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reasonable. Having been directly connected with the project for f
prior to the slide, the writer'is firmly convinced: that ‘the actual streng !
condition of the rock in the slide-area could have been determined only by large
undisturbed samples. It is rather far fetched to assume, regardless of how!
~carefully the geology of the region was studied, that the true charaetet and
-strength of the rock at any given location could be determined by this-‘procedu're.

-+ The ‘writer ‘fully agrees- that *“Had the- true ‘conditions been ‘understood,
the dam could have been designed to meet those cbnditibll_s safely.” Ttis is
- merely another way, however, of saying that hindsight is better than foresight -

It has not been the-intent of the writer in this discussion to minimize the’
importance of thorough geological investigations. However, it is certainly.
false security to rely too much on a geological study of the region as proposed
by Mr. Falilquist and Mr. Crosby. In the future, under such circumstances,
- the writer will take large undisturbed samples of all weak rocks regardless of:

what the geologist might find in a study ‘of the region. o St
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’ The method of complementary energy is a general method: of struétural
mechanics. The basic law was stated by I. Engesser in a paper in 1889. He
extended Castigliano’s law of least work to apply beyond the range of Hooke’s

- law by replacing work by complementary work, which is an integral of distance
times increment of forcé. Engesser’s paper is lttle known., ;

- The purpose of the present ‘paper is to give proof and demonstration of the
method.. The proof goes back to fundamentals and includes a re-examination
of the fundamentals; this is needed to remove doubts about the ranges of ap-
plicability. The demonstration consists of representative applications and

may be interpreted as an exploration of the field.

e ' Hisrorrcar Nores : o

The method “of complementary enérgy is an extension of Castigliano’s -
.method- of least: work. - Alberto Castigliano? published his method during the -
Seventies in papers and a treatise. Hig principle of ‘least work applies to:
statically indeterminate structures stressed Within :the range. of Hooke’s law..
. ax‘ndféu-b‘jé‘ct;tp-,'the“restriqtion that all significant deformations must be linear =~
| homogeneous functions of the loads. astigliano showed that-among all the - »
- Nows—Published in Februsry, 1041, Provesdings, T R
! Dean, Graduate School of Eng., and Gordon' McKay Prof. of ,QN.' Eng., Harvard U“ivi;' Ca;

bridge,”

- ... .. ?Thesis to obtsin diplomsa s& engineer, Torino, 1873; two papers in At della Reale A
- Scienze di- Torino, Vol. 10, 1875, p. 880, and Vol. 11, 1876, p. 127; and **Théorie de 1’équilibr €8 systd
© élastiques,” Torino, 1879, 480 pp., translated into English by E. 8. Andrews under the tit - “Elai

. Stresses in Struectures,” Scott, Greenwood & Son, London, 1919. . Tl
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COMPLEMENTARY BNERGY =~ |

statically possible states of stress in such a structure the correct ‘one. is fh'a;t
which miakes the energy of the internal stresses a minimum. This state of .

‘stress satisfies automaticall_y not only the requirement of equilibrium but also

the requirement of geometrical continuity. L. F. Ménabréa? had stated this -

) 'prin,‘q:i.ple,clearly for trusses in 1858, but his proof contained misunderstandings,
- and the method is credited justly to Castigliano. '

Castigliano* himself gave the method its first extension; he stated a revised .

* expression that must be made a minimum if imperfect fits of redundant mem-
bers create initial stresses; and he applied this procedure to temperature stresses
in a general discussion and in six examples.® H. Miiller-Breslau® improved the
. procedure for temperature stresses and contributed much toward making
. Castigliano’s method known. A useful and dependable critical account of the

- original works in the field was given by M. Griining” in 1912, In the twentieth
century Castigliano’s method has become stock in trade; it holds a ‘position

today as one of several useful general procedures of structural mechanics.

. It is worthy of note thatin.a book publishéd'in 1936 R. V. Southwell® of Oxford

University, Oxford, England, gave an attractive original derivation of Casti-

. gliano’s principle, based on a discussion of self-strains. _ S
The contribution that has the greatest interest for the present study was

published by Fr. Engesser® in a paper in 1889, He derived the basic law of the -

method of complementary energy. It is a modification of Castigliano’s law
of least work in which work is replaced by complementary work or comple-
 mentary energy. . As work is an integral of force times increment of distance or

“of stress-times increment of deformation, so is complementary work an integral
- of distance times increment of force or of deformation times increment of stress.
Engesser’s theory applies bejond the range of Hooke’s law; it includes not only
. Castigliano’s method but also Miller-Breslau’s procedure for ‘temperature

stresses .as special applications. In his review of the field in 1912 Griiningio

quoted and discussed Engesser’s contribution, but otherwise it has received,
little attention. A plausible explanation is that structural analysis has been

concerned mainly with stresses below the proportional limit, and the applica-

bility to buckling and vibrations had not been realized. o -

" The miethod of complementary work or complementary energy is analogous
to another method which has become important in structural statics; namely,
the method. based on the “principle of minimum of the potential energy by

variation of the shape.” It is advantageous to consider the two methods in

. 3 “Nouveau xi_fippipe sur la distribution ‘des‘tensions dans les systémes élastiques,” by, L, F. Méﬁabréa,
Comptes Rendus, Paris, Vol. 46, 1858, pp. 1056-1060. :

. 4*Théorie de Véquilibre des systdmes élastiques et ses applications,” Toring, 1879, p: 39.
$ Loc. cit., pp. 89; 317, 324, 332, 347, 428, and 442, ‘ S
¢ “Der Satz von der Abgeleiteten: der idéellen Forminderungs-Arbeit,” by H, Mitller-Breslau, Zeit-

schrift des Architelten~ und Ingenier-Vereina zu Hannover, Vol. 30, 1884, columis 211-214; “‘Die neueren’

Methoden der Festigkeitslehre und der Statil der Baukonstruktionen,” Leipzig, 1888, 5th Ed., }1924,§>p.
Zg;gg;*“gmphische Statik" der Baukonstruktionen;” Vol. 2, Subvolume 1, Leipzig, 1892, 'p. 49, 5th Bd.,
5 D47, . . .

7*“Theorie der Baukonstruktionen I: Allzemeine Theorie ‘des Fach&véri:é und der vollwandigen’ Sys-
ie der mathemalischen Wi haften, Vol. 4, Subvolume 4, Leipzig,' o

teme,” by M. Griining, Ercyklopddie d
1907-1914, pp. 419-534, especially pp. 437-454. - .

®““An Introduetion to the Theory of Elasticity,” by R. V. Southwell, Oxford Univ. Press, 1936, p. 91

9 “Ueber statisoh unbestimmte Triger bei belichigem Form#inderungs-Gesetze und tiber den Satz von -
esger, Zeitschrift des Architekten- und Ingenieur-Vereins au.. " s,

-der Kleinsten Erginzungsarbeit,” by Br. Enge:
" Hannover, Vol. 35, 1889, columns 733-744, espec

s ially 738-744.
10 Loc. cit., p. 454. v T

‘been widespread since then. A numbér of applications arefound:in the Writinﬁ;g

. a. structure of general type. : The.

.» . Afather, C. A, Ellis, M, Am. 8o¢. C. E., and Donald M: Brown, in fsis, Vol..20; 1, November, 1933, pp. 72-
"t 1 Crelles Journal, Vol 185; 1908, L i T 7" ‘
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conjunction. ‘The basic principle of thie second method is sometimes stated as

a direct consequence’of a general law of dynamics;, but it can be-derivedifrom

the simplest laws of statics. Daniel Bernouilli and Leonhard-'Eiilmfu stat

and used“this. principle in a special form in' the first half of the eighteently
tury.. The method played a part in the nineteenth century. A mathemat
paper publishéd by W. Ritz® in 1908 gave new impetus to its use, which:

of 8. Timoshenkot® = -~ :

Tee Laws oF LEASCE. ENERGY AND, OF LEasT COME#ﬁMEﬁ{I‘AﬁY;‘ENER‘(‘},Y
. Since- it is -desirable that no doubts shall -remain :abotut the ranges of ap--
plicability, all the steps of the derivations of thgfba,sic'theorems will be shown.
- The Structure—Fig. 1 represents EIEEEIP IR , ’

black parts are joints, which, by a
definition adopted here, are rigid
bodies. The shaded parts are de-
formable - members; which. are ‘at-
tached to the joints. External forces
and reactions are assumed £o.act on )
jointsonly. Since the joints may be
three-, two:, or.one-dimensional or
may be without extension, and any
number of joints may be assumed to- -
exist, it is difficult to-conceive of a

-structure to which this picture could : " Fe. 1.—8muoruse o GENERAL Tres

not be adapted. - S S , : :

.- Notation.—The notation applied to the structure in Fig. 1 requirés explana-
tions, which follow: . Sl - -

P = external load. ' The load P may be a single force P, or it.may consist

‘of & group of forces 1P, c2 P, ¢ P, - -+, all proportional to P and. varying

. together when P varies. ‘This conceéption makes it:possible‘to consider a:whole

dead load or a whole live load as “a Ioad”; wﬁich is in-ageordance with common
usage of the word “load.” . .- . . .. . .
. b = path of the load P during the deformation from a stafting shape of the
structure to an assumed shape. If P is.a single.constant force, p-is the dis-
placement of the point of application in the direction of P, and Pp is the work
of P. If the load P is a group of forces, then p-is defined by the statement
that with the value of P remaining constant during the assumed deformation,

o ‘the work of P is Pp. For-example, if Pis a total load uniformly distributed

over the length of a beam, p is the increase of the average deflection. o
8 ='stress in a member. The stress in the sense adopted here is intet:

 preted as aload exertéd by joints on’a mémber, and is defined in the same way

11 “De curvis elasticis,” by Leonhard Euler, 1744; annotated translation into English by W. A. Old-
160, especially p. 78. ; N ) - ’ » N
; B See: especially *“Theury .of Elasticity,” 1934, *“Theory of :Elastic Stability,” 1938, and * Thegry df,
S)I:élls." 1940, by 8. Timoshenko, MeGraw-Hill Book Co., Ine. L . ol
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:as- P except for the restriction &
8 must be in equilibriam;. . Jf He member is a simiple tension member in 4 truss,
S.may be takenias \thei_toﬁ, -tension, and the load on thé member is the two
equal and opposite pulls; sach equal to 8 » 8t the ends. There can be more than
one stress in-a membei:’ Forexample, in a beam flat joints may be assumed at
two adjacent cross: sections a distance. dz apart. The member between these

two joints ha;s-éf}wh-'stresses + One is'the bending moment ‘M, which consists of

two ﬂéqual,and;é)pposite couples exerted by the joints; the other is the transverse
shear V, which consists of two equal and opposite shearing forces. and g supple-
mentary balancing couple Vdz at one ‘of the joints. Instead one may in this
case-assume two members. occupying the same space betweer the cross sections,
-one.resisting M-and the other V. C . ‘ o

D = deformation in the direction of S ; D is the path. ef S, defined in‘.ﬁerrﬁs :

-of 8 as p in terms of P. In the simple tension. member with total tension S,
Dis j_;,he total elongation. In‘the member in the beam D in the direction of M
is the relative rotati_on of the two joints, that is, —'-Z—x—z' dx if y denopes the deflec-
tions. due} to the bending moments, y being measured f'iom‘the'starting shape;
and D in'the direction of V is the relative sliding of the joints. ’

E = reaction; a force or group of forces exerted by a support; otherwise -

defined as P. ' . . .
r = path of By displacement.of a support in the direction or B; —r is the
settlément of the support against R. S .

