Slope-Deflection Method Examples

Example 1

Determine the moments at B and D, then draw the moment diagram. Assume A and C are pinned and B and D are fixed connected. $E I$ is constant.

$$
\begin{align*}
& \left.(\mathrm{FEM})_{B_{4}}=1\right) \\
& (\mathrm{FEM})_{B C}=\frac{-3(8)(20)}{16}=-30 \mathrm{k} \cdot \mathrm{ft} \\
& (F E M)_{B D}=\langle F E M\rangle_{D B}=0 \\
& M_{N}=3 E\left(\frac{l}{L}\right)\left(\theta_{N}-\psi\right)+(F E M)_{N} \\
& M_{B A}=3 E\left(\frac{I}{15}\right)\left(\theta_{B}-0\right)+0 \\
& M_{B A}=0.2 E I \theta_{B} \\
& \text { (I) } \\
& M_{B C}=3 E\left(\frac{I}{20}\right)\left(\theta_{B}-0\right)-30 . \\
& M_{B C}=0.15 E J \theta_{B}-30 \tag{2}\\
& M_{N}=2 E\left(\frac{l}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N} \\
& K_{B D}=2 E\left(\frac{I}{12}\right)\left(2 \theta_{B}+0-0\right)+0 \\
& M_{E D}=0.3333 E I \theta_{B} \\
& \text { (3) } \\
& M_{D B}=2 E\left(\frac{I}{12}\right)\left(2(0)+\theta_{B}-0\right)+0 \\
& M_{D B}=0.1667 E J \theta_{B} \\
& \text { (4) } \\
& \text { Equilibrium } \\
& M_{B A}+M_{B C}+M_{B D}=0 \tag{5}\\
& \text { Solving Eqs. 1-5: } \\
& \theta_{B}=\frac{43.90}{E I}
\end{align*}
$$

Example 2

Determine the moments at B and C. Assume B and C are rollers and A and D are pinned. $E I$ is constant.

Note that in the solution, for spans $A B$ and $C D$ the short-hand slope-deflection formula along with pinned-fixed FEMs are used.


```
\(\left(\mathrm{FEM}_{B A}=\frac{3(8)^{2}}{8}=24 \mathrm{k} \cdot \mathrm{ft}\right.\)
\((\mathrm{FEM})_{B C}=\frac{-3(20)^{2}}{12}=-100 \mathrm{k} \cdot \mathrm{ft}\)
\((\mathrm{FEM})_{C B}=100 \mathrm{k} \cdot \mathrm{f}\)
\((\mathrm{FEM})_{C D}=-24 \mathbf{k} \cdot \mathrm{ft}\)
```

$M_{N}=3 E\left(\frac{I}{L}\right)\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N}$
$M_{B A}=3 E\left(\frac{I}{8}\right)\left(\theta_{B}-0\right)+24$
$M_{3 A}=\frac{3 E l \theta_{B}}{8}+24$

$$
M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}
$$

$$
M_{B C}=2 E\left(\frac{d}{20}\right)\left(2 \theta_{B}+\theta_{C}-0\right)-100
$$

$$
\begin{equation*}
M_{B C}=0.2 E J \theta_{s}+0.1 E I \theta_{C}-100 \tag{2}
\end{equation*}
$$

$M_{C B}=2 E\left(\frac{I}{20}\right)\left(2 \theta_{C}+\theta_{d}-0\right)+100$
$M_{C B}=0.2 E I \theta_{C}+0.1 E I \theta_{B}+100$

$M_{N}=3 E\left(\frac{I}{L}\right)\left(\theta_{N}-\psi\right)+(F E M)_{N}$
$M_{C D}=3 E\left(\frac{I}{8}\right)\left(\theta_{C}-0\right)-24$
$M_{C D}=\frac{3 E I \theta_{C}}{8}-24$
(4)

$$
\begin{align*}
& \text { Equilibrium } \\
& M_{B A}+M_{E}=0 \\
& M_{C B}+M_{C 1}=0
\end{align*}
$$

Solving Eqs. 1-6:
$\theta_{z}=\frac{160}{E I} \quad \theta_{c}-\frac{160}{E I}$

$M_{z 1}=84.0 \mathbf{k} \cdot \mathrm{ft}$	Ans
$M_{B C}=-84.0 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{C z}=84.0 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{C D}=-84.0 \mathrm{k} \cdot \mathbf{f t}$	Ans

Example 3

Determine the moments at the ends of each member of the frame. The support at A and C and joint B are fixed connected. $E I$ is constant.

