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In this appendix, some basic concepts of matrix algebra necessary for formu-
lating tHe computerized analysis of structures are briefly reviewed. A more
comprehensive and mathematically rigorous treatment of these concepts can
be found in any textbook on matrix algebra, such as [11] and [26].

DEFINITION OF A MATRIX

A matrix is a rectangular array of quantities arranged in rows and columns. A
matrix containing m rows and n columns can be expressed as:

A11 A12 T Aln
_ - A21 A22 Azn '
A= [A] - ce e A,'j “es ith row (B.l)
Ami Amy ... [ oo Apn

Jjth column mxn

As Eq. (B.1) indicates, matrices are usually denoted either by boldface letters
(e.g., A) or by italic letters enclosed within brackets (e.g., [A]). The quantities
that form a matrix are referred to as the elements of the matrix, and each element
is represented by a double-subscripted letter, with the first subscript identifying
the row and the second subscript identifying the column in which the element is
located. Thus in Eq. (B.1), Ay, represents the element located in the first row
and the second column of the matrix A, and A, represents the element in the
second row and the first column of A. In general, an element located in the ith
row and the jth column of matrix A is designated as A;;. It is common practice

"to enclose the entire array of elements between brackets, as showin ini Eq. B.1).

The size of a matrix is measured by its order, which refers to the number
of rows and columns of the matrix. Thus the matrix A in Eq. (B.1), which con-
sists of m rows and n columns, is considered to be of order m x n (m by n). As
an example, consider a matrix B given by

5 21 3 -7
B=| 40 -6 19 23
-8 12 50 22

‘The order of this matrix is 3 x 4, and its elements can be symbolically repre-

sented by By, withi = 1to 3 andj = 1 to 4; for example, By3 = 19, B3; = —8,
B34 = 22, etc.

TYPES OF MATRICES

Row Matrix

If all the elements of a matrix are arranged in a single row (i.e., m = 1), then
the matrix is called a row matrix. An example of a row matrix is

C=[50 -3 _—27 35]
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Column Matrix

A matrix with only one column of elements (i.e., n = 1) is called a column ma-
trix. For example,
-10

33

-6

15
Column matrices are also referred to as vectors and are sometimes denoted by
italic letters enclosed within braces (e.g., {D}).

D={D}=

Square Matrix

A matrix with the same number of rows and columns (m = n) is called a
square matrix. An example of a 3 x 3 square matrix is

<::é\\\\\gl 3
A=| 40°c6-19

Y ®B.2)
- Maiﬁ?ﬁagonal v
The elements with the same subscripts—that is, Ay, A, . . . , Ay—form the

main.diagonal of the square matrix A. These elements are referred to as the di-
agonal elements. As shown in Eq. (B.2), the main diagonal extends from the

 upper left corner to the lower right corner of the square matrix. The remaining

elements of the matrix (i.e., A; with i # j) that are not along the main diago-
nal are termed the off-diagonal elements.

Symmetric Matrix

If the elements of a square matrix are symmetric about its main diagonal (i.e.,
Aj; = Aj), the matrix is called a symmetric matrix. An example of a 4 x 4
symmetric matrix is
=12 -6 13 5
—6 7 -28 31
13 -28 10 -9
5 31 -9 -2

A=

Diagonal Matrix

If all the off-diagonal elements of a square matrix are zero (i.e., A;; = 0 for
i # j), the matrix is referred to as a diagonal matrix. For example,

3 0 0
A=|0 -8 0
0 0 14

Unit or Identity Matrix

A diagonal matrix with all its diagonal elements equal to 1 (i.e., I; = 1 and
I = 0 for i # j) is called a unit, or identity, matrix. Unit matrices are usually
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denoted by I or [/]. An example of a 4 x 4 unit matrix is

1 000
[=]0 100
10 01 0
0 0 01

Null Matrix -

When all the elements of a matrix are zero (i.e., Oij:= 0), the matrix is called
a null matrix. Null matrices are commonly denoted by O or [O]. For example,

0 000
O=]0 0 0 0
0 00O -

MATRIX OPERATIONS
Equality

Two matrices A and B are equal if they are of the same order and if their cor-
responding elements are identical (e, Aj= Byj). Consider, for example, the
matrices
-3 5 6 -3 5 6
A= 4 7 9 and B= 4 7 9 \
12 0 1 12 0 1

~ Since both A and B are of ;(;rder 3 x 3 and since each element of A is equal to

the corresponding element of B, the matrices are considered to be equal to each
other; that is, A = B.