Equation of Virtual Work in Infinitesimal Form.—The: structure is in :

equilibrium if all members: and-all joints ave in equilibrium, The members are
loaded only by the stresses 8, and are sutomatically in equilibritm by the

definition of thg stresses. A joint, by definition, is a rigid body.  The equi- ]

librium of -a yigid body. can be investigatéd by assuming an arbitrary- infini-
tesimal movement of it while the forces remain constant. If during any such
movement the sum of work of all the forces is zero except for an infinitesimal
quantity of second or higher order, the rigid body is in equilibrium; ' Assume
an arbitrary infinitesimal movement of each joint, whereby the deformations
P, D, and 7 incresse by the amounts 3p, 8D, and 8. The forces acting on all
the joints are the forces constituting the loads P, the stresses reversed or ~ S,
and the reactions B. - The condition that the sum of work of all the forces on
all the- joints must be zero is expressed by the equation R Rt

T'h:ié equationwﬂlbe récog’ixiie&_ as the equation of virtual W6i'k in 'iﬁﬁnitesi;ﬁdl

form; it states a principle that has played.a great part.in ' mechanies, Eq.1is.

- . a general condition of equilibrium, tinrestricted by any requirement of linearity
of ‘the relations between the deformations, stresses, and loads; that is,- un-
restrioted by any law of superposition, PP U TR
Initial A'ssumption.—Changes of temperature can be.considersd to ‘have.
taken' place in advance, before the forming of the starting state Then it
becomes feasible to assume, and it will be-assumed, that in all operations ‘that

at all the forces constituting a particular stress.

COMPLEMENTARY ENERGY - N (i

. heed be éonsidered in the analysis each s\tress‘ S 15 a definite cbntiﬁubué‘ﬁhnction

of the deformations D of the member in :which it belongs, and conversely

- éach deformation is a definite continuous function of the stresses in the member.

Energy.—Now consider a series of changes of shape, a,.,vg,ria,ﬁon of the shape;

_during which the loads and the positions of the supports remain constant ;- that’

is, the values of P and r remain constant. Each joint is moved from the start< -
ing position into an arbitrarily assumed position; thereby the structure is
changed from the starting shape to an assumed shape, The members remain. -
attached to the joints, so that continuity is maintained, but the requirements
of equilibrium are ignored in this operation; that is, the geometrical require-
ments are respected, while the statical requirements are abandpne,d temporarily.
The stresses S will be the proper definite functions of the deformations D.
Then, for each assumed shape the structure and the loads can be said to have s
poténtial energy equal to : o

L . pD. e AR .
r= zf 84D~ Pp. @
li:n,whi_ch the Jower limits ba are chbsen.arbitra’rily" and. the sumina(;ibns include
all stresses and loads. The phrase “potential energy’’ can be used here be-
cause the stresses are.definite functions of the ‘deformations in the:operations of
the analysis.. An inﬁniﬁesim@l variation of the assumed,shape\causqs an incre-
ment, s first variation, of the potential energy equal to: . ‘
' 8T = 88D = Y Pop.... .. 3)
.. Let the requirements of equilibrium be imposed again. Then Eq. 1 must
be-satisfied. Since 8r = 0 in the variation -considered, it follows that

That is, if not only all the geometrical Tequirements but also all the statical
requirements are to be satisfied, the first variation of the potential energy must
be zero; that is, the potential energy must be a minimum or a maximum.
Further arguments, omitted here; show that a stable equilibrium requires
that T be a minimum. - The statement : R E

‘ T = min......., U (5)
is iﬁferpreted then with the reserva,_t;ionlth_‘at Tis normally a minimum, but
under some cirqumStapqgs_phe minimum may be replaged .:b‘,y&q maximum. Egs,
5-and 2 together state the “law of minimum of the potential energy by varia-

tion of the shape.” Eq.5like Eq. 1.is unrestricted by any law of superposition.

Assumption of Superposition of Deformations, and the Equation of Virtual
Work in Finite Form.—It will now be ‘assumed that thée law of ‘superposition

. {er:linearity) applies in:a:limited form ; namely -to deformations -only, without

involving loads; stresses; and reactions: it i assumed that if p'; D’ r" and p’

- = D", " are two. geometrically possible sets of deformations:p; D, r; then p/+p", *-
D’'4DY, v 41" are-a possible set, provided that all the deformations involved.
.are-within some range. If this law is assumed, §p, 6D, and. Brt,inaEq.'-vl ‘may be




o

repleeed by p 4 D’ and r

This i’s“‘t'heequ'a;t a1 work in-finite form, which has been 1mportant
in-structural ‘m ifes ‘since the. Seventles, when Otto Mohr applied it to
trusses. - It is ndte‘ '

that p Dy r are not the deformatlons produced by the
loads P. S
Eq 6 may be restated in the form
ZP’p— ZS'D+ZR’r—O

in’ whlch P8 'R" aré a statrcally possrble set of values of the loads, streSses,,

and reactlons A possrble form of Eq 7 is

E p6P Z D SS + Z rBR = 0eeniiin .".-...,.~.(8‘)

in which 6P 6S OB are a statlcally ‘possible set of increments of P, 8, R.
) Complementary ‘Energy~The préparations have now been made for the
study of the second fundamental type of variation; namely, a variation of the
- state of stress, during ‘which' ‘the statical requirements of equilibriudy are the
ones that remain satisfied; while the geometrical requirements of contmu:ty are
abandoned: temporarily.’ As: ‘before, P'andrare conisidered to remain -constaiit,
but now the deformations D aye: interpreted as functions of the stresses 8, .4nd
values Sy are arbitrarily chosen lower limits of the stresses. Then the e0m-

plementary energy will be deﬁned by the expressmn

U ):f Dds - er ..... ‘..‘_.'>.";.‘..._::f;».i_.(g)
. So - N s [UPREE S

An infinitesimal variation from s any one o6f'the statlcally poss1b1e states of stress
to an adjacent statrcally possxble stafe glves U an mcrement ) ﬁrst vanatron,

equalto ’ P
- N U = ZDas - L roR..... “..»-......; ...... -(10)

If the sef. of values of D and r happen to satlsfy the geometncal requlrements

~ of continuity, then these values must satlsiy Eq. 8w1tb 6P = 0 It follows
that LN /

That 1s, the ﬁrst vanatlon of U vamshes the complementary energy, U is'an

fjnimum. or-a, maxrmum hke the energy T ordmanly a mmlmum The
statement o

,,&'

- is mterpreted Wlth the same | reservatlon that wag! apphed to Eq 5: under '
abnormal. circumstances  the minimum may:be- changed into & maximum, '

,:i8° the law: of least- complementary energy ’

‘Eq. 12, with U defined by:: B
This minimum i§ produced: by'a varistiorof the state of stress.

Analegy.—A. comparison of Hgs. Lito 5 with- Egs. 8 to 12, in order; shoWs' :

that E:} complete analogy éxists between: the Jbwo laws'of- least enérgy ‘and: least

" B : complementary energy, with a-one to one' gorrespondence of fthev
as follows: in the shifting from one prineiple to the other the quantities P

‘rnentary energy is the same as the stress energy, whlch is

v _tlonal 1imit'2:C. - The complementary energy: is: determined - by
: such as the shaded area in Fxg :2(b). 1If the proportlonal hmlt i

._eon'r'p‘m:Mewmm&:;mmnew 4 o

uantltres,
,'S R
T U, p, D, r are replaced by the same quantities in the reversed order: *;

Castzglmno § Principle as Special Case—When Hooke’s law applies-and a

stiess-less state can be and is choser as startlng state, and the lower limits 8o

.are chosen as zero, the part of the complementary energy contributed by the
stresses, the ﬁrst sum in Eq. 9, bécomes -

which is the same as the internal energy of stresses. If the supports have not

moved, thén r = 0. In this special yet- general case the law of least com- ‘
.plementary energy becomes : .

U{ . M. veees . e e \-...'..o

: whlch is Castlghano 8 prmclple of least work, or, the principle of minimum of the !
i mternal energy by variation of the state of stress.

APPLICATION 70 4 SIMPLE STATICALLY INDETERMINATE STRUCTURE STBESSED
: BeyoNDp TEE PrOPORTIONAL LIimIr

The simple truss in Fig. 2(a) will serve as an example. The stresses: are
total stresses, positive in compression.” The state of stress i is-varied by varying
X.: The three members. are assumed to be alike, with the:stress-deformation
dlagram shown in Fig. 2(b). The supports are -assumed not to have moved.

S 8

-—2kC%—'-’ - «D,al

: (a) STATICALLY POSSIBLE COMPRESSIVE (8) STRESS -DEFORMATION DIAGRAM-~ () STR{SS—DEFORMATION

. STRESSES IN TRUSS v

DIAGRAM AFI'ER COOLING

o ‘f‘te. 2

When none of the: stresses exceeds the proportlonal hmlt 2 C the comple-

. ,'— %k(P X)2+kX= ORI 15)

“In Eq 15, U must be a mlmmum by Castxghanos prmcxple, Whlch glves
g P . .
X =3

When P > 3 C the stress in the vertical member Wlll exceed the D

i
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"in the 1nclmed members the.t

- In Eq 16 U becomes a mlmmum when

: ., In Dq 20 T is. a mmunum When
in Eqs 17, :

omplementary energy is S
U=k 02~+.k P=X—0r+kx .00 e

and

Eqs 17 apply When3 C’ < P < 5 C' If P > 5C, tlle complementary energy is

—3k02+1c(P X C)2+2Ic(X 0)2.;...;;*.';»;'.1(18)

'whlch becomes a minimum when

and

Computatlons such as: these are simplified in less: simple apphcatlons by ex-
“pressing thie derivatives that:determine the mmlmum without. computmg the
‘value of ‘the .complementary - ehérgy itself..

- If-the support of the vertical:member in Fxg 2(a) settles o dlstance ¢ down—

ward the path of the corresponding upward reaction B is r = — ¢, and Uis
- increased by the amount — r B = ¢ (P — X). Cooling of a-member merely

shifts the stress-deformation dlagram as indicated in Fig. 2(c), adding a term

"Dy .8 to the complementary energy contrlbuted by that member.
In dealing with a structuré- of ‘'some ‘complexity the choice of method'is

usually. important, because one rgthod is likely to be less inconvenient ‘thax

-others that are available; but the simple structure in Fig. 2 was chosen so: that
~ the two laws of least complementary energy and least energy lend themselves

equally well to it. The use of the lattér law will be shown for the purpose of
comparison of the two procedures::.

-/FPhe shape is varied by movmg the top Jomt downward a varlable dxstance

'Y Geometrical contmulty is preserved when the deformations are D; = Y
"and Dy = Dy = 3 ¥ and p = Y. The strain energy of each member is mea-

sured.by an area. under the linesiin Fig. 2(b).. Itis Justlﬁable to call this quan-

tity energy because -the stress i g a. definite functlon of the deformatmn in the

operations of ‘the analysis; the quantlty need not be energy in every- physwa]

sense; it is energy in the analysis. If the proportlonal limit has been exceeded B
,m the vertical member only,. the energy m Eq 2 becomes

T,( +C'Y k02>+;<§-)-

f-_v;vb‘iVCh..gAivv'es the appr0x1mate formula '

AP~ C!); whlé_h reprociuccs th _st'.r:e_sszésj =

but the law of superposmon of deformatlons will hold with good approxima
in’the significant applications if the startxng shape is chosen close to the ﬁna :
shape

"~ (@)

F:G 3-——STAR’I'ING Smms or CoLuMN

..Fig. 3(a) shows a plaus1ble starting shape . for a hinged-ended column,rheld
between two fixed blocks, The blocks glve the end pressure the character not
of a load but of a reactxon R.