$M_{N}=2 E\left(\frac{f}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+\left(F E M_{N}\right.$
$M_{A B}=\frac{2 E I}{6}\left(0+\theta_{B}\right)-\frac{(4)(6)}{8}$
$M_{B A}=\frac{2 E I}{6}\left(2 \theta_{B}\right)+\frac{4(6)}{8}$
$M_{B C}=\frac{2 E I}{6}\left(2 \theta_{B}\right)$
$M_{C B}=\frac{2 E I}{6}\left(\theta_{B}\right)$
$E_{q u l i b n u m}$
$M_{B A}+M_{B C}-9=0$
$\frac{2 E I}{6}\left(2 \theta_{8}^{\prime}+\frac{4(6)}{8}+\frac{2 E I}{6}\left(2 \theta_{B}\right)-9=0\right.$
$\theta_{B}=\frac{4.5}{E I}$
Thus.
$M_{A B}=\frac{2 E I}{6}\left(0+\frac{4.5}{E I}\right)-\frac{4(6)}{8}=-1.50 \mathrm{kN} \cdot \mathrm{m} \quad$ Ans
$M_{C B}=\frac{2 E I}{6}\left(\frac{4.5}{E I}\right)=1.50 \mathrm{kN} \cdot \mathrm{m}$
$M_{B A}=\frac{2 E I}{6}\left(2 \frac{4.5}{E I}\right)-\frac{4(6)}{8}=6.00 \mathrm{kN} \cdot \mathrm{m} \quad$ Ans
$M_{B C}=\frac{2 E I}{6}\left(2\left(\frac{4.5}{E I}\right)\right)=3.00 \mathrm{kN} \cdot \mathrm{m}$

Example 4

Determine the moments at each joint and support of the battered-column frame. The joints are rigid. The supports are fixed connected. $E I$ is constant.

$$
\begin{aligned}
& M_{N}=2 E\left(\frac{l}{L}\right)\left(2 \theta_{N}+\theta_{f}-3 \psi\right)+(\mathrm{FEM})_{N} \\
& M_{A B}=\frac{2 E I}{20}\left(0+\theta_{B}\right)+0 \\
& M_{B A}=\frac{2 E I}{20}\left(2 \theta_{B}+0\right)+0 \\
& M_{B C}=\frac{2 E I}{12}\left(2 \theta_{B}+\theta_{C}\right)-\frac{1.2(12)^{2}}{12} \\
& M_{C B}=\frac{2 E I}{12}\left(2 \theta_{C}+\theta_{B}\right)+\frac{1.2(12)^{2}}{12} \\
& M_{C D}=\frac{2 E I}{20}\left(2 \theta_{C}+0\right)+0 \\
& M_{D C}=\frac{2 E I}{20}\left(0+\theta_{C}\right)+0 \\
& E q u L i b r i u m \\
& M_{s A}+M_{B C}=0 \\
& \frac{2 E}{20}\left(2 \theta_{D}+\frac{2 E I}{12}\left(2 \theta_{B}+\theta_{C}\right)-14.4=0\right. \\
& 0.5333 \theta_{D}+0.1667 \theta_{C}=\frac{14.4}{E I} \\
& M_{C B}+M_{C D}=0 \\
& \frac{2 E}{12}\left(2 \theta_{G}-\theta_{B}\right)+14.4+\frac{2}{20}\left(2 \theta_{C}\right)=0 \\
& 0.5333 \theta_{4}+0.1667 \theta_{B}=\frac{-14.4}{E I} \\
& (1)
\end{aligned}
$$

Solving Eqs. 1-2:
$\boldsymbol{\theta}_{\boldsymbol{t}}=\frac{39.27}{\boldsymbol{E}}$
$M_{A E}=3.93 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans
$M_{81}=7.85 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans
$M_{B C}=-7.85 \mathrm{k} \cdot \mathrm{ft}$ Ans
$M_{C B}=7.85 \mathrm{k} \cdot \mathrm{ft} \quad \mathbf{A n s}$
$M_{C D}=-7.85 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans
$H_{D C}=-3.93 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans

Example 5

The frame is made from pipe that is rigid connected. Determine the moments developed at each of the joints and supports under the given loading. $E I$ is constant.

$$
\begin{aligned}
& M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{f}-3 \psi\right)+(\mathrm{FEM})_{N} \\
& M_{A B}=\frac{2 E I}{4}\left(0+\theta_{z}\right)+0 \\
& M_{B A}=\frac{2 E I}{4}\left(2 \theta_{z}+0\right)+0 \\
& M_{B C}=\frac{2 E I}{12}\left(2 \theta_{z}+\theta_{C}\right)-\frac{2(18)(12)}{9} \\
& M_{C B}=\frac{2 E I}{12}\left(2 \theta_{C}+\theta_{s}\right)+\frac{2(18)(12)}{9} \\
& M_{C D}=\frac{2 E I}{4}\left(2 \theta_{C}+0\right)+0 \\
& M_{D C}=\frac{2 E I}{4}\left(0+\theta_{C}\right)+0 \\
& E_{\text {Equilibrium }} \\
& M_{B A}+M_{B C}=0 \\
& \frac{2 E I}{4}\left(2 \theta_{z}\right)+\frac{2 E I}{12}\left(2 \theta_{z}+\theta_{C}\right)-48=0 \\
& 1.333 \theta_{z}+0.1667 \theta_{C}=\frac{48}{E I}
\end{aligned}
$$

$M_{C z}+M_{C D}=0$
$\frac{2 E l}{12}\left(2 \theta_{C}+\theta_{B}\right)+48+\frac{2 E l}{4}\left(2 \theta_{C}\right)=0$
$1.333 \theta_{c}+0.1667 \theta_{3}=-\frac{48}{E I}$
(2)

Solving Es. (1) and (2) :
$\theta_{z}=-\theta_{c}=\frac{41.143}{E I}$

$M_{A B}=20.6 \mathrm{kN} \cdot \mathrm{m}$	Ans
$M_{z A}=41.1 \mathrm{kN} \cdot \mathrm{m}$	Ans
$M_{B C}=-41.1 \mathrm{kN} \cdot \mathrm{m}$	Ans
$M_{C B}=41.1 \mathrm{kN} \cdot \mathrm{m}$	Ans
$M_{C D}=-41.1 \mathrm{kN} \cdot \mathrm{m}$	Ans
$M_{D C}=-20.6 \mathrm{kN} \cdot \mathrm{m}$	Ans

Example 6

Determine the moments at each joint and support. The connections at B and C are rigidfixed. The supports at A and D are fixed. $E I$ is constant.

$$
\begin{equation*}
\psi_{A I}=\frac{994.09}{E I} \tag{6}
\end{equation*}
$$

$$
\theta_{z}=\frac{265.09}{E I}, \quad \theta_{\mathrm{C}}=\frac{795.27}{E I}
$$

$M_{A z}=-464 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{B A}=-110 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{B C}=110 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{C z}=155 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{C D}=-155 \mathrm{k} \cdot \mathrm{ft}$	Ans
$M_{D C}=-243 \mathrm{k} \cdot \mathrm{ft}$	Ans