Addition and Subtraction

The addition (or subtraction) of two matrices A and B, which must be of the
same order, is carried out by adding (or subtracting) the corresponding ele-
ments of the two matrices. Thus if A + B = C, then Ci= Ay + Byj; and if
A — B =D, then D;; = Ajj — By;. For example, if

25 10 4
A=]3 0 and B=| 6 7
8 1 9 2

then

12 9
A+B=C= 9 7
17 3

and

-8 1
A-B=D=|_3 _7
-1 -1

Note that matrices C and D have the same order as matrices A and B.
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Multiplication by a Scalar

To obtain the product of a scalar and a matrix, each element of the matrix must
be multiplied by the scalar. Thus if

7 3
B—[__l 4] and c=-3

then
-21 -9
B = [ 3 —12]
Multiplication of Matrices

The multiplication of two matrices can be carried out only if the number of
columns of the first matrix equals the number of rows of the second matrix.
Such matrices are referred to as being conformable for multiplication. Con-
sider, for example, the matrices '

-1 5 2 3 -6
A{:[ ! _3] and B=[4“__8 9] B.3)

in which A is of order 2 x 2 and B is of order 2 x 3. Note that the product AB
of these matrices is'defined, because the first matrix, A, of the sequence AB has
two columns and the second matrix, B, has two rows. Howeyver, if the sequence
of the matrices is reversed, the product BA does not exist, because now the first
matrix, B, has three columns and the second matrix, A, has two rows. The
product AB is usually referred to either as A postmultiplied by B or as B pre-
multiplied by A. Conversely, the product BA is referred to either as B post-
multiplied by A or as A premultiplied by B. .

When two conformable matrices are multiplied, the product matrix thus
obtained will have the number of rows of the first matrix and the number of
columns of the second matrix. Thus if a matrix A of order m X n is postmulti-
plied by a matrix B of order n X s, then the product matrix C will be of order
m x s; that is, : ‘

A B = C
3

nlzxn<—equal—>nxs mXxs
ith I‘OW{-{AH g Ain; ]

As illustrated in Eq. (B.4), any element C;; of the product matrix C can be eval-
uated by multiplying each element of the ith row of A by the corresponding
element of the jth column of IéZand by algebraically summing the resulting

reTmm——————
B
~. ~.
| T p——
Il
| ——
V] -
)
N_“7
3
<

-1~
jth column ‘{
' Jjth column B.4)
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products; that is,

Cij = Aierlj + Ai2Byj + - -+ + AinByj B.5)

Equation (B.5) can be conveniently expressed as

Cij = Z A;xByj ‘ (B.6)
=1

in which n represents the number of columns of the matrix A and the number
of rows of the matrix B. Note that Eq. (B.6) can be used to determine any ele-
ment of the product matrix C = AB.

To illustrate the procedure of matrix multiplication, we compute the prod-
uct C = AB of the matrices A and B given in Eq. (B.3) as

-1 572 3 -6 18 —43 51
C=AB—[ 7 —3][4 -8 9]—[2 45 —69]

2x2 2x3 2x3

\

in which the element Cy; of the product matrix C is obtained by multiplying
each element of the first row of A by the corresponding element of the first col-
umn of B and summing the resulting products; that is,

Cu=-12)+54) =18

- ———————Similarly, the-element C; is determined by multiplying the elements of the
second row of A by the corresponding elements of the first column of B and
adding the resulting products; that is,

Cu=72)—-34)=2
The remaining elements of C are determined in a similar manner:

Ci2 = —1(03) + 5(—8) = —43

Cyp=73) —3(-8) =45

Ci3 = —1(-6) + 509) =51

Cy3 =7(—6) — 3(9) = —69 )
Note that the order of the product matrix Cis 2 x 3, which equals the number
of rows of A and the number of columns of B.

