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Probability and Random Process 
 

Sample Space, Events, and Probability Axioms: 
 
When we deal with an experiment, the outcome at each trial is normally different. It is thus convenient to 
introduce a space which contains all the possible outcomes of trials. The sample space W  is defined to be such a 
space and its elements are denoted by an outcome ω . Subsets of W are called events and are denoted by A . A 
probability is a function P that assigns a number to the evens A  with the following properties:  
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where φ is the empty set. A probability space is a triple ( , , )W A P  where  
  W=sample space = set of outcomes 
  A =set of all events.  (For W  with n elements, there are 2n events) 
  P = probability 
 
Example:  
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 toss two coins

HH,  HT,  TH,  TT

A = 2  (has 2  events)4

l q
16

 

Suppose that P(HH)=0.1,  P(HT)=P(TH)=0.2. Then, P(TT)=0.5, and P({HH,TT})=0.6 
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 measurement of some volume less than 1
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then, the above ( , , )W A P is a probability space. 
 
Conditioning and Independence  

 
Let ( , , )W A P  be a probability space and let A B, ŒA be two events with P B( ) π 0. The conditional probability 
is defined as  

P A B
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       (p2) 

Informally, this has the interpretation of the likelihood that event A will occur given the information that event 
B has occurred, which is graphically illustrated below.  
 
 
 
 
 
 
A and B are independent events iff  

P A B P A P A B P A P B( | ) ( ) ( ) ( ) ( )= « =or          (p3) 
i.e., the information that B has occurred does not alter the probability that event A  occurs.  
 
A collection of events A A1 2 "l q  is called independent if for every finite subcollection, we have  
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Random Variables, Probability Distribution Function, and Probability Density Function  
 

We are particular concerned with experiments whose outcome is a real number. For example, the measurement 
of a voltage, temperature, etc. Many experiments whose outcome is not a real number, such as coin-tossing can 
be made to look like a real number outcome experiment by assigning (perhaps unnaturally) numbers to 
outcomes. For example, in the two coin toss experiment, we can declare 1=HH,  2=HT,  3=TH,   4=TT. 
 
•  Let ( , , )W A P  be a probability space. A random variable X is a mapping X R:WÆ , i.e., an assignment of 

real numbers to every possible outcome ωŒW . When the outcomes of an experiment are already real 
numbers, the random variable X is the natural imbedding.  The values that X takes are normally denoted x .  

 
•  The probability distribution functionP xX ( ) associated with X is  

P x X xX ( ) Pr= £l q        (p5) 

 It is easy to see that  
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•  The probability density function p xX ( )  associated with X is  

p x
d

dx
P xX X( ) ( )=        (p7) 

 i.e.,  
  { }( ) PrXp x dx x X x dx= < ≤ +       (p8) 

 It is easy to see that  
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Expectation 

 
•  Let X be a random variable. The expected value of X written as E X[ ] is the “average value” of X, i.e.,  

E X xp x dxX[ ] ( )=
-•

•z        (p10) 

•  E X[ ] is also written as x  (or mX ) and is also called the mean of the random variable X. 

•  Let f be a real valued function and Y be a random variable which is a function of X, i.e., Y f X= ( ). 
Analogous to (p10), for the random variable Y, we have  

    E Y yp y dyY[ ] ( )=
-•

•z        (p11) 

which can be shown to be 

    E Y E f X f x p x dxX[ ] [ ( )] ( ) ( )= =
-•

•z      (p12) 

•  E X m[ ] is called the mth moment of X.  
•  Of particular importance are the 1st and 2nd moments (mean and “variance”) 
•  Variance of X is defined to be 

E X x x x p x dx

E X x

X[( ) ] ( ) ( )

[ ]

- = -

= -
-•

•z2 2

2 2                   
      (p13) 

•  Expectation is a linear operator, i.e., if X and Y are two random variables, then,  
E X Y E X E Y[ ] [ ] [ ]α β α β+ = +       (p14) 

 note: 
 E X E X[ ] [ ]2 2π  
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Examples: 
Gaussian or Normal Distribution 

 
A random variable has a Gaussian (or normal) distribution denoted by N m( , )σ 2  if its probability density 
function is   

     p x e
x m

( )
( )

=
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2

2
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σ π
σ       (p15) 

where m is the mean and σ2 is the variance. Note that the Guassian distribution is completely characterized by 
the mean and standard deviation σ , which is not the case for general distributions.  
 