$$
\begin{align*}
& \left(\text { FEM }_{A},=\frac{-6(18)^{2}}{12}=-162 \mathrm{k} \cdot \mathrm{ft}\right. \\
& (\mathrm{FEM})_{\mathrm{MA}}=162 \mathrm{k} \cdot \mathrm{ft} \\
& (\mathrm{FEM})_{c}=(\mathrm{FEM})_{c I}=0 \\
& (F E M)_{c D}=(F E M)_{D C}=0 \\
& \psi_{A I}=\psi_{D C} \\
& \mu_{N}=2 E\left(\frac{l}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\text { FEM })_{N} \\
& v_{x z}=2 E\left(\frac{I}{18}\right)\left(2(0)+\theta_{3}-3 \psi_{A B}\right)-162 \\
& \boldsymbol{\omega}_{A E}=0.1111 E I \theta_{B}-0.3333 E I \psi_{A B}-162 \\
& M_{2 A}=2 E\left(\frac{I}{18}\right)\left(2 \theta_{B}+0-3 \psi_{A B}\right)+162 \\
& M_{A A}=0.2222 E I \theta_{2}-0.333 E / \psi_{A B}+162 \\
& M_{a c}=2 E\left(\frac{I}{24}\right)\left(2 \theta_{z}+\theta_{C}-3(0)\right)+0 \\
& \mathrm{M}_{\mathrm{BC}}=0.1667 E I \theta_{\mathrm{B}}+0.08333 E I \theta_{C} \\
& M_{C B}=2 E\left(\frac{I}{24}\right)\left(2 \theta_{C}+\theta_{z}-3(0)\right)+0 \\
& M_{C I}=0.1667 E I \theta_{z}+0.08333 E 1 \theta_{C} \\
& \mu_{C D}=2 E\left(\frac{I}{18}\right)\left(2 \theta_{C}+0-3 \psi_{A B}\right)+0 \\
& M_{C D}=0.2222 E I \theta_{C}-03333 E / \psi_{A B} \tag{5}\\
& M_{D C}=2 E\left(\frac{I}{18}\right)\left(2(0)+\theta_{C}-3 \psi_{A B}\right)+0 \\
& M_{D C}=0.1111 E 1 \theta_{C}-0.3333 E \|_{\psi_{A S}} \\
& M_{C D}+M_{C B}=0 \tag{8}\\
& V_{A}+V_{D}-6(18)=0 \\
& -\frac{\left(M_{A B}+M_{3 A}-972\right)}{18}-\frac{\left(M_{C D}+M_{D C}\right)}{18}-108=0 \\
& M_{A Z}+M_{A A}+M_{C D}+M_{D C}=-972 \\
& \text { (1) } \\
& \text { (2) } \\
& \text { (3) } \\
& \text { (4) } \\
& \text { (6) }
\end{align*}
$$

Example 7

Determine the moments at A, B, C, and D. Draw the moment diagram. The members are fixed connected at the supports and joints. $E I$ is constant.

$$
\begin{aligned}
& (\mathrm{FEM})_{A B}=\frac{-15(12)}{8}=-22.5 \mathrm{k} \cdot \mathrm{ft} \\
& (\mathrm{FEM})_{B A}=22.5 \mathrm{k} \cdot \mathrm{ft} \\
& (\mathrm{FEM})_{B,}=\frac{-4(15)^{2}}{12}=-75.0 \mathrm{k} \cdot \mathrm{fl}
\end{aligned}
$$

$$
\left(\mathrm{FEM}_{C A}=75.0 \mathbf{k} \cdot \mathrm{ft}\right.
$$

$$
\left(\text { FEM }_{1}{ }_{C B}=(\text { FEM })_{D C}=0\right.
$$

$$
\psi_{A, a}=\psi_{D C}
$$

$M_{N}=2 E\left(\frac{l}{L}\right)\left(2 \theta_{\mathrm{v}}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=2 E\left(\frac{1}{12}\right)\left(2(0)+\theta_{B}-3 \psi_{A B}\right)+0$
$M_{A B}=0.1667 E 1 \theta_{B}-0.5 E I \psi_{A B}-22.5$
$M_{B A}=2 E\left(\frac{l}{12}\right)\left(2 \theta_{B}+0-3 \psi_{A B}\right)+22.5$
$M_{g A}=0.3333 E \delta \theta_{\theta}-0.5 E 1 \psi_{A B}+22.5$
$M_{R},=2 E\left(\frac{l}{15}\right)\left(2 \theta_{\theta}+\theta_{C}-3(0)\right)-75.0$
$M_{B C}=0.2667 E 1 \theta_{B}+0.1333 E 1 \theta_{C}-75.0$
$\left.N_{\mathrm{Ca}}=2 E\left(\frac{I}{15}\right) 12 \theta_{C}+\theta_{B}-3(0)\right)+75.0$
$M_{C B}=0.2667 E I \theta_{B}+0.1333 E I \theta_{C}+75.0$
(4)
$M_{C D}=2 E\left(\frac{l}{12}\right)\left(2 \theta_{C}+0-3 \psi_{1} s\right)+0$
$M_{C D}=0.3333 E I \theta_{C}-0.5 E I \psi_{A B}$
$M_{D C}=2 E\left(\frac{I}{12}\right)\left(2(0)+\theta_{C}-3 w_{A B}\right)+0$
$M_{D C}=0.1667 E I \theta_{C}-0.5 E \psi_{A B}$
Equilibrium
$M_{B A}+M_{B C}=0$
$M_{C D}+M_{C B}=0$
$V_{A}+V_{D}-15=0$
$-\frac{\left(M_{A B}+M_{B A}-90\right)}{12}-\frac{\left(M_{C D}+M_{D C}\right)}{12}-15=0$
$M_{A B}+M_{B A}+M_{C D}+M_{D C}=-90$
(1)
(2)
(3)

