2 ρ2–( ) 4ξξd f ρ2–+
----------------------------------------------------------------------------------------------------=

α3tan 2ξρ=

α1 α2

D3

ξ

ConCh04v2.fm  Page 246  Thursday, July 11, 2002  4:33 PM



Section 4.4 Tuned Mass Damper Theory for SDOF Systems 247

to evaluate  and  for a range of , given the values for , , , and . Start-

ing with specific values for  and , plots of  versus  can be generated for a

range of  and . Each  plot has a peak value of . The particular combi-

nation of  and  that corresponds to the lowest peak value of  is taken as the

optimal state. Repeating this process for different values of  and  produces the

behavioral data needed to design the damper system. 
Figure 4.27 shows the variation of the maximum value of  for the optimal

state. The corresponding response of the damper is plotted in Figure 4.28. Adding

damping to the primary mass has an appreciable effect for small . Noting

Eqs. (4.91) and (4.92), the ratio of damper displacement to primary mass displace-

ment is given by

(4.103)

Since  is small, this ratio is essentially independent of . Figure 4.29 confirms this

statement. The optimal values of the frequency and damping ratios generated

through simulation are plotted in Figures 4.30 and 4.31. Lastly, using Eq. (4.85),

 can be converted to an equivalent damping ratio for the primary system. 

(4.104)

Figure 4.32 shows the variation of  with  and .
Tsai and Lin (1993) suggest equations for the optimal tuning parameters 

and  determined by curve fitting schemes. The equations are listed next for

completeness.

(4.105)

(4.106)
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FIGURE 4.27: Maximum dynamic amplification factor for damped SDOF system.

FIGURE 4.28: Maximum dynamic amplification factor for TMD.

0
0

0.01

5

10

H
5 o

p
t

15

20

25

30

35

40

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

   5 0.0j

   5 0.02j

   5 0.05j

   5 0.1j

   5 0.01j

m

0

50

100

H
7 o

p
t

150

200

250

300

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

   5 0.0j

   5 0.02j

   5 0.05j

   5 0.1j

   5 0.01j

m

ConCh04v2.fm  Page 248  Thursday, July 11, 2002  4:33 PM



Section 4.4 Tuned Mass Damper Theory for SDOF Systems 249

FIGURE 4.29: Ratio of maximum TMD amplitude to maximum system amplitude.

FIGURE 4.30: Optimum tuning frequency ratio for TMD, .
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FIGURE 4.31: Optimal damping ratio for TMD.

FIGURE 4.32: Equivalent damping ratio for optimally tuned TMD.
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Example 4.3:   Design of a TMD for a damped SDOF system 

Example 4.2 is reworked here, allowing for  damping in the primary system. The

same design motion constraints are considered:

(1)

(2)

Using Figure 4.27, the required mass ratio for  is . The other opti-

mal values are  and . Then

In this case, there is a significant reduction in the damper mass required for this set

of motion constraints. The choice between including damping in the primary system

versus incorporating a tuned mass damper depends on the relative costs and reli-

ability of the two alternatives, and the nature of the structural problem. A TMD

system is generally more appropriate for upgrading an existing structure where

access to the structural elements is difficult.

4.5 CASE STUDIES: SDOF SYSTEMS

Figures 4.33 to 4.44 show the time history responses for two SDOF systems with

periods of 0.49 s and 5.35 s, respectively under harmonic (at resonance conditions),

El Centro, and Taft ground excitations. All examples have a system damping ratio

of 2% and an optimally tuned TMD with a mass ratio of 1%. The excitation magni-

tudes have been scaled so that the peak amplitude of the response of the system

without the TMD is unity. The plots show the response of the system without

the TMD (the dotted line) as well as the response of the system with the TMD (the

solid line). Figures showing the time history of the relative displacement of

the TMD with respect to the system are also presented. Significant reduction in the

response of the primary system under harmonic excitation is observed. However,

optimally tuned mass dampers are relatively ineffective under seismic excitation,

and in some cases produce a negative effect (i.e., they amplify the response

slightly). This poor performance is attributed to the ineffectiveness of tuned mass

dampers for impulsive loadings as well as their inability to reach a resonant condi-

tion and therefore dissipate energy under random excitation. These results are in

close agreement with the data presented by Kaynia et al. (1981).
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FIGURE 4.33: Response of SDOF to harmonic excitation.