The Gaussian distribution is important and useful since  
•  A Gaussian distribution approximates the distribution of a random variable which is a sum of a large 

number of independent random variables 
•  Gaussian assumption is a good assumption in many practical situations. 
•  If Y is a linear function of X and if X is Gaussian, then Y is also Gaussian.    
 

Joint Probability, Density Function, and Random Vectors 
 
If we have more than one random variable defined on the same sample space W , we have to consider the joint 
density (and distribution) function. If we have two random variables, X and Y, their joint distribution function is  

{ }( , ) Pr ,XYP x y X x Y y= ≤ ≤       (p16) 

If P x yXY ( , )  is differentiable, the joint density function is  

p x y
x y

P x yXY XY( , ) ( , )= ∂
∂ ∂

2

      (p17) 

If the joint distribution function satisfies 
 

{ } { } { }( , ) Pr , Pr Pr ( ) ( )XY X YP x y X x Y y X x Y y P x P y= ≤ ≤ = ≤ ≤ =   (p18) 
 

then X and Y are said to be independent. When X and Y are independent, their joint density function satisfies 
 

p x y p x p yXY X Y( , ) ( ) ( )=       (p19) 
 
Random variables may form a random vector. For example, random variables, X and Y, may be put in the form 

 Z
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Y
=
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For this random vector, the mean is  
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and the covariance (matrix) is 

L
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L LZZ Z Z

T XX XY

YX YY
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Y X Y
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Notice that the covariance matrix is symmetric, i.e.,  L LXY YX= . The off-diagonal elements indicate the 
correlation between X and Y. If L LXY YX= = 0, X and Y are said to be uncorrelated. If X and Y are 
independent, they are uncorrelated. However, uncorrelated X and Y are not necessarily independent.  
 
When X and Y are jointly distributed, the probability density function for X is  

p x p x y dyX XY( ) ( , )=
-•

•z        (p23) 
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since all the possible values of Y must be taken into account. When Y takes a particular value, say y, the 
probability density function of X is given by the conditional density function,   

p x y
p x y

p yX
XY

Y

( | )
( , )

( )
=        (p24) 

where p yY ( )  in the denominator is the scaling factor to assure  

P y p x y dxX X( | ) ( | )• = =
-•

•z 1      (p25) 

If X and Y are independent, then,  
p x y p xX X( ) ( )=         (p26) 

When X and Y are dependent, the conditional density function of X given Y=y is different from the 
unconditioned density function, i.e., p x y p xX X( ) ( )π . The conditional mean and covariance are obtained by 

using the conditional density function. For example, the conditional mean is  

E X y xp x y dxX| ( | )=
-•

•z        (p27) 

 
Random Vectors (n-dimensional) 

 
The above notions of random vector, joint distribution function, and joint density function for two random 
variables can be generalized to n random variables.  Specifically, let X Xn1, " be random variables over the 
same sample space. We can form the n-dimensional random vector and its specific value vector as  
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The joint distribution function is then defined as  

{ }1 1( ) Pr ,X n nP x X x X x= ≤ ≤"      (p29) 

If P xX ( ) is differentiable, the joint density function is  

p x
x x

P xX

n

n
X( ) ( )= ∂

∂ ∂1"
       (p30) 

If the joint distribution function satisfies 

{ } { }
11 1 1( ) Pr Pr ( ) ( )

nX n n X X nP x X x X x P x P x= ≤ ≤ =" "    (p31) 

or equivalently  
p x p x p xX X X nn

( ) ( ) ( )=
1 1 "       (p32) 

then, X Xn1, "  are said to be independent.   
 
let X and Y be random n-vectors. The covariance matrix of a random vector X is defined as  

L XX X X
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X X X

E X m X m R

x m x m p x dx
T

= - - Œ

= - -

¥
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( )( ) ( )      "
     (p33) 

The cross-covariance matrix of two random vectors X and Y is defined as   

L XY X Y
T n n

X Y XY

E X m Y m R

x m y m p x y dxdy
T
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= - -
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Gaussian Random Vectors (n-dimensional) 
 
The joint density function of a n-dimensional Gaussian random vector X is : 

   p x eX n
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x m x mX
T

XX X
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where mX  and L XX  are the mean and covariance matrix of X respectively, i.e.,  
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   m X X m X mx x x

T= = - -E    EXX, L b gb g      (p36) 

 
In particular, if X1 and X2 are independent Gaussian random variables, the joint density function is  
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Note that σ σX X1 2
is the L XX . The off-diagonal elements of the covariance matrix L XX  are zero because X1 

and X2 are independent.  
 