Let 2 = deflection in the starting shape y = add1t10nal deﬂectlon from the
startlng shape to the final shape, making the total final deflection ¥ +z; and
E-I'= modulis of elasticity times moment-of inertia of the ¢ross:section. -

o Im computmg the variation of the complementary energy  according to
Eq 10, 'S is taken as the bendmg moment R z in the starting shape; this is
approximately correct if the starting shape is close to the final shape.. .Then

. 88 becomes 20R. The members are of infinitesimal length . dz; therefore. the,

‘summatlon is replaced by an 1ntegral The deformation D becomes the rela-
tive: change of slope.

oL ANAN ¢ §
d:c’dx <E1+dx2> e __( D
The. dlsplacement r is zero since the’ end blocks do not move. This one finds" ‘
............ .22)°
ST = f(EI+d2)dx(z6R) o @
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By choosing as a startmg shape the parabola

and assummg E I constant, one ﬁnds hy ea.sy mtegratrons » _ p

' whlch exceeds the. cox‘rect value E I'-only by 1.3%.

The same results a are obtalne

reference will be made shortly “First, however, the direct use of the law of
least energy will be shown. The end pressure is now interpreted not ag a
reactlon but as a load P. - If the deflections are z, Eq. 2 takes the form -

T =} foEI(dxz) dm—E-%f(g—;)zda:..'.......‘..(26)

(1]
The vanatlon oT vamshes only
T = 0. This gives

j;E’I(dzz)dx_ o
W ........ SRRRERED (27)

With z as in Eq 24and B T constant Eq 27 grves P=13 E I'l% which is 229
too gréat. The method of comp : ‘

2 is taken as in Fig. 3(b); the numerator in Eq. 28 then’ being ‘eomputed ag ¢
times the change of slope at the mlddle of the column - With the starting shape

P=

in Fig. 3(c) the method of complementary energy. nges R = T—g?{_b, which
has its smallest and therefore most plausxble value, 1067 E 1 I, whena = %l

"The companson just made- mdrcates superiority 'of the method of comple-
mentary energy over the direct application of the method of the potential
energy to columns; but, as has been: mdlcated 8 variant of the énergy method,
apphca.ble to colunms, is available. 8. Trmoshenko“ has described and used’

¢ This unproved variant can’ be expla,med by notmg that the numerator i in

Eq 27 i is rmproved by replacmg /by - %,)7 Then the formula becomes ,

e . : ;-,\ - R dz :

\

Eq. 28 can be rewrrtten i the form of Eq 23 -That is, Timoshenko’s variant
“ “Theory of Elastic Stabrlrty," by 8. Tmroshenko. McGra.w-H:ll Book Co., Inc., 1936, p. 81.

. complementary energy

d by a variant of the energy method to which »

wheu_ P_has the eritical value that makes’

lementary energy gives the same result when

o COMPLEMENTARY ENERGY

of the energy method for columns glves the same results as. the

COLUMN WITH INITIAL CURVATURE

If the column that has been under discussion is slightly curved before loa
ing, with the initial deflections 20, and if z still denotes the total deﬂectrons i
the startmg shape, Eq 22 will be. changed to.

& d
3V = f<E1+dxi—d’g>dx(zaR)_o ..... s 29)

Assume that the shape before loading makes it plausible to. ‘choose z propor—
tional to 2. Denote by @ the critical value of R defined by Eq. 23for zo = 0 :
Then Eq. 29 gives «

2 \
R — ( - E—) Q=0........0. .00 000 (30)
ory b"Q'
P 'Q-T—R .‘ ........................ (31)

Eq 31 defines a magmﬁcatron factor for the deﬂectrons. Such factors w1ll be -
dlscussed agam later
: GREATEST LOAD ON AN ];NITIALLY CURVED Corumn. STRESSED
e - BEYoND THE PROPORTIONAL Limir -

i3 the column in Frg 3(a) is stressed beyond the proportronal hmrt it may
be plausrble to assume a law of deformatlons of the type,

Change of curvature = (M + F*2 M ) . (32)

in whrch E' and F are functlons of the-end ] pressure R and dependent on the
materral and the shape of the cross section; E, bemg a reduced modulus of
elasticity, and ¥ a coefficient measurable in inch-pounds.” The. theory de-
veloped by Engesser (from. 1889), A. Considare (1891), F. 8. Yasmsky (1895), ‘
and Theodor von Kdrmén, M. Am. Soc. C. E., (1910),'5 furnishes a method. of

computing E,, for example, this method gives for a rectangular tross section

' 4E B, o SRV
E, = B S L 33)
- T S @

in. Whrch E’; is the tangent modulus of elastlcrty ‘The theory also will make rt'—f V
possiblet® to establish reasonable values of F. Moreover, it should be possible * .

to-déetermine both E, and F by tests of short specrmens under eccentric pressure.

_ Let zp denote, as before, the initial deflections before loading, and 2 the: =
total starting deflections under the. pressure B.  With Eq. 32. accepted;. Eq..29 - -

: Osgood, Membere,Am 8oe. C. E Transachm, A.S. M. E., Vol. 50, 1928, No. 17, p. 6

1‘ For-explanation of the basis of “the theory and for references, see '‘Theory of Ela.strc Sts.hrhty," by ,

8.7 Timoshenko, MeGraw-Hill Book Co., Ine., 1936, pp. 157-159.

18 See, .for example, the paper “Strength of Steel Columns,” by H., M. Westergaerd and’ Wilham R )
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changes into the following expres‘sion,‘of- fl;e'la‘w’of least complementaty energy:

%='II[EII(R2+F‘2R3 3)+d$2 , (ng]z’dx= (34
Le"c"zo be assumed andz chosen as “follows? B e
20 = c";,"si‘n”—rlﬁ PSRN 1)
and
N R z= csmﬁl'lf.‘ ....................... (358)
and denote, : T L
: oe=TEL e
Then Eq. 34 gives : s
| | Rc+%(Rc)a-—Q(c-—co) ................... @7)

" 'In the course of a testina laboratory, as the dlstance between the end blocks
is reduced, thé maximum deflection c:will inerease gradually and may serve asa

measure of the progress of the test. The end pressure R will be a functlon of
¢, dependent on the initial'deflection ¢o. It is desired to determine the maxi-
mum value of B as a function of ¢, for different definite values of ¢o and 1.

It is noted that E, in Eq. 38 is a function of E; therefore Q'in Egs. 36 and 37
is a function of B. With this in view Eq. 37 shows that in the special case of
o = 0, the maximum’ Value of B occurs When ¢ =0, and is equa,l to Q, as it
should be in accordance with the theory 1n1tlated by Engesser Wxth Q=R
and R chosen, Eq 36 can be solved for I, thus servmg as a formula for the
ideslized case of an initially stralght column.

When the ¢olumn is curved before loading (that is, when ¢y > 0), Q loses- '

its &ugmﬁcance as a maximum load and becomes merely a quantity lntroducedv
for convenience and deﬁned by an equatlon To make Ra max1mum the

condition %I%: 0 is 1mposed Smce Q is & functxon of R, lt follows that :

a9
dc
ci - 1 to Eq. 37, one ﬁnds

@ L SR A
o 3 2Rc—Q(2c—3co)....4_,,‘.‘..,.-.'_'.\:...._‘..."(38@_.)’
E 3 RC 2 S B et \
;FZ) QL G80)

respectwely Ellmmatlon of ¢ from Eqs 38 nges ‘

oty Wlth Q substituted from Eq. 36,

- If E; énd F are numerically known functions of ‘R, the values of R and [ may

: _dlfferentlal equation for the slope in the radial direction is solved by a Bessel

o 0 Under these eondxtlons, by applymg the operators 3 - c—(—i— end_:

1

o AFE (wEI_ N
C=grEI\"RE. 1) i e
Eq 40 is not'a design formula, but may lend itself to interpretations of tests.

be chosen, and the greatest initial deflection ¢ permIttmg these Values may be:
computed by Eq. 40.

If Eq 32 is replaced by the simpler but probably less pla.u51b1e formula,

Change of curvature = -———I (M + F—l My, .xo..... LD
the same procedure of analysxs gives, mstead of Eq. 40 .
SPE [wE, 1 Y L
a= 327.-E,I< RE- ”{1) ""'7"11.'.T""-."T»'v‘(42)'.

Buckuing or A THIN CIrRcULAR Evasric \PLATE WITH SIMPLY SUPPORTED
Epee Unper o Untrorm PRESSURE AT THE EDGE

-

A solution of this problem was indicated by G. H. Bryan in 1891 The

function of order one.” When Poisson’s ratio is 0. 3, this exadt solution .gives
the followmg value of the critical pressure per unit of length

462871

R = pe (43)

in which: I = moment of inertia of the cross section per unit of Wldth and.
a = radius of the plate.

The application of the method of complementary enérgy to thls problem is
not more convenient than the use of Bessel functions, but it will serve the
purpose-of an illustration. The proceéduré can be used in mbre complicated .
related problems, involving, for example, a varying thlckness

-The following-additional notation is used:

r = radial distance from the center of the plate. T
-\ m, = bending moment in the radial direction per unit of width of the -
clrcumferentml gection on which it acts. :

e = bendlng moment in. the circumferential. dJrectxon per unit of width of - .
the radxal section. on which it acts; both m, and my are measurable in inch--
pounds per inch, or, in pounds.

z = starting deflection. - o
= supplementary deﬂectlon, makmg the final deﬂectlon 24 .
e —zatcenter
f= f(r) = stress function, measurable in mch—pounds
-X = constant to be determined..
p= Pmsson s ratio.

By Proceodmga. London’ Mathemg.faca.l Soe., Vol: 22 1891, p. 54; also, “Theo)
by S Timoshenko; 1936, pp 367-36! i
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Itis permssrble {0 agsume that 2,¢, and f are: functlons of.r only When 2

is chosen so that the values of & will be msrgmﬁcant relative to the values
of %, the bending moments can be expressed by ‘the formulas,

o m,=Rer+£.f¢.,, ................... (440)
and- - L
mo = Ry + E‘J: ....................... (a15)

A siiple exsinination shows: that no matter what dlﬂ’erentlable functlon fis
chosen, the moments in Eqs. 44 maintain equilibrium. The variation of the

state of stress therefore is reduced o the ‘variation of R and f. When the

edge is simply supported, z = 0 and J = 04t the edge.
As in the study of columns, Risiniterpréted as a reaction exerted by a strong
support in a fixed posmon The ehanges of curvature in the directions of m,

and my, measured from the startmg shape to the ﬁna,l shape, are — % and

. 1dg
= 7d— N respectlvely Accordmgly the law of least complementary energy
, takes the form ' i :

. BU—-j; 21rrdr[ . d26 r—&;ﬁme]é,.'., ....... (45)
To obtam an approx1mate solutmn the followxng expresswns are chosen
2
z = (1,—;).; .................... (46a)
and RS
f—-c(X R)(r——z) ..................... (46b)

-
e T EI (m’ -

| fm{x'[l‘",‘@““)z%]*
©and - N L

~and

- 1nstead ‘of Eqs 46 the slightly better value B = 4. 66 E—I was obtamed with

’ . be 1gnored the bendmg moment due to the inertia forces becomes

By substltutmg from Eqs 47, 48, and 49 in Eq 45 and earry
mtegratlons one ﬁnds ' . R

'3 E I BU [ __(3 + ) R] 83X

- ‘77'02 2

[ 61“]513: ........ L (50)

Eq. 50 gives

”R YYD
_ G

(51b)

Wlth B= 0 3 Eqs 51 glve R = 4.70_( —a—;whieh--i_s only 1.7%, greater than

the correct value in Eq. 43
- By the choice,

.f—c(X R)rcosz—.‘.'.-'.‘ ....... ' ....‘..;..:(52b)’

p = 0. 3
APPLICATION TO VIBRATION OF BEAMS

If an elastlc beam vibrates freely in one. of its modes, the deﬂectlons at the
t:me t may be. stated a8 - . , e
. : n—(z+y)coswt...L;.»‘....;....v..‘;.‘,..k..(53:)' :