A common application of matrix multiplication is to express simultaneous
equations in compact matrix form. Consider the system of simultaneous linear
equations:

Auxi + Apxy + Aizxs = Py

Agix1 + Apxy + Apxz =P

Az1x1 + Anxz + Aszxz = P3
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Y

in which x;, x,, and x3 are the unknowns and A’s and P’s represent the coeffi-
cients and constants, respectively. By using the definition of matrix multiplica-
tion, this system of simultaneous equations can be written in matrix form as

A Ap A’ [x Py
Ay Ay A X |=| P (B.8)
A31 A32 A33 X3 P3

or, symbolically, as
Ax =P 3.9)

Even when two matrices A and B are of such orders that both products AB
and BA can be determined, the two products are generally not equal; that is,

AB # BA i (B.10)

It is, therefore, necessary to maintain the proper sequential order of matrices
when computing matrix products. Although matrix multiplication is generally

—not commutative, as indicated-by Eq.(B-10), it is associative and distributive,

provided that the sequential order in which the matrices are to be multiplied is
maintained. Thus

-

ABC = (AB)C = A(BC) (B.11)
and
AB +C)=AB + AC (B.12)

Multiplication of any matrix A by a conformable null matrix O yields a
null matrix; that is,

¢

OA=0 and AO=0 (B.13)

For example,

0 0|{5 =71_10 0
0 0/|9 2| [0 O
Multiplication of any matrix A by a conformable unit matrix I yields the
same matrix A, that is,
IA=A and AI=A B.14)
For example,
(1 0][5 =71_[5 -7]
|10 1119 2 9 2

and
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As Egs. (B.13) and (B.14) indicate, the null and unit matrices serve the pur-
poses in matrix algebra that are analogous to those of the numbers 0 and 1,
respectively, in scalar algebra.

Inverse of a Square Matrix

The inverse of a square matrix A is defined as a matrix A~! with elements of
such magnitudes that the multiplication of the original matrix A by its inverse
A~!yields a unit matrix I; that is,

e

ATTA =AA1 =1 (B.15)

Consider, for example, the square matrix

a=[} 3]

The inverse of A is given by

-1 _ |2 1
A _[~1.5 0.5]

so that the products A~!A and AA ! satisfy Eq. (B.15):

gy [-2 11 =2
A A—[—\l.s 0.5][3 —4]

(=2+3) @4-4

B _[1 0],
R e 0 e e L e

and

AA-! — [1 —2] [*2 1 ] _ [(—2+3) (1—1)] _ [1 0] _1
3 —4|[-15 05 (-64+6) (3-2) 01

The operation of inversion is defined only for square matrices. The inverse

of such a matrix is also a square matrix of the same order as the original ma-

trix. A procedure for determining inverses of matrices is presented in the fol-

lowing section. The operation of matrix inversion serves the same purpose as

the operation of division in scalar algebra. Consider a system of simultaneous
equations expressed in the matrix form as

Ax =P

in which A represents the square matrix of known coefficients; X represents the
vector of the unknowns; and P represents the vector of the constants. Since the
operation of division is not defined in matrix algebra, we cannot solve the fore-
going matrix equation for x by dividing P by A (i.e., x = P/A). Instead, to de-
termine the unknowns x, we premultiply both sides of the equation by A~ to
obtain

A TAx=A"lp
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Since A71A = I and Ix = x, we can write

x=A"lp
which indicates that a system of simultaneous equations can be solved by pre-
multiplying the vector of the constants by the inverse of the coefficient matrix.

An important property of matrix inversion is that the inverse of a symmet-
ric matrix is always a symmetric matrix.