A particular property of Gaussian random vectors is given below, which is very useful in the construction of 
Kalman filters. Let X and Y are jointly distributed n and m dimensional Gaussian random vectors. Then, their 
joint density function is   

   p x y eXY n m
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y m
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where L  is an ( ) ( )n m n m+ ¥ +  covariance matrix written as  

L
L L
L L

=
L
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O
QP

XX XY

YX YY

       (p39) 

The conditional density function of X given Y y=  is also Gaussian with mean and covariance matrix given by  

m m y mX y X XY YY Y

X y XX XY YY YX

|

|
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Notice that the conditional mean depends on y while the conditional covariance matrix does not. The 
expressions (p40) are obtained by defining a nonsingular matrix C as  

C
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I
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-L
NM

O
QP

-L L 1

0
      (p41) 

Noting that the determinant of C is 1, i.e., |C|=1,  we have   
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Thus,  from (p38),     

   p x y e p yXY n

X y

x m x m

Y

X y

T
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which indicates that  

   p x y eX y n

X y
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|
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This shows that the conditional density function of X given Y y=  is also Gaussian with mean and covariance 
matrix given by (p40).  
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Random Process (Discrete Time Case) 
 

Ensemble Averages 
 
A random variable with the time as a parameter is called a random process, i.e., X k k( ), , ,=1 2 …l q (see Fig. 

P.2). To completely specify the discrete time random process,  we need to specify its complete joint probability 
density function  
    p x x( ( ), ( ), )1 2 …        (p45) 
which is not practical. Fortunately, in most case, it is sufficient to know the mean function  
    m k E X k kX ( ) ( ) , , ,= =1 2 …     (p46) 

and the (auto-)covariance function  

   L XX X X

T
j k E X j m j X k m k j k( , ) ( ) ( ) ( ) ( ) , , , ,= - - =b gb g 1 2 …  (p47) 

The autocovariance function is a measure of the degree of association of the signal at time j with itself at time k. 
It is a simple matter to justify that the expected value operator may be identified with averaging across the set of 
records in Fig.P.2, or “ensemble average”.  
 
In the engineering literature, the autocorrelation function is sometimes defined to be  
    E X j X k T( ) ( )        (p48) 

If X k( ) has zero mean, the autocorrelation function is nothing but the autovariance function.  
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Stationary 
 
In general the properties of a random process are time dependent but to simplify matters, we often assume that a 
sort of “steady state” has been reached in the sense that certain statistical properties are unchanged with respect 
to time,. For example, assume  
 i. p x p x j kX j X k( ) ( )( ) ( ), ,= "    (implying that m kX ( )  and L XX k k( , )  are constant) 

ii. p x xX j X k( ) ( ) ( , )1 2  is a function of the time differencek j-  only and not both j and k, which implies that 

the autocovariance function L XX j k( , )  is a function of the time difference k j-  only.  
A random process is said to be weakly stationary or simply stationary if the conditions i and ii hold. If similar 
conditions hold for all higher order joint probabilities, then, the process is said to be completely stationary or 
stationary in the strict sense. Fig. P.3 is an attempt to give a visual interpretation of the stationary concepts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If a process is stationary, since the autocovariance function L XX j k( , )  is a function of the time difference k j-  
only, i.e.,  L LXX XXj k k j( , ) ( )= - , we can use the usual notation RXX ( )τ  to represent the autocovariance 
function L XX k j( )- , i.e., RXX XX( ) ( ),τ τ= L  where τ = -k j  is the “lag”. It is easy to verify that RXX ( )τ  is an 
even function having a typical shape in Fig. P.4.  
 
 
 
 
 
 
 
 
 
 
 
 
The assumption of stationary (though an approximation) has important consequences, since it is the key to 
being able to replace the “ensemble average” across a set of records with the “time average” along a single 
record introduced below.  



Probability and Random Process  ME689 Lecture Notes   by B.Yao 

 8

For a bivariate random processes, X k k( ), , ,=1 2 …l q and Y k k( ), , ,=1 2 …l q ,  the cross-covariance 

(crosscorrelation) function is defined to be 

   L XY X Y

T
j k E X j m j Y k m k j k( , ) ( ) ( ) ( ) ( ) , , , ,= - - =b gb g 1 2 …  (p49) 

which is a measure of the degree of association of signal X at time j with signal Y at time k. As in the above, if 
the processes are stationary, the cross-covariance is a function of the time difference k j-  only and is denoted 
by RXY ( )τ . A short list of important properties are 

i.

ii.

iii.

iv.