FIGURE 4.34: Relative displacement of TMD under harmonic excitation.
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FIGURE 4.35: Response of SDOF to El Centro excitation.

FIGURE 4.36: Relative displacement of TMD under El Centro excitation.
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FIGURE 4.37: Response of SDOF to Taft excitation.

FIGURE 4.38: Relative displacement of TMD under Taft excitation.
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FIGURE 4.39: Response of SDOF to harmonic excitation.

FIGURE 4.40: Relative displacement of TMD under harmonic excitation.
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FIGURE 4.41: Response of SDOF to El Centro excitation.

FIGURE 4.42: Relative displacement of TMD under El Centro excitation.
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FIGURE 4.43: Response of SDOF to Taft excitation.

FIGURE 4.44: Relative displacement of TMD under Taft excitation.

0 10 20 30 40 50 60

21

20.8

20.6

20.4

20.2

0

0.2

0.4

0.6

0.8

1

Without TMD

With TMD

u
 (

m
)

Time (s)

T  5 5.35 s

m 5 0.01
    5 0.02j

0 10 20 30 40 50 60
26

24

22

0

2

4

6

u
d
 (

m
)

Time (s)

T  5 5.35 s

m 5 0.01
    5 0.02j

ConCh04v2.fm  Page 257  Thursday, July 11, 2002  4:33 PM



258 Chapter 4 Tuned Mass Damper Systems

4.6 TUNED MASS DAMPER THEORY FOR MDOF SYSTEMS

The theory of a SDOF system presented earlier is extended here to deal with a

MDOF system having a number of tuned mass dampers located throughout the

structure. Numerical simulations, which illustrate the application of this theory to

the set of example building structures used as the basis for comparison of the differ-

ent schemes throughout the text, are presented in the next section.

A 2DOF system having a damper attached to mass 2 is considered first to intro-

duce the key ideas. The governing equations for the system shown in Figure 4.45 are

(4.107)

(4.108)

(4.109)

The key step is to combine Eqs. (4.107) and (4.108) and express the resulting

equation in a form similar to the SDOF case defined by Eq. (4.90). This operation

reduces the problem to an equivalent SDOF system, for which the theory of

Section 4.4 is applicable. The approach followed here is based on transforming the

original matrix equation to scalar modal equations. 
Introducing matrix notation, Eqs. (4.107) and (4.108) are written as

(4.110)

where the various matrices are

FIGURE 4.45: 2DOF system with TMD.

k1 k2 kd

c1

ug u1 1 ug u2 1 ug u2 1 ug 1 ud

c2 cd

p1 p2

mdm1 m2

m1u
··

1 c1u
·

1 k1u1 k2 u2 u1–( )– c2 u
·

2 u
·

1–( )–+ + p1 m1u
··

g–=

m2u
··

2 c2 u
·

2 u
·

1–( ) k2 u2 u1–( ) kdud– cdu
·

d–+ + p2 m2u
··

g–=

mdu
··

d kdud cdu
·

d+ + md u
··

2 u
··

g+( )–=

MU
··

CU
·

KU+ +
p1 m1ag–

p2 m2ag–

0

kdud cdu
·

d+
+=
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(4.111)

(4.112)

(4.113)

(4.114)

We substitute for  in terms of the modal vectors and coordinates

(4.115)

The modal vectors satisfy the following orthogonality relations [see Eq. (2.211)]:

(4.116)

Defining modal mass, stiffness, and damping terms,

(4.117)

(4.118)

(4.119)

expressing the elements of  as

(4.120)

and assuming damping is proportional to stiffness

(4.121)

U
u1

u2

=

M
m1

m2

=

K
k1 k2+ k2–

k2– k2

=

C
c1 c2+ c2–

c2– c2

=

U

U Φ1q1 Φ2q2+=

Φj
T

KΦi δijωj
2Φj

T
MΦi=

m̃j Φj
T

MΦj=

k̃j Φj
T

KΦj ωj
2
m̃j= =

c̃j Φj
T

CΦj=

Φj

Φj

Φj1

Φj2

=

C αK=
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we obtain a set of uncoupled equations for  and :

(4.122)

With this assumption, the modal damping ratio is given by

(4.123)