1n whmh wisa. constant deﬁmng the period as ?—~ , and z and y are functxons of

the distance 2 measured along the beam. The functlon 2 will be chosen so'that
the values of ¥ . are’ relatlvely gmall.  Then z'may be mterpreted aga’ startmgg
deflection snd 'y as & supplementary deﬂectmn, both referrmg to the txmes .
wheneoswt—l N ‘ ‘
Let X denote the. bendmg moment at any pomt due to an 1magmed sta.tlc '
load defined as the product of z times the. wexght w per. unit of length}
w.may be constant or.a function of the distance z; X will be a funetion

Aof z and will be measurable m Ib—mz When coswi =1, the inertia-

force per umt of length is —E- w (z + y), in whmh g 1s the acceleratlon due to

gravxty, -g— is the mass per umt of length. - When the contnbutrons from y¢an
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- The usi of the inertia forces converts the problein into one of statics. The
_quantity 7 now may be interpreted as an adj_usta,b‘le reaction, playing the same
réle as B in the application to columns. Then: \

wZ .
oM ‘=.;X§<—g—>i.\...-.‘ ...... REE T (55)

and the variation of the complementary energy becomes .
L M a2z’ o2 b2
ST = M o fw w? X
~ f(EI +dx2> de M = 6(;)[(,;-,—19- +
Eq. 56 gives o : .
: U %, :
f Lo
wz L N
X2dx
J Elg

from which the period may be computed as im,

P\ :
W)Xda; =0.....(56)

It is of interest to compare E ith’ i i ‘
2 ’ re Hiq. 57 with the next equation, which represents
Rﬁylelgh’su‘ method. 'I:he leff; side of-the-equation is twice ‘;he kinetic energy
when cosw i = 0;.t'he rl.ght side is twice the iﬁternal potential energy when
c,os»w t = 1; and either su_ie is twice the total mechanical energy:

. ) d2z 2
wzrfg—zz‘dx=fEI<a—£§ﬁ)ql:vc ............. v....(5_8)

Wilen t‘hezdeﬂectidn z is stated approximately, Eq. 58 gives an approximate

;/:cue (;f wt. ) The ex?mple that follows will show that Eq. 58 requires a more
urate statement of z than does Eq. 57 for th 4 imatior

v platomer q or the same deg?ee of appr(?xxmatxqp
A cant.rlevg'r of length 1, with & fixed suppoitat z = 0, and with w.and E I

co_pst%pt, is chosen as exa_mple. Ap exact solutior" of the proper differential

Equatll;n}glvesd an expression for the extreme deflections 2 4 y in terms of t\}vo

. yperbolic and two trigonometric funetions. 'Theéreby the val i
first mode of vibration is found to be © aadia V-a e of o In the

= 816 i (50)
In,w;hich o denotes fthe quantity TRV R I R

) - %o W ' .(60)

Inan approximate solution by the method of comploments I
L Y y the method of ¢omplementary ene 3 :
stqrtmg' curve may be taken as a parabola, = .. v oo v e the

: —f —75-. g ; c e e e e e e, {.'(61)
2 llTheory of‘ sOu d'" o N o o 3 0 P ,V - B
267 o T “Vibratiol; Prol{) Lord Rayleigh, 1_8?’7',5 3%];'}1{1. Mg.’% gz NQO." Vo}. 1, 1894, pp. 109 and -

80 " ¢ ems in Engineering,
19 See “‘Vibration Problems in Engineering,” by 8. Timoshenko, Van Nostrand Cio.'l;gi&pm;éis-ﬁo'
R o ¢ P 40%.
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“‘—1'2—'[<‘l‘> "‘—‘l—+3] ............ (62)

When' these functions are substituted in Eq. 57, one finds

781

Then o
X =

» ! ‘ ‘
‘ . © = 0002 o BBBO @ e (63)
13 .
which differs only by 0.49 from the correct value in Eq. 59. :
Exactly the same result can be obtained by Rayleigh’s method, with Eq. 58,
but the function z must be chosen much closer to the true deflections; the func-
tion z equal. to the ‘deflection under & uniform load will serve the purpose® -
If z 'were taken from Eq. 61, Eq. 58 would give w = ws 420 = 4:47 wo, which
is 27% too great. ° ' P

‘Ifa straight line, z = El—x- , is'chosen as starting shapévins:;té“ad of the parabola
in Eq. 61, the me“thodv of complementary energy gives =§.wé. 1—14—1(-)- = 3.57 wo.

' . Rayleigh’s method give’é the same result when 7 is chosen a& the deflection due

to a concentrated load at the free end. ‘ . :

Stapinizing Loaps

When a load producing buckling is reversed, it becomes a stabilizing load;
but it-can still be studied by the theory of buckling, = The general theorems
which are needed in subsequent applieations of the method of complementary -
energy are derived most conveniently by considering thie enérgy as a function
of the shape. The derivations will be shown in brief form2 " .

It is assumed that any shape of the structure that i geometrically possible,
when continuity is maintained, can be defined by assigning a definite set of
values to a-set of parsmeters u, sy Us, -+ Us, -++. It is assumed that these
parameters definé any internal deformation by a linear equation of the form
. Dy ... (64)

bare

D=Doug+ Dyws + Doug+ -+ ¥ D Un+ -+ =
! . T 0,1,
Besides, it is assumed that each member.obeys Hooke’s law. Theén each
stress will be a linear function of the parameters, and the strain energy will be-
a quadratic function of the parameters. . o

Two loads, P and Q, are considered. . It is assumed that the path p of P
can be stated adequately as a linear function of the parameters,

but that a quadratic function of the parameters is required for an adequate .. .
" % “Vibration Problems in Engi * by'S. Timoshenko, Van Nostrand Co:, 1928; p: 59. " )
2 Loe. cit., p. 58: . . - : o Lo
. 2 A fuller account of -the theory represented by Eqgs. 64 to 73 and 78 to 80 and explanations of the

. “special’terminology are given.in the. paper, “‘Buckling 'of Elsstic Structures,” by H. ‘M. Westergaard, -

Transactions, Am. Soc..C. E., Vol. 85-(1922), p. 576, especially pp. 604-637.
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statement of: the path gof Q. It wﬂl be assumed that 8 special chorce of pa
meters has made it poss1ble to state .the path ¢ 88

PR g = —qoup — 3 Z Gn Unde o voe e (66)
: L9, ... A
and the strain energy as ¥
n F, . R
YV =3Voul+31 3 Quanuado. oo, (67)
: 12, ’ T T

Wlth all the coefﬁclents o, qn, Vo, and Q. positive and all of the values Qn d1ﬁ'er-
- ent from one another. That this combination of relations is.no

cussion that follows.

With Eqgs. 65 to 67 accepted the principle of mlmmum of the potentrall

energy by’ varlatlon of the shape takes the form,

V Qq—Pp Vo'ub"-l-s",Z\annu;ﬁ‘f N
. v L.

n

1,2, ...

6T. =0, or, é———=0 forn——012 e (69)‘

~Egs. 68 and 69 will be applied to 1nvest1gate & series of four actlons in
which u, will be denoted successively un, ,u,., un, and %,. Table 1 will serve
as a summary of. the results ‘

L
H.

‘ TABLE I;—f;SUMMARY OF Tl‘monr OF BUCKLINGfAND SraBILizING . LOADS

‘Action Definition Valuenofmpiraz'netex: tn for Equation No.
Astatic . P=0,0=—0Qx " ua =any value, others =0 | . [ R
Orttads - | PrO@=0 a-gEedn | omm
Rsxed | P #0,0>0, Vreduoed | g =2 2%y, mm

O R O PGP R
Heterostatm A‘ P ;é 0, Q‘ =0,V resto‘redv Uup.= ﬁ@ﬂ” =6:+—Qu" 80,81

v Astatie Actioh.'—-’lfhe ﬁrst action, is defined by
B ‘ . ‘ - 0 N . y )
Inspectmn of Eq 68. shows that 9 T =0 When

Qﬂ- 90

'u‘o» - Vo ‘ Uy = any value, all other parameters u,,, =0, ,(71)

t only possible,
but: typlcal of buckling and stabilizing IOads, lel be brought out by the drs ’

+Q<QOut+% > qn.u,ﬁ) ~-P > PnUn. (68)
1,2,... : .

Smce the parameter L may Pass through a contin
fining a continuous range of shapes: of the structure, equ
neutral and the action is descrxbed ag bucklmg under the critic

"buckling or astatrc action. ~The load =~ Qis called an astatlcvload
meters ua, Uz, * -+ Un, +~- are called astatic parameters and ug is called th
orbhostatic parameter of the astatic 4ction. If Tisa maximum by variation of
some of the parameters, the equilibrium is unstable, though neutral by varia-
tion of u,. . Further exammatron” of Eq. 68 shows: that if the .quadratic ex-
pressions for V and g are written with mixed terms included, such as Vimn Um Un'
and Gms Um U, knowledge -of the existence of tw’o astatic actions, one with

- Um = any value, u, = 0-and the.other with u, = 0, u, = any value, at two

drfferent values of the astatic load leads to the conclusion that Van = gma = 0.
It follows that if the states of pure buckhng can be ascertained, ¢ and V can be
written in the relatively simple forms of Eqs. 66-and 67; and thereby the nature
of the astatic parameters is also ascertained.

‘Orthostatic Actwn ~—The. second actron to be exarmned is deﬁned by

P30, Q0 (72)
Eqs. 68 and 69 give up = 0 and th‘e following value of unforn =1,2, ‘
. - P p, .
st il TR e L e ey T e a e i (73
- u " o (73)

The parameters are: proportmnal to the load P the same apphes to the- de-
formations and stresses, which are linear functlons -of the parameters No
buckling is involved; therefore this is the usual action dealt with in structural
mechanics.. . Inthe. termmology of the theory of bugkling,. this: aiction, in which
the astatlc load is absent, is called orthostatic action. The load P ig called the
orthostitic load. Eq. 73 defines the values of the astatlc parameters in the
orthostatic action.

- -Reluzed Action.—In the thn'd action to be examined ‘the structure is as- o

sunied to have béen modified by a relaxation of stiffness. The strain energy
¥ in Eq.67 is reduced in the relaxed structure by removmg all terms except the
»ﬁrst so.that now - Lo

' V‘.,= % Vou 20 L e .:. (74)
_It wﬂl be assumed that - Co : ' oL .
< P#0 Q>0 i e, (75)
When the proper terms are omitted in Eq. 68 one finds
w'= = %ﬁoﬂ ........... e o (78)
and the followmg value of Un for n = 1 2, -t
- P p,

. . ,,,_Qq"“v“v”' ........ \
: ”“Bucklmg of Elastlc Structures," by H M Westergaard, Tramm:twns, Am Soo. {
{1922), p. 576, especiaily pp. 611~612." .

s

R
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185 bf thg,a‘sﬁgpijc_ pa‘raimetersv in the reldxéd action.. ':.‘,The
e,-and @ is a stabilizing load.

