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ABSTRACT 15 

When a dwell time equation was needed to plan a proposed campus shuttle route, no recent 16 

equations for buses could be found.  However, the buses in the local system were equipped with 17 

video cameras that permitted counts of variables that might affect dwell time.  Conversion of 18 

data from video to worksheets was surprisingly easy.  Viewing the videos was also instructive, in 19 

terms of how passenger numbers and behavior affect dwell time, and how unusual events should 20 

be dealt with in the database.  The dwell time equations that were developed from the local video 21 

data were compared with equations found in the literature.  There was a distinct difference.  This 22 

paper describes the video system, how the local data were transcribed, how the dwell time 23 

equations were specified and tested, and how alternate equations were applied to the proposed 24 

route.  The advantages of using video as a data source are recounted. 25 
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INTRODUCTION 1 

The Master Plan for Purdue University’s campus contains a provision for a 2.27-mile “shuttle 2 

loop” on which bus service would be provided.  When a detailed design of a Bus Rapid Transit 3 

service on this route was attempted as a class project in a Public Mass Transportation course, the 4 

students had reasonable information about certain elements of the shuttle loop’s operation: 5 

• Bus acceleration and deceleration rates 6 

• Maximum speed on each segment between stops 7 

• Estimated number of passengers boarding and alighting at each stop by time of day.   8 

It quickly became apparent that a key element was dwell time -- the time a vehicle would spend 9 

discharging and taking on passengers at 10 

each proposed stop.  A good estimate of dwell time was needed to determine the time needed for 11 

a bus to complete the loop at any given time of day.  This information, coupled with a desired 12 

headway, would determine the number vehicles needed to meet service requirements.   13 

When a method for converting passenger boardings and alightings into dwell times was 14 

sought, only a few studies of possible use were found. 15 

 16 

DWELL TIME STUDIES IN THE LITERATURE 17 

Feder (1) developed the following equation to predict dwell time:  DT = 1.31 + 2.573*BA, where 18 

BA = number of boardings and alighting at a bus stop. 19 

Levinson (2) reported that bus dwell time (DT) was DT = 5.0 + 2.75*BA, where BA = 20 

number of “interchanging” (boarding or alighting) passengers. 21 

Guenthner and Sinha (3) found DT/passenger = 5.0 – 1.2*ln(BA), where BA = number of 22 

boardings and alighting at a bus stop. 23 

Guenthner and Hamat (4) computed dwell time separately for boarding and alighting bus 24 

passengers:  DT = 2.25 + 1.81*A and DT = -0.27 + 5.66*B, where A = number of alighting 25 

passengers and B = number of boarding passengers. 26 

Work by Lin and Wilson (5) for light rail transit determined that the number of standees 27 

could affect dwell times by “up to half a minute, or more”: 28 

DT = 9.24 + 0.71*B + 0.52*A + 0.16*LS 29 

where  B = number of passengers boarding the train 30 

 A = number of passengers alighting from the train 31 

 LS = number of departing standees 32 

Based on observations made at light rail stations, Puong (6) developed models “showing 33 

linear effects in passenger boardings and alightings but nonlinear effects in the on-vehicle 34 

crowding level”: 35 

DT =12.22 + 2.27*Bd + 1.82*Ad + 6.2*10−4*TSd
3*Bd 36 

where 37 

Ad = alighting passengers per door, 38 

Bd = boarding passengers per door, and 39 

TSd = through standees per door, i.e., total through standees divided by the number of 40 

doors 41 

Bertini and El-Geneidy (7) observed dwell times at bus stops along Portland OR TriMet 42 

