Out: Wed. 24 September 2003 Due: Fri. 3 October 2003

TRAVEL DEMAND MODELS

1. ITE Trip Generation. (15 points) An automobile company is planning to build a 1.8 million square foot factory in Zone 1 in Middleville. Use the appropriate information in Figure 4.5 to compute the expected number of trip ends at the factory. From the values you compute, which single value would you choose?

2. Trip Generation by Zonal Regression. MRPC staff members have collected data from ten

i	ndustrial zones. The "T/day" column in Table 4.2 contains the number of	T/day	empls
`	vehicles observed entering or exiting industrial sites in each TAZ on an	974	363
		838	360
â	average workday. The "empls" column contains the number of employees in	555	135
e	each zone.	849	256
A.	(5 points) What linear equation of the form $T = a + bX$ best fits the data	392	97
		714	277
	in Table 4.2?	160	78
E	B. (5 points) Does the value of b make sense to you? Explain why (not).	587	174
C	(5 points) If $a \neq 0$ in the best-fit equation does that make sense to you?	545	235
		627	295
	Explain why a \neq 0 is (not) a reasonable value.		

3. Trip Generation by Cross-Classification. (15 points) Zone 8 in Mythaca is largely residential. Your client has provided the zone's expected household composition in the horizon year to you in the Table below. Use the household trip rates in Table 4.2 to estimate the number of home-based trips per day that will be produced by Zone 8.

Persons per		Vehicles per	Household	
HH	0	1	2	3+
1	100	300	150	40
2	110	250	50	75
3	90	250	50	85
4	150	210	60	35
5+	20	50	50	35

4. Trip Distribution by the Gravity Model. (15 points) Using acceptable Trip Generation procedures, the recent Middleville Area Transportation Study (MATS) has produced the horizon-year (H-yr) production and attraction totals for each zone, as shown in Table 3a below. MATS has also

Table 3a. MATS H-year Productions and Attractions				
Zone	1	2	3	4
Pi	1100	300	1600	1000
A _i	1400	600	500	1500

determined that F_{ij} = 1000 $t_{ij}^{-2.4}$. The H-year t_{ij} values are given in Table 3b. (∞ = infinity) Using the
new F_{ij} equation and the format of Table 4.9, calculate the predicted values of T_{21} , T_{23} , and T_{24} .

Table 3b. H-year Interzonal Travel				
Times (minutes)				
T _{ij}	1	2	3	4
1	∞	13	18	13
2	13	∞	13	18
3	18	13	∞	16
4	13	18	16	∞

5. MNL Mode Choice Model. A group of teachers in the Mythaca School District have agreed to stop commuting by motor vehicle. Instead, each of these teachers will choose each morning between walking and bicycling to school, depending on the weather. The utility functions for the two nonmotorized modes for these teachers are:

 $U_{bike} = 0.0 - 0.5 t_{bike} - c_3 W_{bike}$

 U_{walk} = +2.9 - 0.5 t_{walk}

where W is a weather-related variable and t is travel time in minutes. W=0 in good weather; W=1 in bad weather.

- A. (10 points) When the weather is good, what is the probability that a "non-motorized" teacher with a choice between a 15-minute walk and a 6-minute bike ride will choose the bicycle mode?
- B. (10 points) At what value of the weather coefficient c_3 will the teacher in Part A be equally likely to choose walk and bicycle in bad weather?
- 6. Trip Assignment. An expressway connecting Zones 3 and 1 has an LPF t(X) = 8.0 + 5.7 V(X), where V(X) is in 1000s of vehicles per hour in a given direction. The old arterial streets between Zones 3 and 1 are still available, with an LPF of t(A) = 9.9 + 13.5 V(A).
 - a. (10 points) If all drivers from Zone 3 to Zone 1 want to minimize their individual travel times, at what flow rate V(X) will drivers begin to divert back to the arterial route?
 - b. (10 points) If T(3,1) = 2663 vph during the peak hour, find the equilibrium travel time from Zone 3 to Zone 1 and calculate V(X) and V(A) for the peak hour.