‘equilibrium is

! 1 ig:stabl
H eterostal

the.astatic loads are.present, that is,

' '.I"hisi‘g' 'njei'al-typ"'e of action is caIlevd heterostatic action ; the combined "loa,.d. P, g
is a heterestatic load, with the orthostatic component P and the astatic compo-
;;;"1"911’0‘ @ By Eqs. 68 and 69 one finds o as in Eq. 76, and forn = 1,2, 3, -(.:

o P P . TR
" un-_(Qi;"i"Q)Qn .......... ’“”““”?'?(79)
A pdmpariéén of Eq. 79 with,E_qs. 73 and 77 shows that 5
' e _ . Qn
‘ 3. QnQ"F 7 R TR TR R PP P (80).
and . ’
Un
‘ 5 Qo Qe (81)

‘When @ is positive, Eq. 80 defines the reduction factor of the aétatic parameter
%n by transition from the orthostatie action to the heterostatic action under

the influence of the stabilizing load Q; and Eq. 81 defines the reduction facter:

of the same parameter by transition from the relaxed action to the _heteiro,si;at-ic'
‘action by restoration of the stiffness. When @ is negative, the factors in
‘Eqgs: 80 and 81 become magnification factors; It may be noted in Dpassing that

QQ is the tfdns’ition factor %_J by change from the relaxed to the orthostatic

action. o AT

- Ezample—A slender horizontal tension member bending under its own
‘weight will serve as illustration. The ends are assumed to be hinged, and the
end load central.  The total horizontal tension is the stabilizing load Q. The
weight, w per unit of lerigth, is the orthostatic load. Assume that-the cross
section is constant, with area 4 and morment of inertia I. Let E = modulus

of elasticity, ! = length, z = distance measured from one end. Then the nth

“critical value of the astatic load — Q is defined by Euler’s formula -

Qn = f—”ﬁ— .......... e (82)
‘_‘an't‘_i the deflections maintained by it are ‘ R
: 'y’=_u,‘.'sm@*;m.:...‘..;~.; ..... .. .(83)

in which u, is a proper astatic >par'9‘.n'1etér._. As orthostatic parameter of the

- orthostatic action one may introduce the total shortening ‘of the center. line,

Y E’-Q_'jl ,:Vﬁhich'mgkes g = 1. Th’e‘ ﬁérarpefte}r@_o presents 1o di
Action.—;ln,.\the fourth and last action to be consideredl the
sumed to have recovered its stiffness. Both the orthostatic and - , &t

IR " according to the law

P0,  Q0........... . (78)

© pathof @is T
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in this problem. ‘ R : - L
In the relaxed action the member is changed intd a cable, which deflects:

L dy o w .

» - —&;5=-Q~ ............ :
Eq. 84 may be rewritten so that the right side ex;p'res’ses;a"sum of corresppxidi’i;‘g _
effects in  astatic actions, as follows:# -~ - - g o, :
N . s - o -
dy 4w 1. arx 85
R 7Ry, ) 123: FER = ( /’)

When the stiffness is restored, each term in the sunimation in Eq. 85 is -

- multiplied by a reduction factor defined by Eqs. 81-and 82. After multiplying ‘

by — E I, one obtains in.this way the bending moments in'the heterostatic
action, = .~ ’ o ’ : -

M-S Py Rl T (#0)

The series in Eq. 86 converges and defines the S_tréééeg, _. ‘

 Eq. 86 may also be deriyed by way of the orthostatic action. When ¢ = 0,
Ay _w 4w ilnrz ' ’
L T EI T TEI ST

1,3, ...

© After two integrations Qné finds the bending moment in the orthostatic action

v dwl &K1 L nwz . ' E
M‘=——7r3—1.;wﬁ§m T .- (88)

"~ When Q is‘introduced, and the reductiqn-facfors are applied iacéording to Eq. .

80, Eq. 86 is reproduced. -

The general theory may be. applied 40 the problem in other ways. For
example, the theory will furnish the series needed first, such as those in Egs.
85.and 87; this is impertant for the more. complicated: problems in which the _
corresponding series' are not simple trigonomeétric series. - ‘The computations -

v ; . T
'}

may bé made as follows: The 'cb#tfibﬁtioi; of the deflections y = wu, sin =

to the path Qf .tﬁe »distributed']oad-w (which takes the place of P in Eq. 68) is R

N M e S £
SRR .p‘=”p,‘,u\,,'='f ydp == ” ........ <. (89)
. S E o ; g : L
if nis >'1bmevv'en, and zero if nis even; and the corresponding, contribution to f;‘h‘é, '

W . . i dy \ A . :_nzv"']rz u,,ﬁ P SR -
g= -4 »u,.=—lf (-->dx=— T el 90y
(5Tl = =3 |\ % _ 47 e

% Seo "4 Shiort Table of Integrals,” by B::O: Peircs, 2d Ed., Ginn & Co:, 1910, formaitla 808, S

.

S
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. Thelast two equ

] oty define p, and da dJrectly, and thereafter 7 through Eq
73-and 82." - Thiis-one finds the deﬂectxons in the orthostatic action ‘
LT & s Adwlho & e BT
Y = 2 nSin = = § wTEsin —5— .. L (91)

' The deflections in the heterostatic action are obtained by applying the redue-
tion factor in Eq. 80 to each term in Eq.91. Eq.86 is reproduced easily by this
method. Another route to the same result is to détermine %, by Eq. 77, and
thereby the deﬂectrons in the relaxed action; from these one finds the deflections

" in the heterostatlc action by applying the reduction factor in Eq. 81 td each

term in the series.

The method of complementary energy is apphoable ta problems of stabrhzmg '

loads through its applicability to astatic actions. .

STIFFENING OF SUSPENSION BRIDGES :

» That a suspension bridge is stlﬁ‘ened by its own weight was brought out in
‘an analysis published by Joseph Melan?s in 1888, Leon 8. Moisseiff, M. Am.
Soc. C. E;, developed the theory further for the des1gn of the Manhattan Bndge
(1909); and F. E. Turheaure;? Hon. M. Am. Soc. C. E. ., investigated. this
application. and contributed to, and presented, the theory Since then this -
principle of stiffening has become well appreclated in America; it has been .
utilized in the design of the great bridges, and has been dlscussed in a potable
American technical literature on the subject.25 26 27 The dead load has the
character of a stabilizing load. S -

o1 * . R 0

lllllllllllllltttll

% per Unit of Uength
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L

Fra. 4.-~MAaIN Span or Susmsxou Bripak

: It is not intended here to present a full analyms of the stlﬁ’enmg of suspen—
! sion bridges. It is desired.only to show the applicability of the method. of . .

: complementary energy to this problem through the theory of stablhzmg loads
and buckling.”® . The analysis therefore is limited to a simplified case, which is
suggested in Fig. 4. The following actions are left out of: aceount ‘a8 ma.tters'

8 ‘“Theorie der eisernen Bogenbriicken und Hangebriicken,” by J. oseph Mels.n. Handbuch der Ingenieur-
enschaften, Vol 2, Subvolume 4, Leipzig, 1888, pp. 1-144, especial lyg (English translation of 3d Ed.
’ (1906) entltled Theory of. Arches and Suspension Brldges, by D. B: Bteinman; M. Am. Soc. C E.. The',
C: Clark Publishing Co., 1913).",

2 *“Modern Framed St ructures," by J.-B. Johnson, C. W Bryan, and F E. 'I‘m'neaure, John Wﬂey

& Sons, Ine., Vol. 2, 9th Ed., 1911, pp. 276-318. .

R A Prae‘tlcs.l Tréatise on Suspensron Bridges,” by. D. B ‘Steinman, John Wlley & Sons Co., Ine., -
1929, pp. 246-282: Leon 8. Moisseiff, Journal of the Franklin Institute October, 1925.- ra‘nmclum 5
Am. 8oc. C. E., Vol 91-(1927), J. A. S Waddell. pp 8,84—910. especial pp 893—895 Vol. 94 (19303
8. Tnnoshenko, pp . 877-391; Vol. o7 (1933), O. D. 1-65, especially 9—44: Vol. 100 (1935),
?lg_mStemman, PP 1133—1170 and Vol 104 (1939). Shortndge Hhrdesty and Harold E Wessman. Pp.:

.2 The application of- the theory ‘of buckling ot “the suspensxon bndge upsuie-down" t0 suspension
bridese ws suggested by: H. M. Westergaard in 8. , Tran Am. Sbc; C. ., Vol, 94 (1930)
p .

, kuples or be referred to mdependent supplementary analyses
- the cable beyond the:initial stretehing; movements of the poif

stretohing. The suspenders are assumed to be spaced closely. Th

, stlﬁenmg truss.

- this analysis as a reaotlon a,dJustmg ltself to Q as. if it were a hydrostatic

any value of z, -

‘ whlch WﬂI bé without 1mportance in the subsequent computdtlons, are ignored,

e . R -
/ . ) CGM:PLEMEN_

at the tops of the towers; and. elongations of the suspenders beyond

curve of the cable is assumed to be a-parabola with a sag that.is. falrly, Stk
compared with the span. The followmg notatlon is used;

-z = horizontal coordinate. - » ’ b

- Z = initial vertlcal coordinate, posrtwe downward, of any pomt of the
cable.

" 2 = addition to Z by the charge’ from the initial shape to the startmg

shape; with the restrictions imposed, 2 is also the startmg deflection of the

+ y = addition to 2z by the’ change from’ the sta,rtmg ghape to the ﬁnal shape

Y = total deflection, addition to Z, in & relaxed action in which nelther the
cable nor the truss contributes stiffness against bending.

7 = total deﬂectlon, addrtlon to Z, in the heterostatic action. ) '

l = span. .

h = Zmax ~ Do TR ) .

Q = horizontal component of the total tensmn i the cable Qs mterpreted :
as a measure of the stabilizing’ load. .
. @Qn = critical value of — @ i in an. unstable asta.trc action.

w = uniformly distributed Vertlcal load per unit of length; interpreted in

pressure. :
P = orthostatic. load .
-.. K = force defined by Eq, 95. - S
M = sum of the- bendmg moments in the stlffenmg truss and the cable at

E I = measure of Athe eombmed strﬁ'nesg of the strﬁemng truss and the
cable against bending.

k = ratio defined by Eq. 117 sl ;

The initial parabohc curve of the ca,ble has the equatlon :

: = 4 h i (l:c —= x’) ...... PR e (92)
If the shape i is changed by mﬁmtemmal mcrements 87, the potential energy of
the umformly dlstnbuted load w w111 be changed by the amount — f 6Z dz.

Thls amount is mﬁmtesxmal of second- order because it is the total change of
energy if the cable is unstiffened, and the parabola is the curve of equilibrium
of the unstiffened cable. Therefore, when small quantities of second order,

‘and under the simplifying restrictions tha.t were imposed, and as long as the
deflections 2, y, Y, and 7 remain small it can be asserted that

Y I AR
f zdz ="] y_dé::’ Ydz = |

0,
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The first. task is.to mvestagate the astatic actions: ab crltica.l megatwe- values- . A o
‘of the loadsiin Fig. 4. - Under’the loads in Fig. 4, when the deﬂectlons are, z, ‘ S _n;r » 1 2\ o
the com’omed bendmg moment in the cable a,nd the truss is ° : 2= 25 (sm I T sin ZrT ) . forn =357

. M — _;_ ey g ey SN . ] ; A ‘
: . - w (l T :v) 4 Q hl (l r—e ) e LOSEE s (94.) Both satisfy the requirement in Eqgs. 93.,
It is exped1ent to mtroduce a force K deﬁned by the equatlon R With # asin Eq 102 the solution is
N — -2 P e e . oo g
Thon ’w 8@Q+K)hl el ....... (95) | _0 Q= Qﬂ__ngr,liél | forn—2 4 .:'(104)'>v
. — e ~2 — g2 - ~ o
_ N ; M Qz+4Khl (l T (?6) This result could have been found more easxly, mthout mvokmg ‘the method of A
~ and the increment of M by variation of l’he state of stress is complementary energy, by notmg that Eq. 102 is the solution of Eq. 98 Wlth '

y.= 0, and with K and @ as'in Eq. 104,

It is when the diagram of deflections is symmetrical, as by Eq. 103, that
Athe method of complementary energy shows merit; because Eq 103 will be
close, although not 1dent1cal t6 an exact solutlon of Eq 98 mih y = 0 With

OM = - g8 4RI (s — K. (9T)

When 2 is chosen 80_that the supplementary- deﬂectlons Yy are small the rela-
tion of: deformatlons to: stresses . :

T , z as in Eq. 103 Eqgs. 100 a.nd 101 become, after multlphcatlon by
E? EI+dx2"f' ..... (98)

1 —2 o 32 ~1 L -3 —ah nK
may be uged with M as in Eq. 96. (A +n™) 2 Q + 382 (w )a2he