Equation (4.122) represents two equations. Each equation defines a particular

SDOF system having mass, stiffness, and damping equal to , , and . Since a

TMD is effective for a narrow frequency range, we have to decide on which modal

resonant response is to be controlled with the TMD. Once this decision is made, the

analysis can proceed using the selected modal equation and the initial equation for

the TMD [i.e., Eq. (4.109)].
Suppose the first modal response is to be controlled. Taking  in

Eq. (4.122) leads to

(4.124)

In general,  is obtained by superposing the modal contributions

(4.125)

However, when the external forcing frequency is close to , the first mode

response will dominate, and it is reasonable to assume

(4.126)

Solving for  

(4.127)

and then substituting in Eq. (4.124), we obtain

q1 q2

m̃jq
··

j c̃jq
·

j k̃jqj+ + Φj1 p1 m1ag–( )= j  =  1, 2

Φj2 p2 m2ag– kdud cdu
·

d+ +( )+

ξj

c̃j

2ωjm̃j

---------------

αωj

2
---------= =

m̃ k̃ ξ

j 1=

m̃1q
··

1 c̃1q
·

1 k̃1q1+ + Φ11p1 Φ12p2+=

m1Φ11 m2Φ12+[ ]ag– Φ12 kdud cdu
·

d+[ ]+

u2

u2 Φ12q1 Φ22q2+=

ω1

u2 Φ12q1≈

q1

q1
1

Φ12

--------- u2=
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(4.128)

where , , , , and  represent the equivalent SDOF parameters for

the combination of mode 1 and node 2, the node at which the TMD is attached.

Their definition equations are

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)

Equations (4.109) and (4.128) are similar in form to the SDOF equations

treated in the previous section. Both set of equations are compared next.

TMD equation

(4.134)

Primary mass equation

(4.135)

Taking 

(4.136)

m̃1e u
··

2 c̃1e u
·

2 k˜ 1e u2+ + kdud cdu
·

d+=

p̃
1e

Γ1e
 m̃1e

 ag–+

m̃1e c̃1e k̃1e p̃1e Γ1e

m̃1e

1

Φ12
2

--------- m̃1=

k̃1e

1

Φ12
2

--------- k̃1=

c̃1e αk̃1e=

p̃
1e

Φ11p1 Φ12 p2+

Φ12

-------------------------------------=

Γ1e

Φ12

m̃1

--------- m1Φ11 m2Φ22+( )=

md u··d cd u·d kd ud+ + md u·· ag–( )–=

versus

  md u··d cd u·
d

kd ud+ + md u··2 ag–( )–=

mu·· cu· ku+ + cd u·
d

kd ud p mag                             –+ +=

versus

  m̃1e u··2 c̃1e u· 2 k˜ 1e u2+ + cd u·
d

kd ud p̃1e Γ1em̃1eag–+ +=

u2 u≡ m̃1e m≡ c̃1e c≡ k̃1e k≡

p̃
1e

p≡ Γ1e Γ≡
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transforms the primary mass equation for the MDOF case to

(4.137)

which differs from the corresponding SDOF equation by the factor Γ. Therefore,

the solution for ground excitation generated earlier has to be modified to account

for the presence of Γ.
The “generalized” solution is written in the same form as the SDOF case. We

need only to modify the terms associated with  (i.e., H6, H8 and δ6, δ8). Their

expanded form is as follows:

(4.138)

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

where  is defined by Eq. (4.97), and  is given by Eq. (4.101).
From this point on, we proceed as described in Section 4.4. The mass ratio is

defined in terms of the equivalent SDOF mass.

(4.144)

Given  and , we find the tuning frequency and damper damping ratio using

Figures 4.30 and 4.31. The damper parameters are determined with

(4.145)

(4.146)

(4.147)

mu·· cu· ku+ + cd u·
d

kd ud p Γmag  –+ +=

ag

H6

Γ m+( )f
2 Γρ2

–[ ]
2

2ξdρf Γ m+( )[ ]
2

+

D3

----------------------------------------------------------------------------------------------------=

H8
1 ρ2 Γ 1–( )+[ ]

2
2ξρ[ ]2

+

D3

-------------------------------------------------------------------=

a2tan
2ξdfρ Γ m+( )

f 2 Γ m+( ) Γρ2–
----------------------------------------=

a3tan
2ξρ

1 Γ 1–( )ρ2+
--------------------------------=

δ6 a2 δ7–=

δ8 a3 δ7–=

D3 δ7

m
md

m̃1e

---------=

m ξ1

md m m̃1e=

ωd f
opt

ω1=

cd 2ξd
opt

ωdmd=
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Expanding the expression for the damper mass,

