Out: Fri. 22 October 2004
Homework 6 (HW 6) Solutions
Due: Fri. 29 October 2004

VEHICLES, DRIVERS, AND GEOMETRIC DESIGN

1. (15 points) Stopping Sight Distance (SSD) on Vertical Curves. FTE Problem 7.6.
(a) Use $\mathrm{h}_{1}=3.5 \mathrm{ft}$ and $\mathrm{h}_{2}=2 \mathrm{ft}$. From Table 7.4: for $50 \mathrm{mph}, \mathrm{SSD}=425 \mathrm{ft} . \mathrm{A}=|-3-2|=5$ percent. Apply equations 7.17:
$\mathrm{L}_{\text {min }}=\frac{\mathrm{A} \times \mathrm{SSD}^{2}}{2158}=418.5 \mathrm{ft} \quad$ for $\mathrm{L}<\mathrm{SSD}$
$\mathrm{L}_{\text {min }}=850-\frac{2158}{5}=418.4 \mathrm{ft} \quad$ for $\mathrm{L}>\mathrm{SSD}$
$\mathrm{SSD}>\mathrm{L}$, so use $\mathrm{L}_{\text {min }}=418.4 \mathrm{ft}$. Curve now has $\mathrm{L}=400 \mathrm{ft}$, so curve does not have sufficient SSD.
(b) Curve now has $\mathrm{K}=\mathrm{L} / \mathrm{A}=400 / 5=80$. In Table $7.6, \mathrm{~K}=61$ for 45 mph and $\mathrm{K}=84$ for 50 mph . 45 mph meets min SSD standards; 50 mph does not.
2. (15 points) Horizontal Sight Distance. FTE Problem 7.13. 1650 feet is the radius of the curve.

In Table 7.4, $\mathrm{SSD}=820 \mathrm{ft}$ corresponds to a design speed of 75 mph .
Two 12 -foot lanes, so $\mathrm{R}_{\mathrm{v}}=\mathrm{R}-1 / 2(12 \mathrm{ft})=1650-6=1644 \mathrm{ft}$.
M_{s} in Figure $7.17=35 \mathrm{ft}+6 \mathrm{ft}=41 \mathrm{ft}$ from center of inner lane to trees.
(7.19) $\mathrm{M}_{\mathrm{S}}=\mathrm{R}_{\mathrm{V}}\left(1-\cos \frac{90 \times \mathrm{SSD}}{\pi \times \mathrm{R}_{\mathrm{V}}}\right)=1644\left(1-\cos \frac{90 \times 820}{\pi \times 1644}\right)=1644(1-0.9691)=50.86 \mathrm{ft}$.

Need to cut back trees $50.86-41=9.86 \mathrm{ft}$.
3. (20 points) Critical Approach Speed. FTE Problem 8.2.
(a) Draw a line from 10 mph on the B scale in Figure 8.6 through point " (b, a) " to the A scale. The value on the A scale is 49 mph .
(b) No change in (b,a), but (c,d) is $(34,45)$. (b,a) still governs. Use yield sign.
(c) (b,a) still governs. CAS $=11 \mathrm{mph}$. Yield sign still appropriate.
(d) $(\mathrm{b}, \mathrm{a})=(40,22) \rightarrow \mathrm{CAS}=9 \mathrm{mph}$. Stop sign is needed.

