PAVEMENT DESIGN

1. ESAL calculations. 988 containers per week on 3-S2 trucks. Empty containers weigh 4000 lbs .55 percent of the containers are loaded to $50,000 \mathrm{lbs}$. Switch to 3-S2-4?

Truck type	Unloaded weight	Max. Gross Weight	Steering axle load	Max. number of containers	
$3-\mathrm{S} 2$	$30,000 \mathrm{lbs}$	$80,000 \mathrm{lbs}$.	$12,000 \mathrm{lbs}$.	1	
$3-$ S2-4	$47,000 \mathrm{lbs}$.	$148,000 \mathrm{lbs}$.	$12,000 \mathrm{lbs}$.	2	

A truck's load is distributed equally over all non-steering axles.
$3-\mathrm{S} 2$ is $12 \mathrm{~K}-11 \mathrm{~K}-11 \mathrm{~K}$ unloaded and $12 \mathrm{~K}-34 \mathrm{~K}-34 \mathrm{~K}$ loaded.
$3-\mathrm{S} 2-4$ is $12 \mathrm{~K}-10.75 \mathrm{~K}-10.75 \mathrm{~K}-10.75 \mathrm{~K}-10.75 \mathrm{~K}$ unloaded and
12K-33.75K-33.75K -33.75K-33.75K loaded.
A. (10 points) If all containers are now carried by 3-S2's, how many ESALs per week are applied to the concrete access road to the port?

Axle Design lane

i	kips/axle	Type	freq/week $\mathrm{N}(\mathrm{i})$	ESAL/axle	ESAL/week
1	12	S	988	0.198	195.160
2	11	T	889	0.021	18.407
3	34	T	1087	1.889	2053.399
					2266.966

B. (10 points) If all containers were instead carried by 3-S2-4's, how many ESALs per week would be applied to the concrete access road?

		Axle i	Design lane freq/week N(i)	ESAL/axle	ESAL/week
1	12	S	494	0.198	97.580
2	10.75	T	889.2	0.019	16.790
3	33.75	T	1086.8	1.834	1993.668
					2108.037

Sample calc for 3-S2-4 i=2: kips/axle $=\left(\left(47-\left(2^{*} 4\right)\right)-12\right) / 4=10.75$
For freq/wk: ($988 \mathrm{ctrs} / 2$ ctrs per truck) * 4 Tandem axles * 0.45 empty $=889.2$
For ESAL/axle by (9.3): $\left(\frac{10.75}{29}\right)^{4}=0.0189$.
2. Flexible pavement design. Lifetime ESALs $=6.1$ million, $\mathrm{R}=95$ percent, S.D. $=0.35, \Delta \mathrm{PSI}=1.9$, M_{R} values of $18,580 \mathrm{psi}$ (base), $14,590 \mathrm{psi}$ (subbase), and 2300 psi (subgrade).
A. (15 points) Using the design chart, $\mathrm{SN}_{3}=6.5, \mathrm{SN}_{2}=3.5$ and $\mathrm{SN}_{1}=3.2$, or values close to these.
B. (15 points) $\mathrm{a}_{1}=0.43, \mathrm{a}_{2}=0.13, \mathrm{a}_{3}=0.09$ in (9.6). $\mathrm{SN}_{1}=\mathrm{a}_{1}{ }^{*} \mathrm{~d}_{1} ; 3.2=0.43 \mathrm{~d}_{1} ; \mathrm{d}_{1}=7.44$ " $\rightarrow 7.5$ ".
$\mathrm{SN}_{2}=\mathrm{a}_{1} \mathrm{~d}_{1}+\mathrm{a}_{2} \mathrm{~d}_{2} ; 3.5=\left(0.43^{*} 7.5\right)+\left(0.13^{*} \mathrm{~d}_{2}\right) ; \mathrm{d}_{2}=(3.5-3.225) / 0.13=2.11^{\prime \prime} \rightarrow 2.5^{\prime \prime} \rightarrow 6.0$ " by
Table 9.7. $\mathrm{SN}_{3}=\mathrm{a}_{1} \mathrm{~d}_{1}+\mathrm{a}_{2} \mathrm{~d}_{2}+\mathrm{a}_{3} \mathrm{~d}_{3} ; 6.5=\left(0.43^{*} 7.5\right)+(0.13 * 6.0)+\left(0.09 * \mathrm{~d}_{3}\right)$;
$d_{3}=(6.5-3.225-0.78) / 0.09=27.72^{\prime \prime} \rightarrow 28.0^{\prime \prime}$
C. (10 points) Cost per lane-mile-inch for each layer in Part B.

Material	S.G.	$\mathrm{lbs} / \mathrm{cu} \mathrm{ft}$	tons/lami/in.	\$/ton	\$/lami/in.
Hot A.C.	2.65	165.36	436.55	90.00	39289.54
Emulsion/aggregate-bituminous	2.70	168.48	444.79	13.00	5782.23
Coarse Aggreg.	2.30	143.52	378.89	7.00	2652.25
Excavation			\$/cu yd:	3	586.67

Total pavement cost for one lane-mile, with excavation and earthwork costs at $\$ 3 / \mathrm{CY}$.

Layer	D(i) to use	$\$ /$ la-mi
Surface 2"-4"	7.50	$\$ 294,672$
Base 4"-10"	6.00	$\$ 34,693$
Subbase 4"-10"	28.00	$\$ 74,263$
Excavation	41.50	$\$ 24,347$
	Total:	$\$ 427,975$

D. (10 points) Using the minimum thicknesses of d_{1} and d_{2} allowed in FTE Table 9.7, show how to find d_{3}. How much would this pavement design cost to construct? Include excavation and earthwork costs at \$3/CY.

Layer	$\mathrm{SN}(\mathrm{i})$	$\mathrm{a}(\mathrm{i})$	$\mathrm{D}(\mathrm{i})$	$\mathrm{D}(\mathrm{i})$ to use	\$/la-mi
Surface 2"-4"	3.20	0.43	7.44	3.50	$\$ 137,513$
Base 4"-10"	2.00	0.13	15.35	6.00	$\$ 34,693$
Subbase 4"-10"	4.22	0.09	46.83	47.00	$\$ 124,656$
Excavation				56.50	$\$ 33,147$
				Total:	$\$ 330,009$

3. (20 points) Rigid pavement design. $\mathrm{S}_{\mathrm{c}}^{\prime}=926 \mathrm{psi}, \mathrm{J}=3.2, \mathrm{E}_{\mathrm{c}}=4.1^{*} 10^{6} \mathrm{psi}, \mathrm{k}=100 \mathrm{pci}$, and $\mathrm{C}_{\mathrm{d}}=$ 1.0. Using the design charts, the concrete slab must be (approximately) $8.2^{\prime \prime}$ thick. Round up to 8.5 ".