Route 14.  The mean of 459 dwell times was 12.42 seconds, with a standard deviation of 9.23 43 

seconds.  No equation was developed. 44 
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Dueker et al. (8) analyzed nearly 400,000 bus dwell observations in Portland OR that 1 

were collected using automated vehicle location (AVL) and automated passenger count (APC) 2 

technology.  The resulting equation was 3 

DT = 5.136 + 3.481*B – 0.04*B2 + 1.701*A – 0.031*A2 - 0.144*ONTIME + 1.364*TOD2 4 

where 5 

• DT is the duration in seconds the front door is open at a bus stop where passenger activity 6 

occurs. 7 

• B is the number of boarding passengers. 8 

• A is the number of alighting passengers. 9 

• ONTIME indicates whether the bus is “ahead or behind schedule”. 10 

• TOD2 is the effect (1.364 seconds) on dwells of mid-day operation, referenced to dwells 11 

during the morning peak period. 12 

 13 

UPDATED DATA ON DWELL TIME 14 

Many of the dwell time equations found in the literature were old or dealt with rail transit.  Since 15 

the 1980s, low-floor buses have become more prevalent and fare collection has become more 16 

efficient.  Furthermore, a route on campus may have passenger characteristics different from the 17 

routes used in the earlier studies.  For the class project, a plausible hypothetical equation was 18 

used, just to demonstrate how dwell time can affect a route design.  Clearly, there was a need for 19 

a more extensive study, but there was not sufficient time to conduct an appropriate study before 20 

the semester ended.   21 

Greater Lafayette Public Transportation Corporation (GLPTC aka CityBus) is the local 22 

bus operator that also serves the campus.  CityBus had an automatic passenger count (APC) 23 

system that provided a data base with the format shown in Table 1.  Note that it has almost 24 

enough data to permit a statistical analysis of dwell time without a field study.  However, one 25 

data item is missing.  In order to compute dwell time, the times at which the front door opens and 26 

closes are needed.  The APC data in Table 1 include only the door closing time, i.e., the Actual 27 

departure time.   28 

 29 

TABLE 1  Excerpt of Automatic Passenger Count Data Report 

Stop 

Actual 

dep 

Sched 

dep Boardings Alightings Load 

Route 0, Block 1503 8:00:17 7:40:00 0 0 0 

CIRCLE PINES,3 8:00:17 8:00:00 0 5 0 

Route 15, Block 1503 8:00:17 8:00:00 12 11 0 

CIRCLE PINES,3 8:00:17 8:00:00 3 0 3 

ALPHA CHI,3 8:00:41 8:00:30 3 0 6 

ALPHA PHI,3 8:01:05 8:01:00 0 0 6 

SIGMA NU,7 8:02:12 8:02:00 1 0 7 

Hilltop & Tower,1 8:03:19 8:03:00 3 0 10 

Russell & Tower,2 8:04:32 8:05:00 0 0 10 

Waldron & Stadium,2 8:06:00 8:06:00 1 0 11 

 30 
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Fortunately, most buses operated by CityBus are equipped with as many as eight cameras (see 1 

Figure 1): 2 

1. Through the front windshield 3 

2. Along the right side of the bus (exterior) 4 

3. Along the left side of the bus (exterior) 5 

4. Looking out through the front door 6 

5. Looking out through the side door 7 

6. Looking forward from the back interior of the bus 8 

7. Looking toward the back of the bus from the front interior of the bus 9 

8. Looking down the rear exterior of the bus to the pavement (not shown in Figure 1) 10 

 11 

Camera 1 

 

Camera 2 

 

Camera 3 

 
Camera 4 

 

Camera 5 

 

Camera 6 

 
Camera 7 

 

FIGURE 1  Camera views. 

 12 

A sample video was obtained from CityBus.  This video, and all subsequent videos used 13 

in this study, were for 40-foot buses with two side doors.  Most passengers used a Purdue 14 

University pass; a few paid the cash fare.  It was quickly determined that good dwell time 15 

information could be obtained from the video.  Guided by the studies in the literature, the 16 

following data were extracted from the video.   17 

1. Number of passengers standing in the aisle or in front of the side door after passengers 18 

have had the opportunity to find and take seats as the bus is proceeding to the next stop 19 

2. Time at which front door opens 20 

3. Number of passengers leaving by front door 21 
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4. Number of passengers leaving by side door 1 

