Probability and Random Process M E689 Lecture Notes [ by B.Yao

Probability and Random Process

Sample Space, Events, and Probability Axioms:

When we deal with an experiment, the outcome at each trial is normally different. It is thus convenient to
introduce a space which contains all the possible outcomes of trials. The sample space Q is defined to be such a
space and its elements are denoted by an outcome « . Subsets of Q are called events and are denoted by A. A
probability is afunction P that assigns a number to the evens A with the following properties:

a) 0<P(A)<L1 for any event Ac Q

b) P(Q)=1 (p1)

c) IfAnB=g¢ then P(AuB)=P(A)+P(B)
where ¢ isthe empty set. A probability spaceisatriple (2, A, P) where

Q =sampl e space = set of outcomes

A =set of all events. (For Q with n elements, there are 2" events)

P = probability

Example:
E = tosstwo coins
Q={HH, HT, TH, TT}
A =2° (has 2* =16 events)
Suppose that P(HH)=0.1, P(HT)=P(TH)=0.2. Then, P(TT)=0.5, and P({HH,TT})=0.6

Example:
E = measurement of some volume less than 1

Q=[02)
A ={A A=finiteunion of intervals [a b)}
P([a, b)) =b-a

then, the above (Q, A, P)is a probability space.

Conditioning and I ndependence

Let (Q,A,P) beaprobability space and let A,Be A be two events with P(B) = 0. The conditional probability
is defined as

P(ANB)
P(AB)=—~————~ 2
(A/B) P(B) (p2)

Informally, this has the interpretation of the likelihood that event A will occur given the information that event
B has occurred, which is graphically illustrated below.

A and B are independent events iff
P(AB) = P(A) or  P(AnB)=P(A)P(B) (p3)
i.e., theinformation that B has occurred does not ater the probability that event A occurs.

A collection of events {A A, -} iscalled independent if for every finite subcollection, we have

P(1A)=]]P(A) (o)
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Random Variables, Probability Distribution Function, and Probability Density Function

We are particular concerned with experiments whose outcome is areal number. For example, the measurement
of avoltage, temperature, etc. Many experiments whose outcome is not a real number, such as coin-tossing can
be made to ook like areal number outcome experiment by assigning (perhaps unnaturally) numbersto
outcomes. For example, in the two coin toss experiment, we can declare 1=HH, 2=HT, 3=TH, 4=TT.

 Let (Q,A,P) beaprobability space. A random variable X isamapping X: Q — R, i.e.,, an assignment of
real numbersto every possible outcome « € Q. When the outcomes of an experiment are already real
numbers, the random variable X isthe natural imbedding. The valuesthat X takes are normally denoted x.

*  The probability distribution functionP, (x) associated with X is

P, (X)=Pr{X < x} (PS)
It is easy to see that
a) XIir_rl P,(x)=0
b limP, =1
) lim Py (x) -

c) P (x) ismonotone nondescreasing in X
d) P (x) isright continuousinx (why?)

*  The probability density function p, (x) associated with X is

(=2 B (¥ (o7)
i.e.,
Py (X)dx = Pr{x < X < x+dx} (p8)

It iseasy to seethat
a) Px(x)20

b) [ P =P, (x) °9)

Expectation

* Let X bearandom variable. The expected value of X written as E[ X] isthe “average value” of X, i.e,

E[X]= [ xpy (x)dx (p10)
* E[X]isasowrittenas X (or m,) and is also called the mean of the random variable X.
e Letfbeareal valued function and Y be arandom variable whichisafunction of X, i.e., Y = f(X).
Analogous to (p10), for the random variable Y, we have

EIY]= [ yp (y)dy (P12)
which can be shown to be
ELY]=E[f(X)]= | F(x)py () (P12)

e E[X™] iscaled the m™ moment of X.
«  Of particular importance are the 1% and 2™ moments (mean and “variance”)
» Variance of X isdefined to be

E[(X=X)"]= ] (x=%)” py(x)clx

(p13)
= E[X?]-%*
*  Expectation isalinear operator, i.e., if X and Y are two random variables, then,
E[aX + BY] = aE[ X]+ FE[Y] (p14)

note:
E[X?] # EX]
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Examples:
Gaussian or Normal Distribution

A random variable has a Gaussian (or normal) distribution denoted by N(m, o) if its probability density
functionis

_(x-m)?