Transpose of a Matrix

The transpose of a matrix is obtained by interchanging its corresponding rows
and columns. The transposed matrix is usually identified by the superscript T
placed on the symbol of the original matrix. Consider, for example, the 2 x 3
matrix

6 —2 4
a=[1 % ]

The transpose of A is given by

6 1 .
AT=[-2 3 ] - . e
4 -3

Note that the first column of A becomes the first row of A”. Similarly, the sec-
ond and third columns of A become, respectively, the second and third rows of
AT, The order of A7 thus obtained is 3 x 2.

As another example, consider the 3 x 3 matrix

s

9 7 -5
B= 7 =3 2
-5 2 6

Since the elements-of B are symmetric about the main diagonal (i.e., B; = Bj),
interchanging the rows and the columns of this matrix produces a matrix BT
that is identical to the matrix B itself; that is,

B’=B

Thus, the transpose of a symmetric matrix yields the same matrix.
Another useful property of matrix transposition is that the transpose of a
product of matrices equals the product of the transposes in reverse order; that is,

(AB)T = BTAT (B.16)
Similarly,
(ABC)T = CTB7AT ’ (B.17)

Partitioning of Matrices

/
Partitioning is a process by which a matrix is subdivided into a number of
smaller matrices called submatrices. For example, a 3 x 4 matrix A is
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partitioned into four submatrices by drawing horizontal and vertical dashed
partition lines:

o N

An Ap
= 18
[Azl Ay ] (B.18)

N

[

in which the submatrices are

35 -1 2
A“=[—2 4 7] A12=[9]
Ay =[ 6 1 3] An=[4]

Matrix operations such as addition, subtraction, and multiplication can be
performed on partitioned matrices in the same manner as described previously
by treating the submatrices as elements, provided that the matrices are parti-
tioned in such a way that their corresponding submatrices are conformable for
the particular operation. For example, suppose that we wish to postmultiply the
3 x 4 matrix A of Eq. (B.18) by a 4 x 2 matrix B, which is partitioned into
two submatrices as

1 8
_|-5 2|_|Bu
b= =3 6| [le] (B.19)
7 -1

The product AB is expressed in terms of the submatrices as

o]

Note that the matrices A and B have been partitioned in such a way that their
corresponding submatrices are conformable for multiplication; that is, the or-
‘ders of the submatrices are such that the products A;1B11, Aj2B21, Ag1Byy, and
AyBy; are defined. As shown in Egs. (B.18) and (B.19), this is achieved by
partitioning the rows of the second matrix B of the product AB in the same way
that the columns of the first matrix A are partitioned. The products of the sub-
matrices are given by

138

35 -1 ~19 28

AllBll:[—z 4 7][‘5 2]=[—43 34]
3 6

A12B21=[§][7 —1]=[é‘31 :g]

1 8
AyBy=[6 1 3]|:—5 2]:[—8 68]

A A12]'I:B11] _ Ay B + ApBy; T Azfzo)
Az Az || B A2 By + ApBy

-3 6
ApBy =[4]1[7 —1] = [28 —4]



698

Appendix B - Review of Matrix Algebra

Substitution into Eq. (B.20) yields

-19 28 n 14 -2 -5 26
AB = —43 34 63 -9 =1| 20 25

[-8 68] + [28 —4] 20 64

SOLUTION OF SIMULTANEOUS EQUATIONS
BY THE GAUSS-JORDAN METHOD
The Gauss-Jordan elimination method is one of the most commonly used pro-

cedures for solving simultaneous linear algebraic equations. To illustrate the
method, consider the following system of three simultaneous equations:

2x1 — 5xy + 4dx3 = 44
3x%1 + xp — 8x3=-35 (B.21a)
4X1 - 7JC2 — X3= 28

To solve for the unknowns x1, x2, and x3, we begin by dividing the first equa—

tion by the coefficient of its x; term:

X1 — 2.5% + 2x3 = \ 22
3x;+ xp— 8x3=—35 (B.21b)
4x1 - 7x2 - X3 = 28

4

Next, the unknown x; is eliminated from the, remaining equations by succes-
sively subtracting from each remaining equation the product of the coefficient
of its x; term and the first equation. Thus, to eliminate x; from the second equa-
tion, we multiply the first equation by 3 and subtract it from the second equa-
tion. Similarly; we eliminate x; from the third equation by multiplying the first
equation by 4 and subtracting it from the third equat1on The system of equa-
tions thus obtained is

— 2504+ 2x;3= 22
8.5x; — 14x; = —101 \ (B.21¢)
3%, — 9x3 = —60

With x; eliminated from all but the first equation, we now divide the second
equation by the coefficient of its x, term:

X1 — 2.5)C2 + 2x3 = 22
xp.— 1.647x3 = —11.882 (B.21d)

3xy — 9x3 = —60
Next, we eliminate x, from the first and the third equations, successively, by

multiplying the second equation by —2.5 and subtracting it from the first equa-
tion, and then by multiplying the second equation by 3 and subtracting it from
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the third equation. This yields

x1 —2.118x3 = -7.705
xy — 1.647x3 = —11.882 , (B.21e)
— 4.059x3 = —24.354

By dividing the third equation by the coefficient of its x; term, we obtain

X1 —2.118x3 = -7.705
X2 — 1.647x3 = —11.882 ’ (B.21f)
X3 = 6 f

Finally, by multiplying the third equation by —2.118 and subtracting it from
the first equation, and by multiplying the third equation by —1.647 and sub-
tracting it from the second equation, we determine the solution of the given
system of equations (Eq. (B.21a)) to be

X1 .= 5
_2 (B.21g)
X3 = 6

X2

That is, x; = 5, x, = —2, and x3 = 6. To check that the solution is carried out
correctly, we substitute the numerical values of x;, x, and x3 back into the orig-
inal equations (Eq. (B.21a)):

2(5) =5(=2)+4(6) = 44  Checks
3(5) —2—8(6) =-35 Checks
4(5) — 7(—2) —6= 28 : Checks

As the foregoing e;ggn_;ple illustrates, the Gauss-Jordan method esSentially )

involves successively eliminating each unknown from all but one of the
equations of the system by performing the following operations: (1) dividing an
equation by a scalar; and (2) multiplying an equation by a scalar and subtracting
the resulting equation from anothér equation. These operations, which do not
change the solution of the original system of equations, are applied repeatedly
until a system with each equation containing only one unknown is obtained.

The solution of simultaneous equations is usually carried out in matrix
form by operating on the rows of the coefficient matrix and the vector contain-
ing the constant terms of the equations. The foregoing operations are then re-
ferred to as elementary row operations. These operations are applied to both the
coefficient matrix and the vector of the constants simultaneously, until the
coefficient matrix is reduced to a unit matrix. The elements of the vector, which
initially contained the constant terms of the original equations, now represent
the solution of the original simultaneous equations. To illustrate this procedure,
consider again the system of three simultaneous equations given in Eq. (B.21a).
The system can be expressed in matrix form as

Ax =P
2 =5 4 X1 44
3 1 -8 x| = [ —-35:' (B.22)
4 -7 -1 X3 28
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When applying the Gauss-Jordan method, it is usually convenient to write the
coefficient matrix A and the vector of constants P as submatrices of a parti-
tioned augmented matrix:

2 -5 4 | . 4
3 1 -8 5 -35 (B.23a)
4 -7 -1 1 28

To determine the solution, we begin by dividing row 1 of the augmented ma-
trixby Ay = 2:

1 =25 2 ! 22
3 1 -8 g -35 (B.23b)
4 -7 -1 28

Next, we multiply row 1 by A; = 3 and subtract it from row 2 and then mul-
tiply row 1 by A3; = 4 and subtract it from row 3. This yields