5. Number of passengers entering by front door 2 

6. Time at which front door closes 3 

7. Any special circumstances 4 

These data were converted into the entries for each stop that are shown in Table 2.  Table 2 5 

contains dwell time data for 19 stops made by a bus between 10:32AM and 11:02AM on 6 

Wednesday 2 December 2009.  In Table 2, “dwell time” = “Time front door closes” – “Time 7 

front door opens“, with exceptions that are explained below.  Using Cameras 4 and 5 (and 8 

sometimes Camera 2), the numbers of passengers alighting and boarding were easily counted.  9 

Using Cameras 6 and 7 (and sometimes repeat viewing), the number of standees could be 10 

accurately determined.   11 

The advantages of using video for data collection are (a) event times can be reviewed and  12 

corrected, (b) counts (especially of 
standing passengers) can be verified, (c) 
special circumstances can be noted and 
discussed by other members of the research 
team.  Examples of “special 
circumstances” found in the first 30 
minutes of video were: 
A. A stop at which no passengers alighted 

or boarded while the bus doors were 
open.  This stop was included in the 
database, because it helped establish the 
constant term in the dwell time 
equation to be estimated.  

B. A stop at which the bus operator waited 
for a passenger to run to catch that bus.  
In this case, the time at which the door 
would have closed under normal 
circumstances was estimated. 

C. A stop that had an artificially long 
dwell time, because it was a time check 
point.  Again, the time at which the 
door would have closed under normal  

TABLE 2  Sample Dwell Time Data,  
10:32-11:02AM 

dwell  pax alighting pax 
time standees front side boarding 

30 4 7 3 10 
11 3 0 1 0 

4 3 0 1 0 
32 3 10 19 4 
10 0 1 3 0 
11 0 2 0 1 

8 0 0 1 2 
7 0 2 0 0 
9 0 1 1 1 
4 0 0 0 0 
8 0 0 1 1 

22 0 0 3 1 
5 0 0 0 1 
5 0 0 1 0 

18 0 4 2 6 
4 0 0 0 1 
6 0 0 0 2 
7 0 0 0 3 

21 1 0 1 3 
circumstances was estimated. 13 

Another circumstance is possible: What if the side door closes after front door?  In that case, the 14 

dwell time would be defined as “Time side door closes” – “Time front door opens”.  Other 15 

unusual events can be handled in a similar way – in a way that explains dwell time in a 16 

reasonable way. 17 

 18 

DWELL TIME DATA ANALYSIS 19 

Five additional videos (in DVD format) were obtained from CityBus, increasing the number of 20 

stops in the analysis to 100.  To investigate whether any non-linear relationships might exist, the 21 

following plots were created: 22 

• Dwell Time (DT) vs. passengers leaving by front door (Figure 2a) 23 

• DT vs. passengers leaving by side door (Figure 2b) 24 
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• DT vs. Total passengers alighting (Figure 2c) 1 

• DT vs. Total passengers boarding  (Figure 2d) 2 

• DT vs. standees (Figure 2e) 3 

With the exception of two points with extremely high dwell times, the plots in Figures 4 

2a-2c do not exhibit non-linear behavior.  The point with DT=143 occurred when 35 passengers 5 

boarded at one stop.  The point with DT=160 was the result of 5 passengers leaving by the front 6 

door, 8 by the side door, followed by 55 boardings.  These extreme cases may actually help 7 

develop a dwell time model that better represents a wide range of possible bus service 8 

conditions. 9 
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FIGURE 2a  DT vs. passengers leaving by 

front door. 
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FIGURE 2b  DT vs. passengers leaving by 

side door. 
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FIGURE 2c  DT vs. Total pax alighting. 
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FIGURE 2d  DT vs. Total pax boarding. 
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FIGURE 2e  DT vs. Standees. 
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FIGURE 2f  DT vs. Total Alightings + 

Boardings. 
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The expectation was that DT would have a linear relationship with Total Passengers Alighting 1 

(A) and with Total Passengers Boarding (B) for small and moderate values of A and B, then 2 

increase more rapidly as standing passengers associated with high A and B values began to affect 3 

passenger movements within the bus.  Figures 2c-2e do not show that behavior, however. 4 

