TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information Site Information	
Analyst Agency or Company \square Date Performed Analysis Time Period	Highway From/To Jurisdiction \square Analysis Year
- Operational (LOS) - Design (v_{p})	- Planning (LOS) - Planning (v_{p})
Input Data	
Average Travel Speed	
Grade adjustment factor, f_{G} (Exhibit 20-7)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-9)	
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-9)	
Heary-vehicle adjustment factor, $f_{H V} f_{H V}=\frac{1}{1+P_{T}\left(\mathrm{E}_{T}-1\right)+P_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)}$	
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field measured speed, S_{FM} \qquad mi/h Observed volume, V_{f} veh/h Free-flow speed, FFS \qquad FFS $=S_{F M}+0.00776\left(\frac{V_{f}}{f_{\text {HV }}}\right)$ mi / h	Base free-flow speed, BFFS \qquad mi / h Adj. for lane width and shoulder width, $\mathrm{f}_{\text {LS }}$ (Exhibit 20-5) \qquad mi / h Adj. for access points, f_{A} (Exhibit 20-6) \qquad mi/h Free-flow speed, FFS \qquad mi/h FFS $=$ BFFS $-f_{L S}-f_{A}$
Adj. for no-passing zones, f_{np} (mi/h) (Exhibit 20-11)	
Average travel speed, ATS (mi/h) ATS = FFS - $0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	
Percent Time-Spent-Following	
Grade adjustment factor, f_{G} (Exhibit 20-8)	
Passenger-car equivalents for trucks, E_{T} (Exhibit 20-10)	
Passenger-car equivalents for RVs, E_{R} (Exhibit 20-10)	
Heavy-vehicle adjustment factor, $f_{H V} f_{H V}=\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)}$	
Two-way flow rate, ${ }^{1} \mathrm{~V}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h}) \quad \mathrm{V}_{\mathrm{p}}=\frac{\mathrm{V}}{\mathrm{PHF} * \mathrm{G}_{\mathrm{G}} * f_{\mathrm{HV}}}$	
$\mathrm{v}_{\mathrm{p}}{ }^{\text {a }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	
Base percent time-spent-following, BPTSF (\%) BPTSF $=100\left(1-\mathrm{e}^{-0.000879 \mathrm{v}_{\mathrm{p}}}\right)$	
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{np}}(\%)$ (Exhibit 20-12)	
Percent time-spent-following, PTSF (\%) PTSF $=$ BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	
Volume to capacity ratio, $\mathrm{v} / \mathrm{c} \quad \mathrm{v} / \mathrm{c}=\frac{\mathrm{V}_{\mathrm{p}}}{3,200}$	
$\begin{aligned} & \text { Peak 15-min vehicle-miles of travel, } \mathrm{VMT}_{15} \text { (veh-mi) } \\ & \text { VMT }_{15}=0.25 L_{(}\left(\frac{\mathrm{V}}{\text { PHF }}\right) \end{aligned}$	
Peak-hour vehicle-miles of travel, VMT_{60} (veh-mi) $\mathrm{VMT}_{60}=\mathrm{V} * \mathrm{~L}_{t}$	
Peak 15-min total travel time, TT_{15} (veh-h) $\quad \Pi_{15}=\frac{\mathrm{VMT}_{15}}{\text { ATS }}$	
Notes	
1. If $v_{p} \geq 3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F. 2. If highest directional $s p l i t v_{p} \geq 1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .	