(4.148)

shows that we should select the TMD location to coincide with the maximum

amplitude of the mode shape that is being controlled. In this case, the first mode is

the target mode, and  is the maximum amplitude for .
This derivation can be readily generalized to allow for tuning on the th

modal frequency. We write Eq. (4.127) as

(4.149)

where  is either  or . The equivalent parameters are

(4.150)

(4.151)

Given  and , we specify  and find the optimal tuning with

(4.152)

Example 4.4:   Design of a TMD for a damped MDOF system

To illustrate the foregoing procedure, a 2DOF system having  is con-

sidered. Designing the system for a fundamental period of  and a uniform

deformation fundamental mode profile yields the following stiffnesses (refer to

Example 1.6):

Requiring a fundamental mode damping ratio of , and taking damping propor-

tional to stiffness ( ), the corresponding  is

md m m̃1e

m Φ1
T

MΦ1[ ]

Φ12
2

------------------------------= =

Φ12 Φ1

i

qi

1
Φi2

-------- u2≈

i 1 2

m̃ie
1

Φi2
2

-------- m̃i=

k̃ie ωi
2
m̃ie=

m̃ie ξi m

ωd foptωi=

m1 m2 1= =

T1 1 s=

k1 12π2
118.44= =

k2 8π2
78.96= =

2%

C αK= α

α
2ξ1

ω1

--------

0.02
π

---------- 0.0064= = =
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The mass, stiffness, and damping matrices for these design conditions are

Performing an eigenvalue analysis yields the following frequencies and mode
shapes:

The corresponding modal mass, stiffness, and damping terms are

The optimal parameters for a TMD located at node 2, having a mass ratio of
 and tuned to a specific mode, are as follows:

Mode 1: optimum location is node 2

Mode 2: optimum location is node 1

M 1 0

0 1
=

K 197.39 78.96–

78.96–   78.96
=

C   1.26 0.51–

0.51–   0.51
=

ω1 6.28 rad/s= ω2 15.39 rad/s=

Φ1
0.5

1.0
= Φ2

1.0

0.5–
=

m̃1 Φ1
T

MΦ1 1.25= = m̃2 Φ2
T

MΦ2 1.25= =

k˜ 1 Φ1
T

KΦ1 49.35= = k˜ 2 Φ2
T

KΦ2 296.09= =

c̃1 Φ1
T

CΦ1 0.32= = c̃2 Φ2
T

CΦ2 1.90= =

ξ1

c̃1

2ω1m̃1

----------------- 0.02= = ξ2

c̃2

2ω2m̃2

----------------- 0.049= =

0.01

fopt 0.982= ξd opt
0.062=

md 0.0125= kd 0.4754= cd 0.0096=

fopt 0.972= ξd opt
0.068=

md 0.0125= kd 2.7974= cd 0.0254=
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This result is for the damper located at node 2. When located at node 1, the mass

and stiffness are reduced 75%.

The general case of a MDOF system with a tuned mass damper connected to

the nth degree of freedom is treated in a similar manner. Using the notation defined

previously, the jth modal equation can be expressed as

(4.153)

where  denotes the modal force due to ground motion and external forcing, and

 is the element of  corresponding to the nth displacement variable. To control

the ith modal response, we set  in Eq. (4.153) and introduce the

approximation

(4.154)

This leads to the following equation for :

(4.155)

where

(4.156)

(4.157)

(4.158)

(4.159)

The remaining steps are the same as described previously. We specify  and ,

determine the optimal tuning and damping values with Figures 4.30 and 4.31, and

then compute  and .