相

$\theta_{3}=\frac{159.88}{E I} . \quad \theta_{C}=\frac{-113.33}{E I}$
$V_{A B}=\frac{56.64}{E I}$
$M_{\wedge s}=-24.17 \mathbf{k} \cdot \mathrm{ft}=-24.2 \mathbf{k} \cdot \mathrm{ft} \quad$ Ans
$A f_{B A}=47.48 \mathrm{k} \cdot \hat{\mathrm{t}}=47.5 \mathrm{k} \cdot \mathrm{ft} \quad \mathrm{Ans}$
$M_{\mathrm{ac}}=-47.48 \mathrm{k} \cdot \mathrm{ft}=-47.5 \mathbf{k} \cdot \mathrm{ft} \quad$ Ans
$M_{C B}=66.01 \mathrm{k} \cdot \mathrm{ft}=66.0 \mathrm{k} \cdot \mathrm{ft} \quad \mathrm{Ans}$
$\mathrm{M}_{\mathrm{CD}}=-66.01 \mathrm{k} \cdot \mathrm{ft}=-66.0 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans
$H_{\cdot x}=-47.21 \mathrm{k} \cdot \mathrm{ft}=-47.2 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans

Example 8

Determine the moment at each joint of the gable frame. The roof load is transmitted to each of the purlins over simply supported sections of the roof decking. Assume the supports at A and E are pins. The joints are fixed connected. The center column, connected to the ridge point C, is incompressible. $E I$ is constant.
Note that in the solution, in calculating the M_{BA} and M_{DE}, the short-hand/modified slopedeflection formula is used. The center column keeps ridge point C from displacing vertically.

$$
\begin{aligned}
& (\mathrm{FEM})_{g C}=(\mathrm{FEM})_{C D}=\frac{-2(6) 115)}{9}=-20 \mathrm{k} \cdot \mathrm{ft} \\
& (\mathrm{FEM})_{C B}=(\mathrm{FEM})_{D C}=20 \mathrm{k} \cdot \mathrm{fl} \\
& M_{y}=3 E\left(\frac{t}{L}\right)\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
& M_{* A}=\frac{3 E l}{12}\left(\theta_{B}\right) \\
& M_{s}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{s}+\theta_{f}-3 \psi\right)+(\mathrm{FEM})_{s} \\
& M_{a C}=\frac{2 E I}{15}\left(2 \theta_{b}+\theta_{C}\right)-20 \\
& M_{C s}=\frac{2 E I}{15}\left(2 \theta_{C}+\theta_{B}\right)+20 \\
& M_{C D}=\frac{2 E l}{15}\left(2 \theta_{C}+\theta_{O}\right)-20 \\
& M_{D C}=\frac{2 E I}{15}\left(2 \theta_{D}+\theta_{C}\right)+20 \\
& M_{N}=3 E\left(\frac{l}{L}\right)\left(\theta_{N}-\psi\right)+(\text { FEM })_{N} \\
& \mu_{o E}=\frac{3 E Z}{12}\left(\theta_{D}\right) \\
& \text { Equilibrium } \\
& M_{31}+M_{8 C}=0 \\
& M_{C S}+M_{C D}=0 \\
& M_{D C}+M_{O E}=0 \\
& \text { or } \\
& \frac{3 E I}{12} \theta_{g}+\frac{2 E I}{15}\left(2 \theta_{B}+\theta_{C}\right)-20=0 \\
& 0.5167 \theta_{B}+0.1333 \theta_{C}=\frac{20}{E I} \\
& \frac{2 E}{15}\left(2 \theta_{c}+\theta_{B}\right)+20+\frac{2 E I}{15}\left(2 \theta_{c}+\theta_{D}\right)-20=0 \\
& 4 \theta_{C}+\theta_{D}+\theta_{D}=0 \\
& \frac{2 E I}{15}\left(2 \theta_{D}+\theta_{C}\right)+20+\frac{3 E I}{12} \theta_{D}=0 \\
& 0.51667 \theta_{D}+0.1333 \theta_{C}=-\frac{20}{E I}
\end{aligned}
$$