Several multiple linear regression equations were proposed and estimated.  The results 5 

are summarized in Table 3. 6 

 7 

TABLE 3  Multiple Linear Regression Results (n=100, tcrit=1.66) 

Model Nr.  CONSTANT S A(front) A(side) B 
Adjusted 

R2 

1 Coefficients 5.034 0.475 1.259 -0.206 2.571 0.865 

 T Stat 4.606 3.352 2.435 -0.662 21.589  

2 Coefficients 5.044 0.455 1.022 XXX 2.553 0.865 

 t Stat 4.629 3.296 2.746 XXX 22.093  

3 Coefficients 6.237 XXX 0.484 2.542 0.847 

 t Stat 5.621 XXX 3.215 20.158  

4 Coefficients 4.978 XXX 1.644 0.726 

 t Stat 3.373 XXX 16.215  

 8 

Model 1 included all proposed independent variables.   9 

• DT = dwell time 10 

• S = number of standing passengers 11 

• A(front) = the number of passengers alighting by the front door 12 

• A(side) = the number of passengers alighting by the side door 13 

• B is the number of boarding passengers. 14 

The results (adjusted R2 = 0.865) were good, but the A(side) variable was not significant.  This 15 

was consistent with what was observed in the video -- “passengers alighting by side door” never 16 

controlled the dwell time.  The variable A(side) was removed and Model 2 was estimated.  The 17 

linear fit remained at Adjusted R2 = 0.865, but all independent variables were significant. 18 

To permit comparisons with dwell time equations found in the literature, Models 3 and 4 19 

with the following variables were estimated from the CityBus video data: 20 

� A = total passengers alighting = A(front) + A(side) 21 

� AB = BA = number of boardings and alightings at a bus stop = A+B 22 

Model 3 is a linear equation with two independent variables that have strong explanatory power 23 

and make sense:  The lower Adjusted R2 for Model 3, however, indicates that combining the 24 

A(front) and A(side) variables reduces the explanatory power of the Dwell Time equation for the 25 

CityBus video data.  Model 4 was added to permit comparison with the Feder and Levinson 26 

equations, each of which uses BA as the only independent variable.  The Feder and Levinson 27 

equations had coefficients for BA of 2.573 and 2.75, respectively.  Their constant terms were 28 

1.31 and 5.0, respectively.  In Model 4, the constant is larger and the coefficient is smaller:  DT = 29 

4.978 + 1.644BA.  Despite the promising appearance in Figure 2f, Adjusted R2 for Model 4 was 30 

only 0.726. 31 

 32 

33 



Fricker    8 

MODEL COMPARISON AND EVALUATION 1 

To evaluate the model found from on-board video in this study, the bus equations cited in the 2 

“Dwell Time Studies in the Literature” section of this paper were plotted for N passengers 3 

(alighting + boarding) at a stop, 1≤ N ≤ 20.  (See Figure 3.)  When an equation includes a BA 4 

term, BA = N.  When an equation includes both B and A terms, B = A = N/2.   5 
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FIGURE 3  Plots of dwell time equations. 7 

 8 

The spread in predicted dwell time as the number of passengers N increases from 1 to 20 9 

is quite large.  At N=20, the DT prediction from GLPTC video was 36.50 seconds for Model 3 10 

and 37.86 seconds for Model 4.  The Guenthner-Hamat prediction from 1988 data is 76.68 11 

seconds.  The GLPTC plot is clearly lower than any other plot except Guenthner-Sinha.  There 12 

may be several reasons for this. 13 

• The college students who make up most of the ridership in the video database have greater 14 

agility than the general population of bus riders in the other databases. 15 

• Low-floor buses are the norm in today’s bus fleet.  They are more easily boarded and left 16 

than the buses in use in the 1980s.   17 

• Most passengers boarding showed passes; few had to fumble for correct fare.  If this seems to 18 

be a factor, Camera 4 in Figure 1 will make the inclusion of a fare payment type variable 19 

possible. 20 

• Video data allow analysts the opportunity to look for unusual circumstances, review the 21 