1 207
p(x) = oT2n e (p15)

where misthe mean and o? is the variance. Note that the Guassian distribution is completely characterized by
the mean and standard deviation o, which is not the case for general distributions.

The Gaussian distribution isimportant and useful since

* A Gaussian distribution approximates the distribution of arandom variable whichis a sum of alarge
number of independent random variables

e Gaussian assumption is a good assumption in many practical situations.

» If Yisalinear function of X and if X is Gaussian, then Y is also Gaussian.

Joint Probability, Density Function, and Random Vectors

If we have more than one random variable defined on the same sample space Q , we have to consider the joint
density (and distribution) function. If we have two random variables, X and Y, their joint distribution functionis

Po (X Y)=Pr{X <xY<y} (p16)
If Py (X,y) isdifferentiable, thejoint density functionis
82
Py (X, Y) = >y Po (X,Y) (p17)

If the joint distribution function satisfies

Po (%) =Pr{X <xY <y} =Pr{X < Pr{Y <y} =P (XR(y) (p18)
then X and Y are said to be independent. When X and Y are independent, their joint density function satisfies
P (X, ¥) = Px (X) Py () (p19)
Random variables may form a random vector. For example, random variables, X and Y, may be put in the form
X
Z= 20
{Y} (p20)

For this random vector, the mean is

m, = {m - E[2]- j”;j”;[ﬂpxy(x, y)cdy (p21)

and the covariance (matrix) is
A A
Az =E(Z-m)(Z-m)"]= { o A”}
YX Yy

(-m)’  (-m)(y-m,) e

- .[_ .[_ { 2 :|pXY(Xv y)dxdy

==Ly =m)(x=my) (y-m)

Notice that the covariance matrix is symmetric, i.e., A, = A,y . The off-diagonal elements indicate the
correlation between X and Y. If A, =A, =0, X and Y are said to beuncorrelated. If X and Y are
independent, they are uncorrelated. However, uncorrelated X and Y are not necessarily independent.

When X and Y arejointly distributed, the probability density function for X is
Pc() =] pe(x y)dy (p23)
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since al the possible values of Y must be taken into account. When Y takes a particular value, say y, the
probability density function of X is given by the conditional density function,

P, (xy) = Rt Y) (p24)
Py (Y)
where p, () in the denominator is the scaling factor to assure
Pe(eoly)= [ py(x]y)dx=1 (25)
If X and Y areindependent, then,
Px(Xy) = Px(X) (p26)

When X and Y are dependent, the conditional density function of X given Y=y is different from the
unconditioned density function, i.e., py (x| y) # py(X). The conditional mean and covariance are obtained by
using the conditional density function. For example, the conditional mean is

E[X|y]= j”; xp, (x| y)dx (p27)

Random Vectors (n-dimensional)

The above notions of random vector, joint distribution function, and joint density function for two random

variables can be generalized to n random variables. Specifically, let X,, --- X, berandom variables over the
same sample space. We can form the n-dimensional random vector and its specific value vector as
X, X
X=| | x=|: (p28)
X, X,
Thejoint distribution function is then defined as
P(=Pr{ X, <x, - X,<x]} (p29)
If P, (x) isdifferentiable, the joint density function is
P =5, T2 R0 (p30)
If the joint distribution function satisfies
P () =Pr{X; <x}--Pr{X, sx} =B ()P (x) (p31)
or equivalently
Px (X) = Py, (%)~ Py, (X,) (P32)
then, X;, --- X, aresaidto beindependent.

let X and Y be random n-vectors. The covariance matrix of arandom vector X is defined as
Ay =E[(X=-m)(X-m)"] eR™
el el T (p33)
= [ [T (= m)(x=my) " py(x)x
The cross-covariance matrix of two random vectors X and Y is defined as
Ay = E[(X=m)(Y-m)T] eR™

el hd T (p34)
= [ = mO(y=m) Py (X, )iy

Gaussian Random Vectors (n-dimensional)

Thejoint density function of a n-dimensional Gaussian random vector X is:

1 =2 0em )T A (x-my)
)

where m, and A ,, are the mean and covariance matrix of X respectively, i.e.,

P (X) = (p39)
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m=E[X], Ax =E[(X-m)(X-m)’] (p36)

In particular, if X; and X, are independent Gaussian random variables, thejoint density functionis

2 2
(x—my, ) (X—my, )

By ()= Py (X)Py, (%) = ———e 2% — L e
X . i o2 o, N2
T 2 - (p37)
1) X—My, Tx, X~ Myy
— 1 eii[xz—mxz] { szz} {Xz—mxz]

—_—
(\/ 277) Oy, Oy,

Notethat o, o, isthe |A XX| . The off-diagonal elements of the covariance matrix A ,, are zero because X;
and X, are independent.