Example 9

Solve example 8 assuming the supports at A and E are fixed.

$$
\begin{aligned}
& (\mathrm{FEM})_{B C}=(\mathrm{FEM})_{C D}=\frac{-2\{(1,(15)}{9}=-20 \mathrm{k} \cdot \mathrm{ft} \\
& \{\mathrm{FEM})_{C B}=(\mathrm{FEM})_{D C}=20 \mathrm{k} \cdot \mathrm{ft} \\
& M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{\mathrm{V}}+\theta_{F}-3 \psi\right\}+(\mathrm{FEM})_{N} \\
& M_{A B}=\frac{2 E I}{12}\left(\theta_{B}\right) \\
& M_{B A}=\frac{2 E I}{12}\left(2 \theta_{B}\right) \\
& M_{B C}=\frac{2 E I}{15}\left(2 \theta_{B}+\theta_{C}\right)-20 \\
& M_{C B}=\frac{2 E I}{15}\left(2 \theta_{C}+\theta_{B}\right)+20 \\
& M_{C D}=\frac{2 E I}{15}\left\{2 \theta_{\mathrm{C}}+\theta_{D}\right)-20 \\
& M_{D C}=\frac{2 E I}{15}\left(2 \theta_{D}+\theta_{C}\right)+20 \\
& M_{D E}=\frac{2 E I}{12}\left(2 \theta_{D}\right) \\
& M_{E D}=\frac{2 E}{12}\left(\theta_{D}\right)
\end{aligned}
$$

Equilibrium
$M_{B A}+M_{B C}=0$
$M_{C B}+M_{C D}=0$
$M_{D C}+M_{D E}=0$
or.
$\frac{2 E I}{12}\left(2 \theta_{B}\right)+\frac{2 E}{15}\left(2 \theta_{B}+\theta_{C}\right)-20=0$
$0.6 \theta_{B}+0.1333 \theta_{C}=\frac{20}{E I}$
$\frac{2 E I}{15}\left(2 \theta_{C}+\theta_{B}\right)+20+\frac{2 E I}{15}\left(2 \theta_{C}+\theta_{D}\right)-20=0$
$0.5333 \theta_{C}+0.1333 \theta_{B}+0.1333 \theta_{D}=0$
$\frac{2 E I}{15}\left(2 \theta_{D}+\theta_{C}\right)+20+\frac{2 E I}{12}\left(2 \theta_{D}\right)=0$
$0.6 \theta_{D}+0.1333 \theta_{C}=-\frac{20}{E I}$

Solving these equations:
$\theta_{C}=0$
$\theta_{B}=-\theta_{D}=\frac{33.33}{E}$
$M_{A B}=5.56 \mathrm{k} \cdot \mathrm{ft}$
Ans
$M_{31}=11.1 \mathbf{k} \cdot \mathrm{ft} \quad \mathrm{A}$
$M_{B C}=-11.1 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans
$M_{C B}=24.4 \mathbf{k} \cdot \mathrm{ft} \quad$ Ans
$M_{C D}=-24.4 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans
$M_{D C}=11.1 \mathbf{k} \cdot \mathrm{ft} \quad$ Ans
$M_{D E}=-11.1 \mathbf{k} \cdot f \mathrm{ft} \quad$ Ans
$M_{E D}=-5.56 \mathrm{k} \cdot \mathrm{fi} \quad$ Ans