video, and decide on the most reasonable way to include (or exclude) the events from the 22 

database.  About 15 percent of the stops needed such decisions.  Older studies relied on data 23 
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recorded using stopwatches and clipboards, so such review was not possible.  Reasons for 1 

artificially long dwell times may have been missed. 2 

• The newest study (8) used AVL/APC technology to increase the size of the database, but 3 

relied on rules such as deleting dwell times greater than 180 seconds.  (In our database, no 4 

dwell times would have been deleted using this rule, even though several DT values were 5 

observed to be artificially high, and were corrected.)  These and “other compromises to the 6 

conventional measurement of dwell time are offset by their ability to collect data on large 7 

numbers of dwells.” (8)  It is likely that the Dueker data overestimate dwell times, at least to 8 

some extent. 9 

The spread in Figure 3 is a good reason for the video data in this study to be converted into an 10 

equation to use, at least for campus bus routes.  Even for small values of N, differences in dwell 11 

time estimates on the order of 10-15 seconds are likely.  When students are between classes, 12 

N>20 is not uncommon.  These differences can accumulate, affecting the design of the route and 13 

the development of the schedule.   14 

The Guenthner-Sinha equation DT/passenger = 5.0 – 1.2*ln(BA) is valid over a limited 15 

range of BA values.  After, BA=24, DT/passenger begins to decline.  When BA>64.5, 16 

DT/passenger is negative.  The largest BA value in the GLPTC data was 68. 17 

 18 

HOW MUCH VIDEO DATA DO YOU NEED? 19 

Once in-vehicle cameras are installed, video data acquisition is primarily a matter of staff (or 20 

analyst) time.  The digital video can be transferred to DVD media to facilitate data transcription 21 

into worksheet format.  After a little practice, an analyst can convert an hour of video data into 22 

worksheet format in a little more than an hour.  Fast-forwarding the DVD between stops makes 23 

this possible, even if some pausing or rewinds are necessary.  The greatest time was spent trying 24 

to use Cameras 5-7 to accurately count the number of standees.   25 

The author asked CityBus for videos that showed a variety of passenger load and 26 

(un)loading conditions.  The resulting database had loads of 1-62 passengers, between 0 and 34 27 

alightings, 0-55 boardings, and as many as 26 standees.  The first set of DVDs came to us as four 28 

30-minute DVDs for 8:00-9:30AM and 10:32-11:02AM, Wednesday 2 December 2009.  We 29 

transcribed and analyzed the data for 10:32-11:02AM as a test.  There were 19 stops shown on 30 

the DVD.  At two stops, the bus operator waited well beyond the time the doors would ordinarily 31 

have been closed – once to wait for a late-arriving passenger and once to avoid leaving a time 32 

checkpoint too early.  For these cases, we estimated the time at which the door would normally 33 

have been closed.  This estimate is accurate to within one or two seconds.  As part of our initial 34 

test on data for 10:32-11:02AM, we estimated the dwell time equation as DT = 5.91 + 0.97*side 35 

+ 1.97*boarding, with adjusted r2 = 0.744.  Would this sample size have been adequate?  After 36 

transcribing and analyzing the data for each new DVD, the cumulative data were used to 37 

estimate an updated dwell time model.  A summary of these updates is given in Table 4.   38 

This experiment revealed several lessons. 39 

1. An adequate range of values present in the dataset is more important than the number of bus 40 

stops (data points) in the dataset.  For example, in the 0830-0900 and 1508-1542 time 41 

periods, there were no standees in the database.  By themselves, the 34 data points for 0830-42 

0900 and 1508-1542 will not produce a good DT equation, if it turns out that “standees” is an 43 

important independent variable in bus service at other times.  At 34 of the 100 stops, there 44 

were passengers standing in the bus aisles – once as many as 26 standees.  It was apparent in 45 
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the video that “standees” affected alighting and boarding time, which affects dwell time.  1 

After the first 30 minutes of data, Standees was always a significant variable. 2 