- The variation: of the complementary. €nérgy may now bé.wrigféh: _ . + (,”2. + n72) 1r2 E I_,zn’vl‘" = Q... .. . .(105)
‘ : and R L ’ '
! o -
i f <E1+dz>€MM”' | 82 (7t — —a)rShz,,Q-s-——th_0.;...; ...... - (106)
=——1—- 1 Q 4 4RRI2 (s = 5;2 Eq. 106 shows that K is proportronal to Q but also proportlonal to the small
o mT 0 ¥ o B S ra,tro k H therefore K i is: a small supplementary force, although 1ts mﬂuence
L +EI Eﬁ] [ ~2 ‘YQ + 4 hi= (l' T = ‘xz) 6K ] dz = 0. e (99) may not be small, Elimination of K gives ' ‘

[1+4 n —960 (n1 = 5% 7=57Q = — (n? + n-z) PEII . (107)

Since #*® is very close t6 960 and 7= will be msxgmﬁcant the left side of Eq. 107
can. be restated as (1 +2n4.Q. A further simplification, representmg no
51gn1ﬁcant loss of aceuracy, reduces the solutmn to. the form :

. This equation is converted mto the followmg two, in whlch all lntegratlons are
fromOtol: = SRR A

%g_szzdx—4Khz-zf(lm—mz)zdx

"EI

—Q Qn = (n’— %) 7,-2%5‘,[, forn==3 5,7, ....._'.-(108)

. VExact values of @, for n =8, 5, 7, -*~ can be found by solvmg Eq. 98 w1th
~y-=0:and' M as in Eq 94 It is found that. these values are. deﬁned by the
' equatxons e v . .

o a3 ;.“: _‘
v ; tana—a+-——.....;.,..........,\...(109(1)‘
Eqs 100 a d‘_1' Ia.re satxsﬁedby the tr1v1al solutmn z = = 0, K = O Q = any “and, ‘ ‘
_value “Non- 1oxis ex’ust however ' N C Bl
'forms of z are sultaf)le L ’ Q = 4 o == - .-< ............ 5 .. e .(1096)
” = Zusin 'n1lrx - for n= 2 4 6 S el 02) ‘ urthermore, it is found that Eq 108 glves a very close approxxmatlon to these

‘ exact values.
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This cbmple‘bés'th‘é stud}y of ‘the agstatic actions, but the goé,l is fh_e ‘hitero-
static action. This goal may be reached either by the route of the orthestatic:
action or by the route of the rélaxed action, in which all stiffness identified with

elasticity is removed. The latter route is chosen. v : .

The stabilizing load @ consists of the two horizontal forces Q in Fig. 4
and the distributed load w which is proportional to @. An addsd vertical load
i8 an orthostatic load if it requires no change of @ in the relaxed action. Let
My denote the benditig' moments that such a Toad would produce in a simple
- beam replacing the bridge. Simple considerations of statics show that'in the
relaxed action thisload prodiices the défléctions f S

o

i B
[IER R PR

0

The loads in Fig;. 5 are ascer_taine;d as two exa,mples of orthostatic loads by

Y =

t

- COMPLEMENTARY ‘ENERGY - 791

,

it may be confrenién"t instesd to begin by expressing the orthostatic load by a '
* - Fourier series; and then integrating twice to obtain My. . In §ither case the
series in Eq. 112 is obtained by a straight-forward and well-established process.

R . H . .
- Tt is assured in advance that f Ydz = 0. Itfollowsthat
: . Ty Je - .

Vis = 2 0 Vaeeevoie il (114)

3, 6,...

Then Eq 112 may be rewritten in the desired form

- —xsinfl—‘”—) ~(116)

.

n
2,4, .0 8, 6, ...

Ynsinn’lrx-l— > Y,,(siinn’l"x

The transition from the relaxed to the heterostatic action is made by‘a".pf)ly-
ing the reduction factor in Eq. 81 to each term in Eq. 115, with @, defined by
Eqs. 104 and 108.
action,

This reduction produces the deflections in the héﬁgrqst_atic

N Q T
; ; VAN : = ¥, sin =
noting that the moments which they would produce in a simple beam satisfy K 2;—“ Qn + _Q l
e ! > Q . nﬂ“l-iﬁ> ......... 116
e j}P : - ‘ . 5 '+3‘,;_,Qn+QY"<sm T sy (116)
s ‘ RUEEE IS ".":'". e I}_: Vel l«-c—;\«c-; o O - o o ' . " . - ) |
@ O T " teae™ .|, By nfrodcing the nottion Qr P (11%)
1fTTT]‘TT‘[1TTf O il TTITTT k=7r2E’I .....
Total Uniformly Distributed “Totat Uniformly Distributed  + ©

. Upward Load = -6%’— Upward Load= PgG»«zll;—2c21‘

. Fre. 5.—Two Exampizs oF OrrrosraTic LOADS ON SUSPENSION BEIDGE

Eq.-111:" Tt is observed further that any vertical load can_ be resolved: into
two component parts: one, #n’' orthostatic load with moments satisfying
" Eq. 111; and the other a uniformly distributed load contributing to the astatic

load Q. Therefore the function ¥ ean be determined readily for any vertical
load. ' ' i

P ‘-'»I‘hé,ne‘}itastep is to.express ¥ as a sum of functions representing de‘ﬂection’s :
in asfatic actions.: The functionsin Eqs: 102 and 103 are sufficiently close to
the exact functions to serve this purpose. A suitable procedure is to:expazd o
the function ¥, into a Fourier series of the form N B

’ ; Y, sin 272
with the coefficients - - e o
L Yn=gf Ysin 2T 2L g
rJ, T

and referring to Eqs. 104 and 1’08, WBich define th§ critical values @, of — @, the
. final deflection, n in Eq. 116, can be restated in either of the follOwing two forms:

L TE e Eo )
7= - Sln——l—r&sz?"n(nz — o' _l_"""k) Ya

il k . nTe 2 Ic o D wwa A
+“Z i Yesin g +3,§:‘1:n’v—n‘?-’l~_ky"sm T - (118)

' 1r:1:" ‘Ynﬁ—A-n‘h‘l o
TEYART L R

o d T w o nre & W—nt . nTw )
‘_2; oy Yasin 27 "‘:'my"m"’".l ..v(119)‘

3, 6,00 R

" Aftora certain‘vahie of n the series in Eq. 118 converge more rapidly than those
; q. 119. For numerical computation the choice bet'wgen the two formulas
depends on the values of & and ¥, and on the accuracy that is desired.
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. INFLUENCE OF STABILIZING LOADS ON VIBRATIONS -

A stabiliszing load stiffens a fs'tnicture. ' Théreforg it will tend to reduce the -

periods of fréé vibration. = - :

A mode of free vibration is characterized by the condition that.aﬂ the sig- -

nificant deformations are proportional at esch instant o 5 single parameter v

. which varies with the time ¢ according to the law » = u cos n b; u may have
any value, is independent’of t, and is a parameter corresponding to » but de-

fining the extreme deformations.

It happens in some significant cases that the parameter  can be taken as
any one of thie astatic parameters u, in Eq. 68. Then, by referring to Eq. 68,
it-will be seen that the part of the potential energy that varies during the
- vibration is £ (Qn + Q) u,2 cosf e, 1. Since the velocities are ‘proportional to
 @n Uy 8iD @y ¢, the kinetic energy can be written as 3 K, w.? u,? sin? 9nt. Con-
stancy of the combined potential and kinetic energy requires that

the corresponding period ¢, = i—j— will assume different values wo, and &,,. Eq
. : . n . i

120 shows that the relations of the values are

That is; in the transition from a free vibration without the stab‘il,iii\ngfload to

one with the stabilizing load a reduction factor is applied to the square of the
-period equal to the reduction factor in Eq. 80, representing the transition from
the orthostatic action to the heterostatic action under the stabilizing load Q.

) . o IR : : Ty
FrEx VIBRATIONS OF A SUSPENSION Bripge - '

While the astatic actions of a suspension bridge n:_lay be visualized by

imagining gravity reversed or the bridge tiirned upside down, correspondingly,
the free vibrations without stabilizing loads may be visualized by imagining

‘gravity removed temporarily or the bridge merely keeled over so that cable and .

_ stiflening truss are placed in a horizontal plane. C S

The discussion will be limited again to the simplified case that has been
under consideration. Furthermore, only vibrations in the plane of the cable
and . stiffening truss. will be considefed; and energies due to_components of

" -velocity in the direction of the span will be assumed to be relatively so insig- -
nificant that théy can be ignored. Then the modes of vibration will be repre- -

sented adequately by Eqs. 102 and 103. When the procedure leading to Eq.  -.
57 is applied to-Eq. 103, ore finds that in the modes of n = 3, 5,7, + -+ the
bending moments due to the load w z are fepresented not exactly but with good .

. approximation by the ‘fv‘o’rmiila

o n21r2 .

-

x=tel <’Sin nEE - CsinTE ) e s{i92)

By feferrin‘g tkl)v' Eq 57, ‘one ﬁnds, for n.= 8,5, 7y v eny
o - o
fX@“
X2de.

J Elg

. g - . M o . . N . 1 . s N
‘n2‘1r‘=EIgf <Sm,n1lr'c_lsmzl§><n2smn7lr,x =~ Zgin W-l—x)dx -
e 0 ' no N e " R

; w0n2 = -

_ () Elg :
—W.- ..... ;..'.‘ ....... :.-'\

/e

..o'l’f, by substitution from Eq. 108 and with a further permissible approximation, .

L, natg
Won" = " — gy
A+ =20Hw iR

Q. form =357 - ... (124)

* A similar but simpler coinputation based on*Eq. 102 gifres

2 -2 s ' - o
won? = ”w”'pg Qn  fornm =246 ... .. (125)

When the suspension bridge is again placed in its natural position ‘and

| gravity contributes stiffness, the values of won® in Eqs. 124 /'an'd 125 will be
increased to w,? in accordance with Eq: 121 by replacing thé factors @, by

Qn +Q. Thereafter the periods of free vibration are obtained. as. t; = 231_1-

With-the ctitical loads @, substituted fromf Eqs 104 and 108, and _ﬂie' ratio k.

E introduced from Eq. 117, the periods of free vibration rbe;come’

2l3, LW '
- tn —'n—;; m ?01‘/77,——2,'4, 6, R PN (126)

and

_2f [AFaT—32n 9w

TwaN@W T TR ELy P36 e a2

s : ‘CoNcLusioN S :
. It has been shown that the method of complementary enérgy-can be applied .

S with advantage to a variety of problems in sti‘uctm‘al' statics and dyna.m’i'c's;.
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pt that seems to have
This concept is one that deals with the
din textbooks dealin
“Principle of Least Work.”
in'dealing with forces, has cote to h
Nature behaves. The behavior of liquids,
- striicture of organic materials such as bones an
surfaces that may be obtained with thin fi
seem to be conclusive evidence
- It is a far ery from the Ptolemaic concep
Least Work of modern structu
logical and mechanical conce
- Ptolemaic theory, im
phers who followed Galileo.
) In their studies of the ‘phenomens of-
teenth and eighteenth centur;
perfection of the Creator.
minimum arising from. the
‘ - So great has been the influenc
that their “minimum principles”
included in modern textbooks
Creator in calling for econom,
principle of the minimum in 4
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experimental results has no.right to be ca
the assumptions which led to. Castigliano’
is geneérally, but incorrectly,
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with even the ar
y.in Nature.
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s second theorem and thence to what
¢alled the Principle of Least Work will bear this
are as follows, as-applied to engineering structures:
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law of superposition holds; and , e ,
2. Alinear relation exists between' the forces and displacements. .