(4.160)

(4.161)

The optimal mass damper for mode  is obtained by selecting  such that  is the

maximum element in .

m̃jq
··

j c̃jq
·

j k̃jqj+ + p̃j Φjn kdud cdu
·

d+[ ]+= j  =  1, 2, . . . 

p̃j

Φjn Φj

j i=

qi

1
Φin

-------- un≈

un

m̃ie u
··

n c̃ie u
·

n k̃ie un+ + p̃ie kdud cdu
·

d++=

m̃ie

1

Φin
2

-------- M̃i

1

Φin
2

-------- Φi
T

MΦi= =

k̃ie ωi
2
m̃ie=

c̃ie αk̃ie=

p̃
ie

1
Φin

-------- p̃i=

m ξi

md ωd

md m m̃ie
m

Φin
2

-------- Φi
T

MΦi= =

ωd foptωi=

i n Φin

Φi
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Example 4.5:   Design of TMDs for a simply supported beam

Consider the simply supported beam shown in Figure E4.5a. The modal

shapes and frequencies for the case where the cross sectional properties are con-

stant and the transverse shear deformation is negligible are

(1)

(2)

We obtain a set of N equations in terms of N modal coordinates by expressing

the transverse displacement, u(x, t), as

(3)

and substituting for u in the principle of virtual displacements specialized for negli-

gible transverse shear deformation [see Eq. (2.157)],

(4)

Substituting for ,

(5)

FIGURE E4.5a

x*

x
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L
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L
----------sin=
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4
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and taking

(6)

leads to the following equations:

(7)

Lastly, we substitute for M and b in terms of  and q and evaluate the inte-
grals. The expressions for M and b are

(8)

(9)

Noting the orthogonality properties of the modal shape functions,

(10)

(11)

the modal equations uncouple and reduce to

(12)

where

(13)

(14)

(15)

δu δqjΦj=

MΦj xx, xd∫– bΦj xd∫=
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Φ

M EIχ EI qlΦl xx,
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b ρmu
··

– b x t,( )+ ρm Φlq
··
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ΦjΦk xd
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L

∫ δjk
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2
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L

∫
jπ
L
----- 

 
4

δjk

L

2
----=

m̃jq
··

j k˜ jqj+ p̃j=

m̃j

Lρm
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-----------=

k̃j EI
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4L

2
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p̃j b
jπx
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--------sin xd

0

L

∫=
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When the external loading consists of a concentrated force applied at the loca-

tion  (see Figure E4.5a), the corresponding modal load for the jth mode is

(16)

In this example, the force is considered to be due to a mass attached to the beam as

indicated in Figure E4.5b. The equations for the tuned mass and the force are

(17)

 (18)

Suppose we want to control the ith modal response with a tuned mass damper

attached at . Taking j equal to i in Eqs. (12) and (13), the ith modal equation

has the form

(19)

Assuming the response is dominated by the ith mode,  is approximated by

(20)

and Eq. (19) is transformed to an equation relating  and .

(21)

FIGURE E4.5b

x x*=

p̃j P* jπx*
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u
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·

d+ 0=
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x x*=

m̃iq
··
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where

(22)

The remaining steps utilize the results generated for the SDOF undamped structure

– damped TMD system considered in Section 4.3. We use  and  as the mass

and stiffness parameters for the primary system.
To illustrate the procedure, consider the damper to be located at midspan, and

the first mode is to be controlled. Taking i = 1 and , the corresponding

parameters are

(23)

(24)

(25)

We specify the equivalent damping ratio, , and determine the required mass ratio

from Figure 4.32. For example, taking  requires . The other

parameters corresponding to  follow from Figures 4.29, 4.30, and 4.31.

(26)

(27)

(28)

Using these parameters, the corresponding expression for the damper properties are

(29)

(30)

(31)

(32)

m̃ie

1

iπx*

L
-----------sin 

 
2

--------------------------- m̃i=

m̃ie k̃ie

x* L 2⁄=
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L
-----------sin 1=
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Lρm

2
-----------= =
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EIL

2
-----------

π
L
---- 

 
4

= =

ξe

ξe 0.06= m 0.03=

m 0.03=

fopt

ωd

ω1

------ 0.965= =

ξd opt
0.105=

ûd

û
*

----- 5=

md 0.03m̃1=

ωd 0.965ω1=

kd ωd
2md=
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Once  and  are specified, the damper properties can be evaluated. For

example, consider the beam to be a steel beam having the following properties:

(33)

The beam parameters are

(34)

Applying Eqs. (29) through (32) results in

(35)

The total mass of the girder is 20,000 kg. Adding 300 kg, which is just 1.5% of the

total mass, produces an effective damping ratio of 0.06 for the first mode response.
The mode shape for the second mode has a null point at x = L/2, and therefore

locating a tuned mass at this point would have no effect on the second modal

response. The optimal locations are  and . Taking 

and i = 2, we obtain

(36)