A particular property of Gaussian random vectorsis given below, which is very useful in the construction of
Kaman filters. Let X and Y arejointly distributed n and m dimensional Gaussian random vectors. Then, their
joint density functionis

1| x—my i _q| X=my
1 ol y- -

P (X Y)=—Fm—¢e z[y m(} {y m'] (p38)

(V2r) Al

where A isan (n+m)x(n+m) covariance matrix written as
AXX AXY
A =

[ Ay AW} (P39)

The conditional density function of X given Y = y isalso Gaussian with mean and covariance matrix given by
My, = My +AXYAW_1[y_ m/]

,1 (p40)
A><|y =A — A Ay Ay
Notice that the conditional mean depends on y while the conditional covariance matrix does not. The
expressions (p40) are obtained by defining a nonsingular matrix C as
-1
c:{' A } (p41)
0 I
Noting that the determinant of Cis 1, i.e, |C|=1, we have
Al =[CACT|=[A o = Ay Ay A A
T T
I o b e
y—-m, y—-my y—-m, y—-m,
T o (p42)
Lomlls w0
y-m, 0 Ayl LY—-m
u _ _
=[x=mg, | Ay [x=mg, [+[y-m] A [y-m]
Thus, from (p38),
— 1 7%[X’mXIY]TAxlvfl["’mxw]
Puy (X, Y)=——F77—=¢ Py (Y) (p43)
(V2] [
which indicates that
1 ,E[x—mxw]TAx‘y’l[x—mm}
Py (X|Y) =—FF7—=¢e? (p44)
(V2] A

This shows that the conditional density function of X given Y =y isaso Gaussian with mean and covariance
meatrix given by (p40).
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Random Process (Discrete Time Case)
Ensemble Averages
A random variable with the time as a parameter is called arandom process, i.e,, { X(k), k=12,...} (seeFig.

P.2). To completely specify the discrete time random process, we need to specify its complete joint probability
density function

p(x(1),x(2),...) (p45)
which is not practical. Fortunately, in most case, it is sufficient to know the mean function
m (k) = E[X(K)], k=12,... (p46)
and the (auto-)covariance function
A (3K = E[(X(D=m (N(X()-m (K)'], k=12, (p47)

The autocovariance function is a measure of the degree of association of the signal at time | with itself at timek.
It isasimple matter to justify that the expected value operator may be identified with averaging across the set of
recordsin Fig.P.2, or “ensemble average’.

In the engineering literature, the autocorrelation function is sometimes defined to be
E[X())X(K)"] (p48)
If X(k) has zero mean, the autocorrelation function is nothing but the autovariance function.
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Stationary

In general the properties of a random process are time dependent but to simplify matters, we often assume that a
sort of “steady state” has been reached in the sense that certain statistical properties are unchanged with respect

to time,. For example, assume
I Py (X) = Pxgo(X), Vi, k (implying that m, (k) and A, (k, k) are constant)
. Py(jyxao (X1, X;) isafunction of the time differencek — j only and not both j and k, which implies that
the autocovariance function A, (j, k) isafunction of the time difference k— j only.

A random processis said to be weakly stationary or simply stationary if the conditionsi and ii hold. If similar
conditions hold for al higher order joint probabilities, then, the processis said to be completely stationary or
stationary in the strict sense. Fig. P.3 is an attempt to give a visual interpretation of the stationary concepts.

If aprocessis stationary, since the autocovariance function A ,, (j,k) isafunction of the time difference k- j
only,i.e, A, (j,K)=A,(k-]),wecanusetheusua notation R,, (7) to represent the autocovariance
function A, (k—j),i.e, Ry (7)=A,,(7), where r=k—j isthe“lag’. It iseasy to verify that R, (7) isan
even function having atypical shapein Fig. P.4.