 3 

TABLE 4  Comparing Model Results As More Video Data Are Added 4 

  2-Dec-09 2-Dec-09 2-Dec-09 2-Dec-09 25-Jan-10 4-Feb-10 
 1032-1102 0800-0830 0831-0900 0901-0931 1508-1542 1326-1346 
cumul stops: 19 38 57 75 90 100 

  Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients 
Intercept 5.914 5.383 5.450 4.595 5.079 5.044 
Standees, S --- 0.362 0.363 0.532 0.430 0.455 
A(front) --- 0.969 0.974 0.761 1.321 1.022 
A(side) 0.968 0.529 0.559 --- --- --- 
Boardings, B 1.970 1.437 1.393 2.337 2.255 2.553 

Adjusted R2 0.744 0.916 0.913 0.913 0.890 0.865 

--- not significant at 95% Confidence Level    
 5 

2. Even though the first four time periods in Table 4 are for the same morning, the cumulative 6 

model began to “settle down” after video data from other days and times of day were added.  7 

The 1508-1542 time frame had no standees and 1326-1346 had many, yet the behavior 8 

described by the cumulative models were being reinforced by those data.   9 

 10 

APPLICATION TO CAMPUS SHUTTLE LOOP 11 

This study was motivated by a need for a dwell time equation that could be applied to the design 12 

of a campus loop route.  Model 2 in Table 3 is the best model to apply, because it has fewer 13 

variables than Model 1 and a higher R2 than Model 3: 14 

DT = 5.044 + 0.455*S + 1.022*A(front) + 2.553*B   (1) 15 

However, two practical matters arise: 16 

1. We may have good forecasts of the number of students who will alight at any given bus 17 

stop, but to use Equation (1), we need to know how many passengers will use the front 18 

door.  Our forecasts do not include values for A(front). 19 

2. S is also a variable in the preferred DT equation, but S is also not available in our 20 

ridership forecasts. 21 

We will attempt to address these issues later.  For now, let us apply the simplest model, Model 3 22 

in Table 3: 23 

DT = 6.237 + 0.484*A + 2.542*B      (2) 24 

Equation 2 does not require values for A(front) or S.   25 

 26 

In any case, the following preliminary analysis is needed. 27 

Assumptions:   28 

• Shuttle loop buses move clockwise along the loop.   29 

• Bus acceleration rate is 3.0 mph/sec, deceleration rate is 2.5 mph/sec, and cruise speed is 30 

20 mph.   31 

Question:  How much time is needed for a shuttle loop bus to complete the loop?  Include 32 

driving time and dwell time.   33 
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Calculations:   1 

• Driving time without stops = 2.28 mi/20 mph = 6.84 min.   2 

• There are seven bus stops and 6 stop-sign-controlled intersections (3 of which are among 3 

the 7 bus stops) on the loop.   4 

• Deceleration from 20 mph will take 20 mph/(2.5 mph/sec) = 8.0 sec over 5 

(1/2)*(2.5*1.47)*(8.0)2 = 117.6 ft.   6 

• Acceleration to 20 mph will take 98.1 ft over 6.67 sec.   7 

• At 20 mph, driving 117.6 + 98.1 ft would take 7.34 sec.   8 

• The deceleration/acceleration delay at each intersection or bus stop would be 8.0 + 6.67 - 9 

7.34 = 7.33 sec., not including delay caused by other vehicles.   10 

• Approximate delay from bus stops (without passengers) and stop-controlled intersections 11 

= (7+3)*7.33 sec = 73.3 sec = 1.22 minutes.   12 

• Total time to complete a loop without discharging or picking up passengers would be 13 

6.84 + 1.22 = 8.06 minutes.   14 

Result:  Continue the analysis to see if two shuttle loop buses can operate at 5-minute 15 

headways. 16 

Forecasts of alighting and boardings at each loop stop were based on detailed data for existing 17 

campus routes.  The hours beginning 11AM and 1PM have the highest ridership.  Applying 18 