(37)

(38)

(39)

The procedure from here on is the same as before. We specify  and determine the

required mass ratio and then the frequency and damping parameters. It is of interest

to compare the damper properties corresponding to the same equivalent damping

ratio. Taking , the damper properties for the example steel beam are

m̃1 ω1

  L 20 m=

ρm 1000 kg m⁄=

    I 8 10 4– m4×=

   E 2 1011 N m2⁄×=

m̃1 10 000 kg,=

ω1 9.87 rad s⁄=

md 300 kg=

ωd 9.52 r s⁄=

kd 27 215 N m⁄,=

cd 599.8 N s m⁄⋅=

x* L 4⁄= x* 3L 4⁄= x* L 4⁄=

iπx*

L
-----------sin 1=

m̃2e m̃2
Lρm

2
-----------= =

k̃2e k̃2 8EIL
π
L
---- 

 
4

= =

ω2
2 16EI

ρm

-------------

π
L
---- 

 
4

=

ξe

ξe 0.06=
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(40)

(41)

(42)

The required damper stiffness is an order of magnitude greater than the corre-

sponding value for the first mode response.

4.7 CASE STUDIES: MDOF SYSTEMS

This section presents shear deformation profiles for the standard set of building

examples defined in Table 2-4. A single TMD is placed at the top floor and tuned to

either the first or second mode. The structures are subjected to harmonic ground

acceleration with a frequency equal to the fundamental frequency of the buildings,

as well as scaled versions of El Centro and Taft ground accelerations. As expected,

significant reduction in the response is observed for the harmonic excitations (see

Figures 4.46 through 4.49). The damper is generally less effective for seismic excita-

tion versus harmonic excitation (see Figures 4.50 through 4.61). Results for the low

period structures show more influence of the damper, which is to be expected since

the response is primarily due to the first mode. This data indicates that a TMD is

not the optimal solution for controlling the motion due to seismic excitation. 

FIGURE 4.46: Maximum shear deformation for Building 1.
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FIGURE 4.47: Maximum shear deformation for Building 2.

FIGURE 4.48: Maximum shear deformation for Building 3.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 h
ei

gh
t

x H

Maximum shear deformation    (m/m)#

m 5 0%

m 5 1%

m 5 2%

m 5 5%

Building 2

Quadratic based

Initial

Harmonic

TMD—Mode 1

H 5 50 m

s 5 0.25
S

v
 5 1.2 m/s

rm 5 20,000 kg/m

1 5 2%j

#*

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 h
ei

gh
t

x H

Maximum shear deformation    (m/m)#

m 5 0%

m 5 1%

m 5 2%

m 5 5%

Building 3

Quadratic based

Initial

Harmonic

TMD—Mode 1

H 5 100 m

s 5 0.40
S

v
 5 1.2 m/s

rm 5 20,000 kg/m

1 5 2%j

#*

ConCh04v2.fm  Page 272  Thursday, July 11, 2002  4:33 PM



Section 4.7 Case Studies: MDOF Systems 273

FIGURE 4.49: Maximum shear deformation for Building 4.

FIGURE 4.50: Maximum shear deformation for Building 1.
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FIGURE 4.51: Maximum shear deformation for Building 1.

FIGURE 4.52: Maximum shear deformation for Building 2.
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FIGURE 4.53: Maximum shear deformation for Building 2.

FIGURE 4.54: Maximum shear deformation for Building 3.

0 0.001 0.002 0.003 0.004 0.005

Maximum shear deformation    (m/m)#

*#

0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 h
ei

gh
t

x H

Building 2
Quadratic based
Initial
H 5 50 m
rm 5 20,000 kg/m
s 5 0.25
S

v
 5 1.2 m/s

Taft
TMD—Mode 1

  1 5 2%j

m 5 0%

m 5 5%

m 5 2%

m 5 1%

0 0.001 0.002 0.003 0.004 0.005

Maximum shear deformation    (m/m)#

*#

0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 h
ei

gh
t

x H

m 5 0%

m 5 5%

m 5 2%

m 5 1%

Building 3
Quadratic based
Initial
H 5 100 m
rm 5 20,000 kg/m
s 5 0.40
S

v
 5 1.2 m/s

  1 5 2%
El Centro
TMD—Mode 1

j

ConCh04v2.fm  Page 275  Thursday, July 11, 2002  4:33 PM



276 Chapter 4 Tuned Mass Damper Systems

FIGURE 4.55: Maximum shear deformation for Building 3.