The assumption of stationary (though an approximation) has important consequences, since it is the key to
being able to replace the “ensemble average” across a set of records with the “time average” along asingle

record introduced below.
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For abivariate random processes, { X(k), k=12,...} and {Y(k), k=12,...}, the cross-covariance
(crosscorrelation) function is defined to be
A3 = E(X(D=m(DIY0)-m (k)] jk=12.... (p49)

which is a measure of the degree of association of signal X at timej with signal Y at timek. Asinthe above, if
the processes are stationary, the cross-covariance is a function of the time difference k— j only and is denoted
by R (7). A short list of important properties are

X R (7) = R (=7)

i. |Ra(D)<Rx(0) (=0%)

iii. Ry (7) =R, (-7)

V. [Re (7)< Re(ORy(0)

(p50)

Time Averages

The definitions above have al involved the underlying probability distributions (or equivalently, ensemble
averaging). Often we find that we shall have only a single record from which to make estimates of the averages
we have defined. This raises the question as to whether averages along arecord, i.e., time average, might be
used in place of the ensemble average. It seems self evident that “ stationary” is aprerequisiteif thisisto be
feasible. When the time average agree with the ensemble average, arandom processis ergodic. Thusfor a
stationary and ergodic random process, the ensemble mean (p46) can be calculated by
—_— . 1 &,

m, =x(k)=lim N +1j:z_‘NX(J) (p51)

where the upper bar denotes the time average. Similarly, the cross covariance (correlation function) (p49) is

Re ()= E[(X(K) - m, )(Y(k+7)-m,)']

= (x(k) -~ my )(y(k+7)—m,) (p52)

. 1 N . . T
=lim——— x(j)—m, +7)-m,

N—oo 2N +1j:_N( (J) )(y(J ) )
with Y = X for the autocovariance function.

Spectral Density Functions

The Fourier transform of an auto-covariance function is the variational (auto) spectral density function S, (),
i.e.,
— N - jwr _ 1 m jowr,
Su(@)= YR (D™ and Ry (n)=7 [ Su(@edw (pS3)

T=—oc0

The Fourier transform of an autocorrelation function is called the (auto) spectral density function. (p53) is
called variational because of the way that the auto-covariance is defined. It follows from (p53) that
1 ¢7
T =Ru(0 = [ Sy(@)dw (p54)

which implies that the variance of X is equal to the area under the spectral density curve, or the spectral density
function S,, (&) describes the decomposition of the average power of X(t) over frequency.

The cross spectral density S, («) issimilarly defined as
S —jor 1 ¢n jor
Sy (w) = 2 R (D)e™ and R (1) = ZTJ‘WSXY(W)EJ dw (pS5)

T=—co

The cross spectral density S, («) isin general complex and may be expressed by |S,, (w)e’** > in which

|SXY (a))| isthe cross amplitude spectral density and indicates whether frequency components in one time series
are associated with large or small amplitudes at the same frequency in the other series. arg(S,, (w)) isthe phase
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spectral density and indicates whether frequency componentsin one series lag or lead the components at the
same frequency in the other series. Some properties of spectraare as follows

i. Sy (w)=S, (-
! XY(Z) Sx (@) (056)
i, [Se (@) < Sy (WS (@
where star * stands for the complex conjugate operation. The following figure lists some of the common auto-
correlation functions and associated power spectral densities.

Linear Time-Invariant System
Consider a single-input/single-output (SISO) linear time-invariant (LTI) system given by

Y(2) =G(2U(2) or y(k) = D" g(iu(k —i) (pS7)
i=—00
where uistheinput and y isthe output. If uis arandom process, y is also arandom process. Assumingthat uis
zero mean and that the ergodic hypothesis holds, the cross-covariance function for u and y and the
autocovariance function for y can be obtained as follows.

Ry (1) = u(k) i u(k +1 -i)g(i) = i u(kju(k +l =i)g(i) :i Ru(l =)g() (P58)

j=—o00 j=—00 i=—00

Ry (1) = y(k)y(k +1) =Y(k)i u(k +1 =i)g(i) =i y(ku(k + —)g(i) =i Ry (I )g(i) (PS9)

i=—c0 j=—00 i=—00

Eq. (p58) implies that the cross-covariance function, R, , isthe output of the linear system (p57) excited by the
autocovariance function of u, R,,. Ed. (p59) implies that the autocovariance function of y, R, is the output

of the linear system (p57) excited by the cross-covariance function, R

i aSillustrated by the following figure.
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_ui) o) |y

Fig. P-3 Generation of R,y and R, from R,

From (p58) and (p59), the cross-spectral density function of the output and the input of the linear system (p57)
and the spectral density function of the output are related to the spectral density function of the input by

Sy (0) =G(e!*) Sy (&)

e P (p60)
Sy (@) =G(e)G(e )8, (@) 36’ Sw(9)
The ordinary coherence function between the input u(t) and the output y(t) is defined as
2
) Sy (@)
Yoy (@) =~ (p61)
YT Su(@S,y (@)
From the inequility (p50) for cross spectra, it follows that
0=y, (W <1 (P62)

If u(t) and y(t) are completely unrelated, yuyz(oo) =0, whileif y(t) and u(t) arelinearly related (e.g. the LTI
system (p57)), then v, *(c) =1.

