~ //

PAVEMENT DESIGN

1. **ESAL calculations.** 988 containers per week on 3-S2 trucks. Empty containers weigh 4000 lbs. 55 percent of the containers are loaded to 50,000 lbs. Switch to 3-S2-4?

Truck type	Unloaded weight	Max. Gross Weight	Steering axle load	Max. number of containers	
3-S2	30,000 lbs	80,000 lbs.	12,000 lbs.	1	
3-S2-4	47,000 lbs.	148,000 lbs.	12,000 lbs.	2	

A truck's load is distributed equally over all non-steering axles.

3-S2 is 12K-11K-11K unloaded and 12K-34K-34K loaded.

3-S2-4 is 12K-10.75K-10.75K-10.75K-10.75K unloaded and

- 12K-33.75K-33.75K -33.75K-33.75K loaded.
- A. (10 points) If all containers are now carried by 3-S2's, how many ESALs per week are applied to the concrete access road to the port?

		Axle	Design lane			
i	kips/axle	Туре	freq/week N(i)	ESAL/axle	ESAL/week	
1	12	S	988	0.198	195.160	
2	11	Т	889	0.021	18.407	
3	34	Т	1087	1.889	2053.399	
					2266.966	

B. (10 points) If all containers were instead carried by 3-S2-4's, how many ESALs per week would be applied to the concrete access road?

		Axle	Design lane			
i	kips/axle	Туре	freq/week N(i)	ESAL/axle	ESAL/week	
1	12	S	494	0.198	97.580	
2	10.75	Т	889.2	0.019	16.790	
3	33.75	Т	1086.8	1.834	1993.668	
					2108.037	

Sample calc for 3-S2-4 i=2: kips/axle = $((47-(2^*4))-12)/4 = 10.75$

For freq/wk: (988 ctrs/2 ctrs per truck) * 4 Tandem axles * 0.45 empty = 889.2

For ESAL/axle by (9.3): $\left(\frac{10.75}{29}\right)^4 = 0.0189.$

- 2. Flexible pavement design. Lifetime ESALs = 6.1 million, R = 95 percent, S.D. = 0.35, Δ PSI = 1.9, M_R values of 18,580 psi (base), 14,590 psi (subbase), and 2300 psi (subgrade).
 - A. (15 points) Using the design chart, $SN_3 = 6.5$, $SN_2 = 3.5$ and $SN_1 = 3.2$, or values close to these.
 - B. (15 points) $a_1 = 0.43$, $a_2 = 0.13$, $a_3 = 0.09$ in (9.6). $SN_1 = a_1 * d_1$; $3.2 = 0.43 d_1$; $d_1 = 7.44 " → 7.5"$. $SN_2 = a_1d_1 + a_2d_2$; $3.5 = (0.43*7.5) + (0.13 * d_2)$; $d_2 = (3.5-3.225)/0.13 = 2.11" → 2.5" → 6.0"$ by Table 9.7. $SN_3 = a_1d_1 + a_2d_2 + a_3d_3$; $6.5 = (0.43*7.5) + (0.13 * 6.0) + (0.09 * d_3)$; $d_3 = (6.5 - 3.225 - 0.78)/0.09 = 27.72" → 28.0"$
 - C. (10 points) Cost per lane-mile-inch for each layer in Part B.

		tons/la-		\$/la-
S.G.	lbs/cu ft	mi/in.	\$/ton	mi/in.
2.65	165.36	436.55	90.00	39289.54
2.70	168.48	444.79	13.00	5782.23
2.30	143.52	378.89	7.00	2652.25
		\$/cu yd:	3	586.67
	2.65 2.70	2.65165.362.70168.48	S.G.lbs/cu ftmi/in.2.65165.36436.552.70168.48444.792.30143.52378.89	S.G.lbs/cu ftmi/in.\$/ton2.65165.36436.5590.002.70168.48444.7913.002.30143.52378.897.00

Total pavement cost for one lane-mile, with excavation and earthwork costs at \$3/CY.

Layer	D(i) to use	\$/la-m
Surface 2"-4"	7.50	\$294,672
Base 4"-10"	6.00	\$ 34,693
Subbase 4"-10"	28.00	\$ 74,263
Excavation	41.50	\$ 24,347
	Total:	\$427,975

D. (10 points) Using the minimum thicknesses of d_1 and d_2 allowed in FTE Table 9.7, show how to find d_3 . How much would this pavement design cost to construct? Include excavation and earthwork costs at \$3/CY.

Layer	SN(i)	a(i)	D(i)	D(i) to use	\$/la-mi
Surface 2"-4"	3.20	0.43	7.44	3.50	\$137,513
Base 4"-10"	2.00	0.13	15.35	6.00	\$ 34,693
Subbase 4"-10"	4.22	0.09	46.83	47.00	\$124,656
Excavation				56.50	\$ 33,147
				Total:	\$330,009

3. (20 points) **Rigid pavement design.** S'_c = 926 psi, J = 3.2, $E_c = 4.1*10^6$ psi, k = 100 pci, and C_d = 1.0. Using the design charts, the concrete slab must be (approximately) 8.2" thick. Round up to 8.5".