FIGURE 4.56: Maximum shear deformation for Building 3.
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FIGURE 4.57: Maximum shear deformation for Building 3.

FIGURE 4.58: Maximum shear deformation for Building 4.
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FIGURE 4.59: Maximum shear deformation for Building 4.

FIGURE 4.60: Maximum shear deformation for Building 4.

0 0.001 0.002 0.003 0.004 0.005

Maximum shear deformation    (m/m)#

*#

0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Building 4
Quadratic based
Initial
H 5 200 m
rm 5 20,000 kg/m
s 5 0.63
S

v
 5 1.2 m/s

Taft
TMD—Mode 1

  1 5 2%j

m 5 0%

m 5 5%

m 5 2%

m 5 1%

N
o

rm
al

iz
ed

 h
ei

gh
t

x H

0 0.001 0.002 0.003 0.004 0.005

Maximum shear deformation    (m/m)#

*#

0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 h
ei

gh
t

x H

m 5 0%

m 5 5%

m 5 2%

m 5 1%

Building 4
Quadratic based
Initial
H 5 200 m
rm 5 20,000 kg/m
s 5 0.63
S

v
 5 1.2 m/s

El Centro
TMD—Mode 2

  1 5 2%j

ConCh04v2.fm  Page 278  Thursday, July 11, 2002  4:33 PM



Problems 279

PROBLEMS

Problem 4.1

Verify Eqs. (4.13) through (4.17). Hint: Express p, u, and ud in complex form

and solve Eqs. (4.6) and (4.7) for  and . Then take

FIGURE 4.61: Maximum shear deformation for Building 4.
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Problem 4.2

Refer to Eqs. (4.14) and (4.20). Express  as a function of , , and .

Take , and plot  versus  for a representative range of the magnitude

of the displacement ratio, .

Problem 4.3

Figure 4.7 illustrates an active tuned mass damper configuration. The damper

can be modeled with the 2DOF system shown in Figure P4.3. The various terms are

as follows:  is the total displacement of the support attached to the floor beam;

is the self-equilibrating force provided by the actuator;  are parame-

ters for the damper mass;  and  are parameters for the auxillary mass.

(a) Derive the governing equation for  and . Also determine an 

expression for the resultant force, R, that the system applies to the floor 

beam.

(b) Consider  to be several orders of magnitude smaller than  (e.g., 

). Also take the actuator force to be a linear function of 

the relative velocity of the damper mass.

Specialize the equations for this case. How would you interpret the contribution of

the actuator force to the governing equation for the damper mass?

Problem 4.4

Design a pendulum damper system having a natural period of 6 seconds and

requiring less than 4 meters of vertical space.

FIGURE P4.3
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Problem 4.5

The pendulum shown in Figure P4.5 is connected to a second mass, which is

free to move horizontally. The connection between mass 1 and mass 2 carries only

shear. Derive an equation for the period of the compound pendulum and the length

of an equivalent simple pendulum. Assume the links are rigid.

Problem 4.6

Refer to Figure 4.12. Establish the equations of motion for the mass, , con-

sidering  to be small. Verify that the equivalent stiffness is equal to .

Problem 4.7

Refer to Figure 4.15 and Eq. (4.76). Derive the corresponding expression for

 starting with Eq. (4.62) and using the same reasoning strategy. Considering

the mass ratio, , to be less than 0.03, estimate the difference in the “optimal”

values for the various parameters.

Problem 4.8

Generate plots of  versus  for  ranging from 0 to 0.2, , and

. Compare the results with the plots shown in Figure 4.23.