An instantaneous value of a purely random process (white process) is not correlated with its value at other time
instances. Namely, the autocovariance function of awhite processis

R, (0) = 02, and R,()=0 for |#0 (p63)
If azero mean white process is not stationary, its auto-covariance function is given by
E[x(k)x(j)] =Q(k)d; , §; =1lfork =jand =0fork #j (p64)

From Egs. (p58) and (p59), the output of alinear system is correlated (or colored) even when the input is white.
Consider adiscrete transfer function
"+b._ AR
G(z)= hZ FhhaZ o thy (p65)
Z ta, 7 "+t
If theinput u is white with a variance of 1, from Egs. (p60), the spectral density of the output, vy, is

Sy(@) =[6(e") =66 |,_go (p66)

10
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We now consider a discrete time system described in the state space. Let w be a zero mean white random
vector with the covariance E[w(k)w(k)"] = W(k), and consider

X(k+1) = A(k)x(k) + By, (K)w(k) (p67)

Theinitia state is random, and its mean and covariance are given by
E[XO)]=meo and E[(X(0) ~m)(x(0) ~my)" | =X, (p68)

Assume that x(0) and w(k) are not correlated. Under these assumptions, the mean and covariance of x(k) are
obtained as follows. By taking the expectation of Eq. (p67), we obtain the equation for the mean

m(k+1) = Ak)m, (k), m,(0) =my, (p69)
where we have noted E[w(k)] = 0. Subtraction of (p69) from (p67) yields
x(k +1) =m, (k +1) = A(K)[x(k) —m, (k)] +B,,(K)w(k) (p70)

Multiplying the left and right hand sides of (p70) by their transposed quantities from right and taking
expectation, we obtain

X (k+1) = A(K) X (K) AT (k) +B,, (KW (K)By (K), X(0) =X, (p72)
where X (k) = E[(x(k) -m, (K))(x(k) —mx(k))T] represents the covariance of transient statex(k) , and we

have set E[(x(k)-m)w' (k)] = O because x(k) depends only on x(0), w(0), ... , w(k-2) and w(k-1), which are all
uncorrel ated with w(k).

If w(k) is stationary, A and B,, do not depend on k, and A is asymptotically stable, then, m,(k) convergesto zero
and X(k) converges to the stationary solution, X . Eq. (p71) thus becomes a Lyapunov equation. Because of

the whiteness of w(k), the autocorrelation (autocovariance) of x(k) at the steady state is
Re(1) = EIx(K)XT (k +1)] = X(A")"  and
Ro(-1) = EIX(K)XT (k =] =E[x(k +1)x" ()] =A' X4 (p72)

Example:
x(k +1) =ax(k) +\/1—?w(k), E[w(k)] =0, E[w(k)w(j)] =W §
x(0) and w(k) are uncorrelated. Note that m,(k) = O at the steady state. The steady state solution of Eq. (p71)
satisfies
Xg=a? X +(1-a%)W = X =W
From Eq. (p72),
Ro() = Re(-1) =a' X

Thus, x(K) has a stronger correlation for increasing a. For stability, a must be lessthan 1.

Note: In discussing the random process, we did not specify the shape of the probability density function.
Namely, ideas such aswhiteness and correlation are independent from the density function. In most cases,
we assume that the density (distribution) function is Gaussian. For example, we say that random processes are
white and Gaussian. Recall that if the input of alinear system is Gaussian, the output is also Gaussian.

Random Process (Continuous Time)

Various ideas and quantities introduced for discrete time random processes are similarly defined for continuous
time random processes. We will summarize them below.

Let x(t) be arandom process. For a sample process, the time average of x(t) is
T

— . 1

X(t) = lim — | x(t)dt 51C

®) sz_fT (t) (pS1C)
x(t) is stationary in the strict sense if

11
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Pr{x(t)) € %,..., X({t) < %,.. } = Pr{x(t; +1) <xq,.... x4 +1) <x%,..} (p72)
foralt's, xi'sand | . Itisstationary in the weak (wide) sense if its mean does not depend on't and its auto-
covariance function depends only on the time difference.