1 -25 2 1 22
0 85 —14 | -101 (B.23c)
0 3 -9 ! —60

__Divide row 2 by A = 8.5, obtaining B o
1 -25 2 P22 |
0 1 —1647 | ~—11.882 ,, (B.23d)
0 3 -9 I —60

Multiply row 2 by A, = —2.5 and subtract it from row 1; then multiply row 2
by A3, = 3 and subtract it from row 3. This yields

[1 0 —2118 {1 77057 X
0 1 —1647 | —11.882 (B.23e)
|0 0 —4.059 ! —24.354

Divide row 3 by A3 = —4.059: )
[1 0 2118 i —7.705 ]
0 1 —1647 1 —11.882 \ (B.23f)
(0 0 1 ! 6

Multiply row 3 by Aj3 = —2.118 and subtract it from row 1; then multiply
row 3 by A3 = —1.647 and subtract it from row 2. This yields

1 0.0 5
010 | -2 : (B.23g)
001 ! 6

Thas x; = 5, x, = —2, and x3 = 6.

Matrix Inversion

The Gauss-Jordan elimination method can also be used to determine the in-
verses of square matrices. The procedure is similar to that described previously
for solving simultaneous equations, except that in the augmented matrix, the
coefficient matrix is now replaced by the matrix A that is to be inverted and the
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vector of constants P is replaced by a unit matrix I of the same order as the
matrix A. Elementary row operations are then performed on the augmented
matrix to reduce the matrix A to a unit matrix. The matrix I, which was initially
the unit matrix, now represents the inverse of the original matrix A. :

To illustrate the foregoing procedure, let us compute the inverse of the
2 x 2 matrix '

'i 1 -2 '
A= [ 3 _ 4] | | (B.24)
o v

The augmented matrix is given by E

1 -2 1 10 . ‘

3 4 E 0 1 ] 1 (B.25a)
By multiplying row 1 by A2; = 3 and subtracting it from row 2, we obtain

1 -2 1+ 10 ‘

0 2 3 1] (B.25b)

© Next, by dividing row 2 by Ay = 2, we obtain

(1 -2 + 1 0

0 1 1 -15 0‘5] . (B25c)
Finally, by multiplying row 2 by —2 and subtracting it from row 1, we obtain

(10 + -2 1

|01 | -15 0.5] (B'ZSd)

,,Thus - —— -

a_[-2 1
A —[—1.5 0.5

The computations can be checked by using the relationship ATTA =1 We
showed in Section B.3 that the matrix A~!, as computed here, does indeed sat-
isfy this relationship.

B.1 Determine the matrix C = A + 3B if B.3 Determine the products C = AB and D = BA if

2 -1
B=| -1 4
1 6

1 2
6]‘ A=[-6 4 —-2] B=|-1
3 5

i ine th ix C = 2A — Bif
B2 Determine the matix.C B1 B4 Determine the products C = AB and D = BA if

|

i e[z e[
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B.5 Show that (AB)” = B7A” by using the matrices A and B

given here.
-2 5 1 =5
—4 3 B=|7 O
0 6 0 -3

8
A=|1
2
Section B.4
B.6 Solve the following system of simultaneous equations by
the Gauss-Jordan method.

2x1 +5x — x3= 15

5x1 — X+ 3x3 =27

—x1+3x2 +4x3 = 14
B.7 Solve the following system of simultaneous equations by
the Gauss-Jordan method.

—12x1 — 3x + 6x3 = 45

— 5x142xp —4x3 = -9

10x; + xp — Tx3 =-32

B.8 Solve the following system of simultaneous equations by
the Gauss-Jordan method.
5x1 — 2x2 + 6x3 = 0
—2x1 +4x+ x3+ 3x4 18
6x1 + x2+ 6x3 + 8x4 -29
3xy +8x3+Txa= 11

Il

B.9 Determine the inverse of the matrix shown using the
Gauss-Jordan method.

4 -3 -1
A= -2 5 1
6 —4 -5

B.10 Determine the inverse of the matrix shown using the
Gauss-Jordan method.

4 2 0 -3
2 3 -4 0
A=l o -4 2 -1
_15