Equation 2 using the A and B values for alternating 5-minute time segments to the two loop 19 

buses had the following results: 20 

� The first bus had 87 alightings and 85 boardings during the hour, and an average dwell 21 

time of 81 seconds per loop. 22 

� The second bus had 135 alightings and 120 boardings during the hour, and an average 23 

dwell time of 104 seconds per loop. 24 

This means that the loop can be traversed in ten minutes and a 5-minute headway can be 25 

maintained, if the dwell time estimates from Equation 2 are reliable.  Having an equation based 26 

on more recent (and local) data was important, because A and B values can vary wildly during an 27 

hour, depending on whether classes have just let out or are about to start near a particular stop.  28 

The busiest stop for Bus #1 between 11 AM and 12 noon had 14 alightings and 30 boardings 29 

near some residence halls.  Equation 2 estimated the dwell time at that stop as 56.4 seconds; the 30 

equation from Dueker et al. (8) estimated the dwell at 91.3 seconds.  (Note:  We used only the 31 

first five terms of the Dueker equation.  We could not use the terms involving ONTIME and 32 

TOD2.   This is another argument for estimating an equation that can be used as a forecasting 33 

tool.)  The busiest stop for Bus #2 was 60 alightings and 18 boardings at the same residence hall 34 

stop a bit earlier.  Equation 2 estimated the dwell time at that stop as 167.5 seconds; the Dueker 35 

equation estimate was 45.3 seconds.  This also reinforces the impression in Figure 3 that higher 36 

values of A and/or B can amplify the differences in dwell time equations.   37 

 38 

SYNTHESIZING DATA FOR THE PREFERRED DWELL EQUATION 39 

The two issues raised at the start of the previous section are addressed here. 40 

1. If we need to know how many passengers will alight by the front door, the two choices are 41 

(a) estimate the percent of alighting passengers who will use the front door, either as a fixed 42 

percentage or as a function of total A and standees, and (b) to use a dwell time equation that 43 

uses A = A(front) + A(side), such as Equation 2.  We have already tried Option b in the 44 

previous section.  To pursue Option a, we begin by computing  45 
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%A(front) = 
 A(side)A(front)

 A(front)

+
= 0.38 1 

from the video data.  We can also plot of the proportion of alighting passengers who will use 2 

the front door, depending on the total number of alighting passengers (Figure 4a) and the 3 

number of standing passengers (Figure 4b).  A reasonable expectation is that %A(front) 4 

would decrease as total A increases.  Figure 4a does not support this.  Likewise, Figure 4b 5 

dispels the notion that %A(front) would decrease as S increases.   6 
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FIGURE 4a  %A(front) vs. Total pax 
alighting. 

FIGURE 4b  %A(front) vs. Total standing 
pax. 
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2. Our preferred Equation 1 indicates that dwell time is affected by the number of standing 9 

passengers.  Watching the in-bus videos confirms the fact that some passengers stand, even 10 

when there are empty seats, but that there is a strong relationship between S and number of 11 

empty seats.  The plot in Figure 5 is quite “well-behaved”, viz.,   12 

S = 0.0098*(NAS)2 – 0.4795*NAS + 5.4836      (3) 13 

with R2 = 0.9845.  NAS = “Number of available seats” = seats – passengers, which is 14 

negative when the passenger load exceeds the number of seats on the bus.  If the initial 15 

passenger load on a bus is known or can be specified, the relationship in Figure 5 can be used 16 

to provide an estimated value for S to be applied at the next stop. 17 

The calculations of average dwell time per loop for Buses 1 and 2 were repeated using 18 

Equation 1, with %A(front) = 0.38 and S estimated with Equation 3 when NAS<25.   19 

� For Bus #1, average dwell time per loop went from 81 seconds to 77 seconds. 20 

� For Bus #2, average dwell time per loop went from 104 seconds to 106 seconds. 21 

The extra steps needed to synthesize data for the preferred Equation 1 does not lead to results for 22 

dwell time per loop that are much different from the simpler Equation 2.  The A and B values in 23 

Equation 2 may be capturing much of the effects of A(front) and S in Equation 1.  In either 24 

analysis, serving the campus loop with 2 buses on 5-minute headways appears practical.  In fact, 25 

this service may be conservative.  The calculations assumed that each bus would stop at each bus 26 

stop, incurring delays of 7.33 sec for deceleration/acceleration and 6.24 seconds for dwell time at 27 

stops where no passengers alighted or boarded. 28 

 29 
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y = 0.0098x2 - 0.4795x + 5.4836
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FIGURE 5  Standing passengers vs. available seats. 