For a stationary and ergodic process, its mean and auto-covariance function can be computed by (p51C) and

1t
R (1) = E[X(t) =m, ) (x(t + 1) —m,)] :T"IT;E f (X(t) =my )(x(t + 79 —m,)dt (p52C)
-T
For two random processes, x and y, the cross-covariance function satisfies
Ry (1) =R, (-1) (pS0C)
The (variational) (auto) spectral density functionis
Se(@ = [ Ry(De®dT and Re(1)= %{ [ Sw(we'“dw (P53C)
If uisarandom processand y is_the output of alinear system _
Y(8)=G(sU(s) or y(t)= [ g(nu(t-n)dn (pS7C)

—00

the cross-covariance function for u and y and the auto-covariance function for y are
Ry(®=u(t) [ ut+t-mgmdn= [u®u(t+Tt+n)gm)d= [ Ru@-n)gh)ch  (p580)

Ry (0= [ Ry(t=n)g(n)dn (P59C)

The cross-spectral density function of the output and the input of the linear system (p57C) and the spectral
density function of the output are related to the spectral density function of the input by

Sy (@) =G(j WS, (W

. . 2 (p60C)
Sy () =G YG(— YSu( P FG(j W Sl »
The auto-covariance function of a purely random process (white process) is
Ry (1) = 0%,8(7) (P63C)
where d isadeltafunction. If azero mean white processis not stationary, its auto-covariance function is
E[x®)x(t+1)] =Q(t)d(1) (p64C)
If the input u(t) of the transfer function
m
69 = m<n (p650)
s'+a,,S" +...+ay
iswhite and has an unity variance, the (variational) spectral density function of the output is
_( B(s)B(-s) PRI
() —[—j =G(jw (p66C)
R vErTEsy i 5G4
Consider
0 - ax) +B0) (p67C)
where E[w(t)] =0, E[w(t)w(t + V)] =W(t) & V), E[X(t)] =My, E[X(ty) Mno)(X(ty) My0)'] Xgand
E[(x(ty) — mxo)w(t)T] =0. Then, the mean and covariance of x(t) are given by
dm, (t
IO = Aym (1), mite) =myo (p69C)

dat

12
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dX(t
P~ A9X 0+ XOAD +BOWOBLD. X() =X (p70C)
If W, A and B,, do not depend on't and A is asymptotically stable, m,(t) convergesto zero and X(t) convergesto
the steady state solution, X, of Eq. (p70C). X isthe positive (semi-)definite solution of the Lyapunov
equation.
AX +XAT = -B,\WBy, (p73)
The auto-covariance of x(t) is

R.(T) = E[x(t)X" (t+T)] = X&™ and R (-T) = E[x()X" (t - 1)] =e* "X (p72C)

Derivation of Egs. (p69C) and (p70C):

We derive these two equations in the following three steps: 1). obtain a discrete time approximation of
Eq.(p67C) (sampling time = At); 2). apply Egs. (p69) and (p71) to the approximate discrete time system; and
3). take the limit of At approaching to zero.

Step 1.
w = Ax(kAt) + B, w(k)
= x(k+1) =(I +AA)x(k) +B,, Aw(k)
where w(k) is the average of w(t) over [kAt, (k +1)At],
(k+1) At
w(k) =— w(t)dt
)
The mean and covariance of w(k) are
(k+1) At
E[w(k)] = i t E[w(t)dt =0

(k+1)At (j+1) At j+1) A (k+1) &

(
, 1 1 1
E[w(iow’ ()] = E[_- i W) [ Widel=_5 [ [ Ewww (L)dyt,
jAt jAt kAt
=0 for j 2k
:iW for j =k
At

Step 2.
m ((k+DAt = (I +Ad)m, (kAt), m,(0) =x,
X((k+2)At =(1 +AM) X (kA (1 +An)T +BWAth\I,,X(O) =X,
_, m((k +1)AAtt) —my(kAt) _ Am, (KAY)
X((k +1)At) - X (kAt)
At

= AX (KAL) + X (KA AT +AX (kA AT At +B,WB],

Step 3. Let At — 0in the above expressionsto obtain (p69C) and (p70C).
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