Such is-the b

ed are infinitesimal and thus it follows that the -

From: these two assumptions the-ener
as a quadratic in the fo
follows: The partial derivative of:
with respect: to any force gives
it acts; and, for those forces whi
kinematical restraints, the partial derivativ
be expressed as a the
condition for a minim

gy stored in a body can: be expressed’
cements. . Castigliano’s first. theorem
the expression for energy. containing the forces 4
‘the displacement of the force in the direction - -
ove because of their geometrical or |
This latter result can, o
f the derivative as a
nimim” will not hold for the -

rees or the. displa

orem intérpreting the ‘vanishing o
um, . This: theor

# Care, Panama Canal, Canal Zone. .
2 % *“The Soience of Meclianics,” by E. Mach, The

Gpen Court Publishing Co., Chioagd, Tl 1803, p.” ' -

. casesin which (a), the law of ‘supenp_,osi@iqn' isno longe; true
does not follow Hooke’s law.. . e

:'Fhese - conditions-are purely experimental,” and in the ‘
specifications the term “principle’” is inadmissible. Most of the

in -sﬁructuna1->epgi.neeringvma»y be considered t'? satisfy -ttte got d1t1

which the theorem holds; and the results obtained in pra,ctlseagregﬂ

-with those predicted by the application of the theorem. . . L
~ The author has. introduced & new term, complementary - energy,;

- certainly’fiot of ‘anthropomorphic origin. It is nothing more than a msgthe-

matical expression involving stresses or-forces which, upon ('iiﬁefegtia;tiop' with
respect. to the. stress or force, gives the corresponding ,stram‘; or "dxsp%g‘;ceméntv‘
When the forces involved are constrained kinematically or geometrically the

D R MR ) { N
ensuing derivative is set equal to zero, which is. interpreted as a' minimum.

The author has shown' that in the case of Hooke’s law “‘cOmplementaﬁpy'ene!r_gy’f’ o
coincides with “elastic energy.”’ . . . P N

Fee Fra. 7,

" The ‘only, check on the results obtained by ’usiﬁg éifhef:.tl‘ig “law of Teast, -
complementary energy” or the “law of least elastic energy” is & geometrical
one. * In both cages the equations of equilibrium are first, applied and Vzl’;fap
'&éa'lih'g iwvith,a,St‘zwticaHy-indeterminate structure a k“mjmmurgz_bn_pclple‘_. is
used to determine the statically ihdefermiqate:quantigies.  In the last a,pa}ysls
the results obtained can be checked only by noting that the conditions of con-
. tinuity are preserved. ‘Thus the three solutions for S; of Fig. 2(a) can be
shown 10 be correct as follows: ' e -

"+ From Fig. 6 the deformation D; is connected with the deformatl‘ons D, and

Ds by the following equation: - .
3 1—-'6?60—5—21)2 . ( (
CFérP <30, R . R
N Di=(P—X)k=2 kX =2Ds; snd X =jx... (128b)
R8P <se B
Y Dy =2k (P—X=-C)=2kX=2Ds;; and X =

' '.,;.i;hd, for P> 5C, -

\

2

)i'= 2k (P — X0 =4k(X=0C)=2Dy;;and X =T3
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oo 'The fundamental'cha_;racter'of'a':soluti‘on‘-based on consistent deflections is
apparent; but it must he admitted that a solution based on a- “minimum?
principle ‘as presented -by: the author will: prove more attractive. to .ahailysts
because. of its economy of thought,. . : : o SRR TI
Stqbilityﬁ Problems:—~The. essential feature in the study-of stability ‘problems:
. is that the Structure in question is‘assumed €0 have g geometrical configuration
“entirely different from. its original state. ' The equations of equilibrium are
set up from. thi_s-stra;ined state rather than from the unstrained state as is done
in a]l other problems of equilibrium. The question then bécomes: What must
b the: value of the forees 5o that the strained state may be maintained? - Two
general-methods are available that can be -

Al shown to be identical. S
- The first method involves.theiproble;m: of the elastica—that is, the solution

DPotential energy is zero ; that is,

large displacements,
* Instead of using the

stituted for it a “com

botential energy of the structure, the author bas sub-
plementary energy” and claims superiority of the method )
-of ‘fcomplement_ary‘energy” over the potential energy by ing . ‘
. use of Eq. 23, based on “‘complementary energy,”’

. load can be obtained than by using Eq. 27, which i '

. the moment at any point whereas Eq. 27 utili
. .

M-F I_[%i. When Eq. 27 is to bo used the

. sétisfy all the boundary conditions and usin

using Eq. 24 would naturalls\r give &
poor result. The Timoshenkg variant takes

this fact into account by writing .
_ fsza—EIE ......... S (130)
I an _expression- that"satié_,_‘ﬁes,'all: boundary conditions
furnishes a more accurate result than does Eq.
example, assume : - R i R
A Eme@realatbel i sy
which satisfies all boundary eqnditic_ins;" From Eq. 27 ' S
p=168ET

is ‘used, ‘Bq. 27
23 when Eq. 24 is used. “For'

23 will have to be modified. according to the bgundapy conditions.
 the case shown in Fig. 7. '

~-are zero Bq. 135-becomes’ - -

As 3 'fnattef‘of fact Eq. 27 has a marked superiority over Hq. 23 in the
it s pérfeét}ljr:‘fg'énéral and will hold under all boundary conditions, whére

- Assufiie a starting shape o , PR
» PR Ce=¢(Bla —a¥. ... ...l e

-

wlll.i‘cjh;fsa"ti:sﬁes all boundary conditions. The exact. solution for this case is -

' ! ‘. e i eyl
P= ZZ%I_ From Eq. .27, P = 2.5_%{ ,‘Whergas Eq. 2% gives the 71"m'p9s’s1blfa ce

U4 EI

-end into account. v ) : R
. Eq. 27 was derived by equating Eq. 26 to zero, but an equlva,'lent and «(111;1
the writer’s opinion) more fundamental expression may be derived by the

‘Evi&ently Eq. 23 must be modified to ?;gke the free.

application of Eq. 129
From Eq. 26

T =éj;l[g1(%>2 -—P<g§>é]dx...;....-...(‘134)v

i The variation of this integral is a problem in the Caleulus of ‘Variations, ‘and

on performing the variation the following result is bbta;ined uo

~l - d3z : B

a d’z dz ; ) ]

o = J v [EIEE?—.}— Pd—r—é]ﬁzdx - [<.Pdm\+ Elgs o,
0 .’ . . ..

,

+El[d~x3‘a<d§>]o_o" ............ (135)

'i‘he termé in the brackets are called “the terms at_f{}?g hmlts,” gm? ‘vivh\e?“tl‘ley

1 . B PEREE K
: A K U ase) - -
Llsigerg]ue-o.
 Since the variation bz is arbitrary, Eq. 136 is fulfiled when ' |
o ppfELpes - (187a)
o . Bl i+Pgg=0..... |
37a.may be integrated to ' . o
A e S de - e
; o L .=‘-,0v‘........:.»....(.~.=.
EIgi+Pe=0.

N et byLe ok :
irig more than the differential eguatlogglven_ by Le e
‘gﬂs‘traﬁori may be seen'the connection between the:problem of

“the elasticd and ‘thie energy méthod. -
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The approximate ‘solution of all problems in mechanics based on: the i"ai'i-, '
~ ation of an integral can be simplified greatly, as follows: When the boundary

conditions are such that the “terms at the limits’” ‘are zero, Eq. 135 becomés -

‘Eq. 136. In general, Eq. 136 may be writtend as

f [Differential €quation of equilibrium] X [Virtual change of the function
v " describing the state of equilibrium] dz = 0 ... . .. (138)
When the “terms at the limits” are not zero an equation of the form of Eq.
185 must be dealt with. It must be remembered that Eq. 135 is the result of
the variation of the integral of potential energy of a straight column subjected
to end loads. “Any other condition of loading will require a slightly different
expression. : o o ey T
. Consider the case shown by Fig. 3(a). The application of Eq. 135 to this
.case is.as follows: C L e ~ B
Sinice the ends are held, the terms at the limits vanish leaving Eq. 136 or
138. Assuming the value of 2 in Eq. 131, which satisfies all boundary con-

ditions: - .
k- ble ), T = 120(a ~12) ......(13%)
3 i iy .
& 1202 - ;. .dix;j Sode . (139%)
and, ' L

‘Substituting in Eq. 136 -
f (EI24c¢+ 12P¢ (a2 — In)Be — 2028 + 2] dcds =0 . .(140)
Performing the integrations it will be found that

= W’ ..lT .................. PRI (141)

The differential eqﬁa{;ion of the straiﬁéd column;isi.givén by Eq. 137b.
From Eq. 138 : ’

o o fl', E},dzz P 3 6d : 0 i " "
, A -Zi—ﬁ'*"‘ 2 z,'xv— L (1 )A
Substituting Eqs. 139 and pérformin‘g the injtegré;tio-x'ls'v’villbléaa to '
S S B08EI- - ' ;
P. BT B e e (143)

For the case shown by Fig. 7, Eq. 138 ¢annot be used and Eq. 185 inéluding P
‘the ““terms.at the limits” must be used. ‘ o
_ The same general method can be applied to vibrating systems. =
31“Eine Wichtige Véreinfachung der Methods von:Ritz zur dngensaherten Bebandlung von Varistions- -
problemen,” by H. Hencky, Zeitschrift fiir angew. Mathematik und Mechanik, Vol. 7, 1927, p. 80, .. . -¢

3 *On. Forced Pseudo-Harmonic. Vibrations,” by L.K. Silverman, Journal of the Franklin Inpstitute, -
June, 1934, p. 743. . ’ e o : o :

-bridge can be expressed as

: (1922).‘1;:.- 578.
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-One point which. should be empliasized in the foregoing approw
that the eritical loads and their analogous quantities in vibrating
always.lar‘ger:than.-the; actual values and, therefore, are necessary bt
ficient 'magniﬁude?é.. « Therefore, these approximate values areon ‘th
side and other methods®® should be used to determine the lower limit

Fundamentally there is no difference between the method presente
author as expressed by Eq. 11 and that as expressed by Eq. 138. The#
believes that. the . differéntial equation or the energy expression of &g
problem can be “set up” with greater ease than the deflections, displacemen:
and changes .of curvature required by Eq. 10. Furthermore, all refere
volumes on the theory of structures present the general theory of equil briam
via the.differential equation and the investigator will find Eq. 138 quite
to handle. - - . S . : _—

The method based on Eq. 138 also may be used in the approximate solution
of problems.‘of :stable equilibrium (for example, in the determination:of the

deflections :of beams, ete.). - One important. problem to ‘which it has been '

applied is that dealing with the action of a suspension bridge subjected to
lateral forces and to. the determination of the natural frequencies of this type -
of structure when vibrating in a horizontal plane. .

Under the-action of a uniform wind load the deflection of a suspension ‘

Coanlh, onwr
= D BT

" The mémént and shear in. the horizontal system may be determined from
M = E’Igg; and shear = EI%;—? Eq. 138 may be used to determine the

values of an.