 1 

COLLECTING PRIMARY DATA USING VIDEO TECHNOLOGY 2 

Surveillance cameras have been in use on transit buses for the last decade.  The number of 3 

agencies of all sizes that are acquiring them is growing rapidly.  The author asked CityBus to 4 

provide videos that showed a wide range of values for number of alighting passengers, boarding 5 

passengers, and standing passengers.  As a result, the scenes in the videos are for busier-than-6 

average time periods.  However, this does not invalidate the analysis.  In fact, it helps add data 7 

points in the higher ranges of the variable values.  As new videos were received from CityBus, 8 

data were extracted and added to the cumulative database.  Because of the range of values in the 9 

data, only 100 stops were needed to develop a reasonable and useful dwell time equation.   10 

As this is written, CityBus is acquiring a new Automatic Passenger Counting (APC) 11 

system for its buses.  Even if the new system will add “Time door opens” to the data previously 12 

collected (see Table 1), it may not be adequate to provide the basis for a dwell time equation that 13 

satisfactorily represents the operations being studied.  The APC system will permit a lot more 14 

data to be processed, but it would not permit the analyst to directly “observe” values such as 15 

number of passengers standing.  Video allows direct observation of unusual events.  At nine of 16 

the 100 stops, we had to estimate the normal door closing time, when the driver waited for late 17 

passengers or held the bus at a time check point.  At five other stops, we observed delays due to 18 

slow issuance of a transfer, a passenger fumbling for the fare or a pass, or unusually long gaps 19 

between passengers as they boarded.  Looking at an automated database, these events might be 20 

discarded as outliers.  However, these five events were included in this analysis, because they are 21 

a daily part of the passenger boarding process.  If other events, such as a wheelchair boarding, 22 

were to take place, having a video record would help the analyst decide how to incorporate the 23 

event in the dwell time equation. 24 

As is often the case, there is a tradeoff:  borrow a dwell time equation from another place 25 

or collect your own data and build your own equation.  Being able to develop good dwell time 26 
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equations with a modest amount of video data can be of great value to a transit operator.  The 1 

study described in this paper was motivated by the lack of an up-to-date dwell time equation in 2 

the literature that could be transferred to the analysis of a proposed campus shuttle loop route.  3 

Once we learned how to use the DVD playback software, it was easy to enter the data into a 4 

worksheet for analysis.  The data analysis feature in the worksheet was sufficient to build several 5 

reasonable dwell time equations.  One equation had stronger explanatory power but had 6 

independent variables that are not usually available in forecasts.  Methods to synthesize values 7 

for passengers alighting by the front door and number of standing passengers were developed 8 

and applied to the proposed campus shuttle loop service.  A simpler equation, which includes 9 

only number of passengers alighting and number of passengers boarding, produced similar 10 

dwell time estimates on the campus route. 11 

Even if a dwell time equation has been developed from local transit video, it may be not 12 

applicable to all local cases.  For example, the dwell time equations in this study were based on 13 

video created on standard 40-foot buses with two exit doors, only one of which was used for 14 

entry.  If 60-foot articulated buses are to be used on a route, the “40-foot equations” may not be 15 

applicable.  “Artics” tend to have three doors, not two, and carry more passengers, many of them 16 

standing.  Also, Bus Rapid Transit (BRT) vehicles may have two or three doors, and often 17 

operate on routes where fares are paid before boarding.  Fortunately, this paper has demonstrated 18 

that a modest amount of video data for operations covering a particular situation (doors per bus, 19 

fare payment policy, etc.) can be sufficient to develop a dwell time equation that will be useful in 20 

transit route planning. 21 
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