Problem 4.9

Consider a system composed of an undamped primary mass and a tuned mass

damper. The solution for periodic force excitation is given by [see Eqs. (4.52) to (4.71)]

FIGURE P4.5
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

The formulation for the optimal damper properties carried out in Section 4.3

was based on minimizing the peak value of H1 (actually H2 but H1 behaves in a sim-

ilar way) (i.e., on controlling the displacement of the primary mass). Suppose the

design objective is to control the acceleration of the primary mass. Noting Eqs. (1)

and (3), the acceleration is given by

(8)

(9)

Substituting for k transforms Eq. (9) to

(10)

where

(11)

Investigate the behavior of  with , and . If it behaves similar to , as

shown in Figure 4.15, describe how you would establish the optimal values for the

various parameters, and also how you would design a tuned mass system when  is

specified.

u ueiΩt=

ud udeiΩt=

u
p

k
---H1e iδ1=

ud
p

k
---H3eiδ3=

H1

f
2 ρ2

–[ ]
2

2ξdρf[ ]2
+

D2

---------------------------------------------------------=

H3
ρ2

D2

----------=

D2 1 ρ2
–[ ] f

2 ρ2
–[ ] mρ2

f
2

–( )
2

2ξdρf 1 ρ2
1 m+( )–[ ]( )

2
+=

u
··

a ae iΩt= =

a
pΩ2

k
----------H1ei δ1 π+( )=

a
p

m
-----H ′

1  ei δ1 π+( )=

H′
1 ρ2H1=

H′
1 ρ f m, , ξd H2

H ′
1
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Problem 4.10

Design a TMD for a damped SDOF system having . The design

motion constraints are

(a)

(b)

(c) Repeat part (b), considering  to be equal to 0.05.

Problem 4.11

This problem concerns the design of a tuned-mass damper for a damped

single degree of freedom system. The performance criteria are

              

(a) Determine the damper properties for a system having  = 10,000 kg 

and  for the following values of :

•

•

(b) Will the damper be effective for an excitation with frequency 

? Discuss the basis for you conclusion.

Problem 4.12

Refer to Example 3.7. Suppose a tuned mass damper is installed at the top

level (at mass 5). 

ξ 0.02=

H5 opt
10<

H7

H5 opt

---------------- 5<

H5 opt
5<

H7

H5 opt

---------------- 5<

ξ

ξeq 0.1= ûd û⁄ 5=

m

k 395 kN/m= ξ

ξ 0.02=

ξ 0.05=

2.5π rad/s
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(a) Determine the damper properties such that the equivalent damping 

ratio for the fundamental mode is 0.16. Use the values of , ,  from 

Example 3.7. Assume stiffness proportional damping for c.

(b) Consider the tuned mass damper to be a pendulum attached to  

(Figure P4.12). Determine  and  for the damper properties estab-

lished in part (a).

(c) Repeat part (a) for the case where the mass damper is tuned for the sec-

ond mode rather than for the first mode, and the desired equivalent 

modal damping ratio is 0.3. Use the same values of , ,  and assume 

stiffness proportional damping. 

Problem 4.13

Consider a cantilever shear beam with the following properties:

•    

•    

•    

(a) Model the beam as a 10DOF discrete shear beam having 5 m segments. 

Determine the first three mode shapes and frequencies. Normalize the 

mode shapes such that the peak amplitude is unity for each mode.

(b) Design tuned mass dampers to provide an effective modal damping ratio 

of 0.10 for the first and third modes. Take  and assume modal 

damping is proportional to stiffness.

Note: You need to first establish the ‘‘optimal location’’ of the tuned mass
dampers for the different modes.

Problem 4.14

Consider a simply supported steel beam having the following properties:

FIGURE P4.12
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(a) Design tuned mass damper systems that provide an equivalent damping 

of 0.05 for each of the first three modes.

(b) Repeat part (a) with the constraint that an individual damper mass can-

not exceed 300 kg. Hint: Utilize symmetry of a particular mode shape to 

locate a pair of dampers whose function is to control that mode.

Problem 4.15

Consider the simply supported beam shown in Figure P4.15. The beam has a

uniform weight of 15 kN/m and a concentrated weight at midspan of 100 kN. The

flexural rigidity is constant and equal to 200,000 kN-m2.

(a) Assume the first mode can be approximated by:

Determine the governing equation for  using the principle of virtual 

displacements.

(b) Design a tuned mass damper to provide an equivalent damping ratio of 

0.05 for the first mode. Assume no damping for the beam itself.

(c) Will the damper designed in part (b) be effective for the second mode? 

Explain your answer.

Problem 4.16

Refer to Problem 3.25, part (b). Suggest a tuned mass damper for generating

the required energy dissipation.

FIGURE 4.15
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