A set of simﬁl’taneous equations is obtained given by the general '
formuls, - : ‘ ‘ ‘

A : Aimi)s
— A A = 18,5, L (145)
L (nm)E  aw? ' .

in which i may have any odd integral value except n, depending upon the

‘number of terms assumed in the series, Eq. 144; and A4, to 4, are constants -

of the structure and loading. Thus & direct solution is furnished' by use of
Eq. 138 to replace the tedious trial and error solution now available.3- '

. Gmomem B. Riom M. Aw. Soc. G, E. (by letter)—Dean Westorgaard

has. prepared a valuable and interesting paper which, for maximum benefit,
should be read as a sequel to his’ earlier paper on the “Buckling of Elastic

"Structures; s from which the somewhat formidable terms ‘,‘6gthostat_i_¢ va}étion,_f’

o “f‘-Thé' ;of Elastic Stability,” by ‘S. Tfmoshenko, McGraw-Hill Book Co.,.Inc., 1936; p. 84; also
R&yleigh’sqgigpiplé;i’ by G. F? Temple and W. G, Bickley, Oxford Press, 1933, p. 29 g.ng'i p. 72. . :
* ‘4*‘Jugpehsion Bridges Under the Action of ‘Lateral Forces,” by Leon 8. Moisseiff and Frederick

. on 8. M ff 4
Lienhard, Members, Am. Soo. C. B:, Transactions, Anx. Soc. C. E., Vol. 98 (1933); p. 1080,

% Chf, Design Engr., TVA, Knoxville, Tenn. e
st ““Buelklirig of Elastio Btrubbures,” by H. M. Westergaard, Transactions, Am. Soe. C. B., Vol. LXXXV
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“‘astatic  action;” ‘and “heferostatic action” emerge -as the ‘more. familiar

expressions “simple stress or bending,” “pure buckling,” and “mixed buckling.”
. In. determining -critical buckling loads or natural ‘periods of ‘vibration, it
appears from the examples adduced by the author that the method of éomp‘le-
* mentary: energy -affords much greater latitude than the Rayleigh method in
the seleetion of functions to represent the deflected elastic line. This ispar-
tichl_’a;l-y striking in the 'a_ilthor’s use of parabolic loci in the cases of the buckling
. of hinged-end columns and the lateral vibration of prismatic beams, .In the
‘Rayleigh: type of investigation, . parabolic curves do not ordinarily yield de-
pendable results for the reason that the resultant expression for curvature of

o o dsoL SO ‘ % ;
.the. member, dg2 ' 188 constant, whereas the curvature should vary with the

“bending moment. In problems similar to the analysis of vibrations in sus-
pension bridges, in which the choice of funetions naturally gravitates to certain
standard trigonometric forms or Fourier expressions, the Rayleigh method
- appears to have the advantages of greater simplieity and direetness without
any. considerable sacrifice of aceuracy. ' : ( N
. .. For example, Eqs. 125 and 126 may be verified exactly, Eq. 124 checked
very closely, and Eq. 127 checked within 109, by direet substitution, in a
sirigle operation, of the functions ‘ S g

?=ensin®TEsinwt, forn =246+, (1460)
“and . . )
= z,.°<sin 7”1”; —%sin%) sin.w ¢, forn = 3, 8,7, .- ..(146:6)_

in ‘the standard Rayleigh form of the'energy equation:

ol 2 1 2 Uy g\
w {dz’ - EI/{ d Qfd=z\. -
In fact, Eqs. 125 and 126 may be verified exactly by using. the somewhat
rougher form of Rayleigh expression:

! 2 i - 2 P 2 -
s fde)t EI( d% Qfde
fe 2g<dt) o *f7<r> d“fo 5(?) ... (148)

. 1 . 9 . . N . . K B NI
in which the term f %—< d%) dz reflects the assumption that the inereased
lo 2 / N N . :

length of cable due to the vibratory motion is equal to the increased length
of elastic line of the deflecting stiffening truss. . In using the Rayleigh method
for this problem, the z-axis is taken ‘as the undeflected ‘axis: of the stiffening
truss, and. all ordinates # are measured to the deﬂected'elastic line of the truss:

No ordinates are measured to the cable. The functions adopted for 2 ‘si‘m(pli'y' 5

~ represent the idea that the stiffening truss deflects during vibration into either
an even number of alternating equal bay waves dr an 6dd number of alternating

unequal bay waves, the configurations in -either case being such that the net .

departure of the cable during vibratory motion-from” the ‘parabolic form in-
- equilibrium under the dead load is a minimum. This action is implied by

orthogonal property.

" SOUTHWELL ON' OMPLEMENTARY:

Egs. 93 In ad‘d:ifi,on,, thés:ef'functfons—r-"e‘pr‘esent; the_ffamili'z’xfh
which the oscillations of ‘all elements of the elast_ic system are either §
or in .oppositien, and the furctions chosen have ‘the corﬁréni@_ht

,vfsinm':csin.n:cdx: 0, “formsn. .. ... ... .. (149
In this conne’ctioi;; it is recognized that the author’s primary purpose is to.
give examples of sufficient variety to demonstrate the power and range of the -

method of complementary energy. He is well aware, of course, that in certain-.

instances alternative methods may prove equally convenient, as is shown by
his statement that the problem of ‘buckling of a ‘thin eircular disk supported ;-
at the edges arid loaded by a normal edge load may be solved with equal ease

. by the standard method of attack using Bessel functions. .

Dean WEStérgaard' has rendered continued service to practicing engineers
by demonstrating: the great economy of ‘time - and labor; and the penetrating
insight into structural action, that are. afforded by theé use of the more incisive
methods of advanced analysis. Without attempting the mastery of existence
theorems, reasonable facility in the use of the ~variational principles may be
acquired for a surprisingly small expenditure’ of time; and, as remarked by
Lord Rayleigh sixty years ago,'* the difficulty in connection with Fourier
series lies not in its practical physical ‘applications] but only in a rigorous
demonstration of what thevprofe'ssiOna;l' matheématician means by the statement
that the expansion represents the function “almost everywhere.”

R.. V. SevraweLL" Esq. (by letter):—By this communication the writer
wishes to record his'appreciation of Dean ‘Westergaard’s very clear presentation
of the “Method of Complementary Energy.” The use of a quasi-energy fune-
tion, defined as in Eq. 9, was propounded in one of the contributions to a
symposium of engineering mechanies held at Ann Arbor, Mich., in the summer
of 1935. The writer does not remember, however, that the notion was then at-
tributed by any speaker to Engesser, and he. was not.aware that it had been
propounded already. It must be of interest to all teachers who are concerned
to. understand the fundamentals of ‘stréss-strfai-n‘ theory. .

Whether it will have equal appeal to the engineer whose first concern is to
caleulate correctly, only time :can show. .. Use has so.familiarized the concepts
of kinetic and potential energy $hat as an inyestigator one is kept straight, so
to:speak, in one’s working by a kind of physical intyition, and as a teacher one
is likely to regard ,th'o_seuconcepts as natural and easy. . It is salutary, perhaps,
to find how groping are one’s first attempts.to. use the complementary. notion:

~One may thereby be. made more¢ sympathetic to the difficulties of students!.

Clearly, time ,mlist-be found for a serious attempt to Master the new technique, -
and to.assess its sphere of usefulness. T ‘

‘ Meaﬁwhilé, the writer can offer only one comment in regard to the eompari-
son of methods given under the headings “Buckling of Column with Hinged
Ends” and “Application to Vibration of Beams.” Dean Westergaard has -

# Prof. of Eng. Science, Oxford Univ., Oxford, England. ' e
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given two .‘.QXa,mplgsf_igw which the error resulting from & use. of Rayleigl_i,’é )
_principle exceeds:2095. The writer suggests that these examples are not really

- fair to,th;e_,pgi.g;ciple, for the reason that modes such as Eqs. 24 and 61 are ex-
cluded (tacitly) in the argument by which it is-derived: . That. argument is
based on the concept of conservation of energy, and a formula such-ag Eq. 27
presumes that no energy can enter or leave the system. A mode in which both

" slope and curvature are non-zero at the ends of a strut, however, must entail

' there either input or output of energy, Neglecting this “leakage,” it is not

. surprising that one should obtain seriously in»accuratg “results. Similar re-
marks apply to the second example, S e

_ - The writer’s reason for emphasizing this point is that.an analogous condi-

- tion for close .accuracy should presumably be recognized when the ‘icom‘plé-

. mentary method is used. It would be worth. while to examine whether this is

80, and whether (for example) it’ excludes the use of a ‘mode as shown in Fig.

“8(b). - . In fact, when two methods have such close similarity, it is to be expacted

that every precaution that must be taken in using the first' has its analogue in

a-precaution that must be taken in using the second. Provided that.such pre:
cautions have been. stated and are generally recognized, the method of -6om-
plementary energy seems likely to play an important part in the study of plastie
distortions, where the notion of elastio strain-energy has such limited -utility,

'. H M. WES.TERGAARD,xs:M; A, Soc.. C. E-‘:—The Writéf is iﬁdébt_e‘d to
. Mr: Rich and Professo_r Southwell for. their comments, but he cannot, accept
the arguments presented by Mr. Silverman. :

- For example, Mr, Silverman notes that Eq. 23 does not ‘app'ly wéll toa .

cantilever column with’ the axis of « along the original center line; but one

" would not write Eq. 23 for that case. ~The bending moment for the starting
shape in this case is not Pz but P(z ~ 2max), which, with # as in Eq-.-»1.33,"give§
K : ‘.P—.'f,z"':z?....‘..‘.......’.a.‘.’..:i‘..‘;"-(1'50)

The va,liie. in £q. 150" differs.only by 0.18%, from the true value, - -

angesis:;f:inf:fgct,i a satisfactory 'résixlt; Mr. Silverman: uses - the: ’c@lh‘ﬁlﬁs of

variations to derive Eq. 137b,-but it should be ebserved that this equation does

not apply‘to the cantilever column with the axis of & along t riginal centér
litie. - Tni Mr. Silverman’s Eq. 138, “Differential equation’ bf*'equﬂibrium{’"i§ 4

meaningless: factor. ‘If ‘ohe guesses that “‘one side,of 4’ differential equation”
is intended’ instead: of “‘differential equation, the statement in Eq. 138 still-

" would require & clearexplantion-of the relation: of ‘the mathematical forms
to the actualities of structural mechanics. ‘Mr. Silverman’s Eq.' 145: for
vibrations of & suspension bridge contains undefined constants and ‘i only ‘a -

vague suggestion of 4 solution. - His commment that Castigliano’s laws are not:
M % Deaxi, Graduate School of Eng., and Gofdon McKay Prof. of Civ, Ehg., Harvard, Univ,, Camibridgs
ass, - . . . - RSV

“ principles can be dismissed as untenable.. Thé entire discussion by Mr:

S
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man can be dismissed; it throws 1o light on the ‘method of comple
energy. o S coae . K
" Referring to the understanding commients by"Mr, Rich, the writer ‘¢
wishes, to state that he does not advocate. the supplanting of other me
by the method of complementary energy; the writer does suggest the inclu
of the method of complementary'energy among the tools of structural analysi
The remarks by Professor Southwell on the importance of avoiding leaka,
in the account of energy and on the nature of analogies are much to the point.
TMustrations surely can be found in which there is greater danger of l}eakage'i‘n’k
the account of the complemenﬁéiry‘energyﬂtha,n in the. corresponding account
of the energy. As to analogies, it should be mentioned that th\ey exist in .
different degrees. . In the basic equations’ involving the energy T and the .
complementary energy U, in changing from the use of 7T to the use of U, the
statical terms, load P, stress S, and reaction R, are replaced in order by the
geometrical terms, path r of a reaction, de'formatiqn D, and path p of a load,
and vice versa. This statement applies not only to the equations expressing
the fact. that ‘T -and ‘U are. minima,.when: the quantities P and r are constant,
but applies also-to two further-equations-which:can be derived from the prin-
ciples of ‘mininium-and represent. the exterision of Castigliano’s first and second

laws. .These two further. equations ‘apply when the: quantities r are admitted
. as variables defining T’ or the quantities Ba{re.mi!mitted‘ as variables

defining U;

N

-and they-are: - e ~
and . - SR , L
i ’ = e . P SPUR 153
L PEGR e (168)

Thus an analogy is established in which there is a one-to-one correspondence of
terms in two pairs of basie equations; but this analogy has not been extended
to such a degree of completeness that;.given a structure, one could always

‘visualize an analogous structure in which the statical quantities of. the original

structure appear as geometrical quantitic pg'-vvigeyerga;; Some of the well-
knows specific analogies possess-this. degree of completeness; for exdmple, the
‘soap-film analogy by ‘which torsional sfressqs,a.re;;lfeplgqsentqd by slopes of a
film (which i a structure of a kind); or,the analogy by which cutvatures of a
plate represent a two-dimensional state-of stress-in the plane of a, slice. The:
.comments made by Professor. Squt};wgﬂ.suggesb _the observation that the old

- field of structural mechanics is still 'open, for profitable new exploration. -




