CE361 Introduction to Transportation Engineering Homework 4 Solutions

HW Posted: Monday 20 September 2004
Due: Friday 1 October 2004

TRANSPORTATION PLANNING AND DEMAND MODELING

1. HH-Based Regression for Trip Generation. The zonal equations:

$$
\begin{aligned}
& P(i)=53+6.1 \mathrm{HHs} / \text { zone }+4.5 \text { vehs/zone }+3.4 \text { jobs/zone } \\
& A(j)=58+4.3 \mathrm{HHs} / \text { zone }+5.2 \text { jobs/zone }
\end{aligned}
$$

A. (15 points) Productions and attractions for each zone in a table with the format of FTE Table 4.6.

TAZ	pop	HH	vehs	empl	P(i)	A(i)	Bal. A(i)
1	0	0	0	1000	3453	5258	8288
2	0	0	0	1500	5153	7858	12386
3	3000	1100	1400	0	13063	4788	7547
4	2000	900	1600	0	12743	3928	6191
Totals	5000	2000	3000	2500	34412	21832	34412

One P and one A calculation done by hand

$$
\begin{aligned}
& \mathrm{P}(4)=53+(6.1 * 900)+(4.5 * 1600)+(3.4 * 0)=53+5490+7200+0=12,743 \\
& \mathrm{~A}(1)=58+(4.3 * 0)+(5.2 * 1000)=58+0+5200=5258
\end{aligned}
$$

B. (5 points) Balance the P and A values for each zone as described at the start of FTE Section 4.3.3.

The revised values appear in a new column "Bal. A(j)" in the table created in Part A.
2. (20 points) Trip Distribution by Gravity Model. How many trips produced in Zone 3 will be attracted to each of the four zones if $P(3)=16,850$ and $a=1.0, b=3.8$, and $c=-0.25$ in the Tanner Function?

$\begin{aligned} \mathrm{P} & = \\ \mathrm{a} & = \end{aligned}$	$\begin{array}{r} 16850 \\ 1 \end{array}$	from $\mathrm{b}=$	3.80	$\mathrm{c}=$	-0.25	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Zone j	A(j)	$\mathrm{t}(3 \mathrm{j})$	$\mathrm{F}(3 \mathrm{j})$	A(j)F(3j)	AF(j)/sum(AF)	T(3j)
1	8500	8.2	382.110	3247939.1	0.311	5241
2	12000	7.4	315.963	3791551.8	0.363	6119
3	7500	3.4	44.717	335375.1	0.032	541
4	6000	9.9	511.134	3066804.9	0.294	4949
	34000			10441670.9	1.000	16850

3. (20 points) Mode Choice. Utility function $\mathrm{V}_{\mathrm{m}}=\mathrm{a} \mathrm{TTTT}_{\mathrm{m}}$. What value of a (to the nearest 0.001) in the utility function will cause $p_{\text {bus }}=0.20$ and $p_{\text {auto }}=0.80$?

Using Tools/Solver in Excel:

$$
\begin{array}{rrrrrr}
\text { TTT: } & 57.5 & 33.6 & & 0.2 & 0.8 \\
\text { a } & \text { V(bus) } & \text { V(auto) } & \mathrm{e}^{\wedge} \mathrm{V} \text { (bus) } & \mathrm{e}^{\wedge} \mathrm{V} \text { (auto) } & \mathrm{p} \text { (bus) }
\end{array} \text { p(auto) }
$$

4. Trip Assignment. The capacity values are at LOS "C".
A. (15 points) Equilibrium condition. Using Equation 4.13, determine the flows $V(A)$ and $V(B)$-- to the nearest $5 \mathrm{vph}-$ that occur when the 5850 vph are assigned to routes A and B so that user equilibrium occurs.

Use Tools/Solver in Excel so that $\mathrm{t}(\mathrm{A})-\mathrm{t}(\mathrm{B})=0$:

Rte	$\mathrm{t}(0)$	a	b	C
A	47	0.15	4.0	3260
B	21	0.40	5.5	1440
OD flow	5850			
$\mathrm{~V}(\mathrm{~A})$	$\mathrm{V}(\mathrm{B})$	$\mathrm{t}(\mathrm{A})$	$\mathrm{t}(\mathrm{B})$	$\mathrm{t}(\mathrm{A})-\mathrm{t}(\mathrm{B})$
3930	1920	61.89	61.89	$-6.7 \mathrm{E}-07$

B. (5 points) Equilibrium travel time. Show that the travel times on the two routes are equal. (4.13) $\mathrm{t}_{\mathrm{A}}=47\left[1+0.15(3930 / 3260)^{4.0}\right]=61.89 ; \mathrm{t}_{\mathrm{A}}=21\left[1+0.40(1920 / 1440)^{5.5}\right]=61.88$