R R

R R

R R

R R R

XX XX

XX XX X

XY YX

XY XX YY

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

τ τ
τ σ

τ τ
τ

= -
£ =

= -
£

0

0 0

2

2

     (p50) 

 
Time Averages 

 
The definitions above have all involved the underlying probability distributions (or equivalently, ensemble 
averaging). Often we find that we shall have only a single record from which to make estimates of the averages 
we have defined. This raises the question as to whether averages along a record, i.e., time average, might be 
used in place of the ensemble average. It seems self evident that “stationary” is a prerequisite if this is to be 
feasible. When the time average agree with the ensemble average, a random process is ergodic. Thus for a 
stationary and ergodic random process, the ensemble mean (p46) can be calculated by  

    m x k
N

x jX
N

j N

N

= =
+Æ•

=-
Â( ) lim ( )

1

2 1
     (p51) 

where the upper bar denotes the time average. Similarly, the cross covariance (correlation function) (p49) is   

   

R E X k m Y k m

x k m y k m

N
x j m y j m

XY X Y

T

X Y

T

N
X Y

T

j N

N

( ) ( ) ( )

( ) ( )

lim ( ) ( )

τ τ

τ

τ

= - + -

- + -

+
- + -

Æ•
=-
Â

b gb g
b gb g

b gb g
          =

          =
1

2 1

    (p52) 

with Y X=  for the autocovariance function.   
 

Spectral Density Functions 
 
The Fourier transform of an auto-covariance function is the variational (auto) spectral density function S XX ( )ω ,   
i.e.,  

  S R e R S e dXX XX
j

XX XX
j( ) ( ) ( ) ( )ω τ τ

π
ω ωωτ

τ

ωτ

π

π
= =-

=-•

•

-Â zand
1

2
   (p53) 

The Fourier transform of an autocorrelation function is called the (auto) spectral density function. (p53) is 
called variational because of the way that the auto-covariance is defined. It follows from (p53) that 

   σ
π

ω ω
π

π

X XX XXR S d2 0
1

2
= =

-z( ) ( )       (p54) 

which implies that the variance of X is equal to the area under the spectral density curve, or the spectral density 
function  S XX ( )ω  describes the decomposition of the average power of X(t) over frequency.  
 
The cross spectral density S XY ( )ω  is similarly defined as  

   S R e R S e dXY XY
j

XY XY
j( ) ( ) ( ) ( )ω τ τ

π
ω ωωτ

τ

ωτ

π

π
= =-

=-•

•

-Â zand
1

2
   (p55) 

The cross spectral density S XY ( )ω  is in general complex and may be expressed by S eXY
j S XY( ) arg ( )ω ωb g , in which 

S XY ( )ω  is the cross amplitude spectral density and indicates whether frequency components in one time series 

are associated with large or small amplitudes at the same frequency in the other series. arg ( )S XY ωb g  is the phase 
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spectral density and indicates whether frequency components in one series lag or lead the components at the 
same frequency in the other series. Some properties of spectra are as follows 

i.

ii.

S S

S S S
XY YX

XY XX YY

( ) ( )

( ) ( ) ( )

*ω ω
ω ω ω

= -
£2      (p56) 

where star * stands for the complex conjugate operation. The following figure lists some of the common auto-
correlation functions and associated power spectral densities.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Linear Time-Invariant System 
 
Consider a single-input/single-output (SISO) linear time-invariant (LTI) system given by  

( ) ( ) ( ) ( ) ( ) ( )
∞

=−∞
= = −∑

i

Y z G z U z or y k g i u k i      (p57) 

where u is the input and y is the output. If u is a random process, y is also a random process.  Assuming that u is 
zero mean and that the ergodic hypothesis holds, the cross-covariance function for u and y and the 
autocovariance function for y can be obtained as follows. 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )uy uu
i i i

R l u k u k l i g i u k u k l i g i R l i g i
∞ ∞ ∞

=−∞ =−∞ =−∞
= + − = + − = −∑ ∑ ∑    (p58) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yy yu
i i i

R l y k y k l y k u k l i g i y k u k l i g i R l i g i
∞ ∞ ∞

=−∞ =−∞ =−∞
= + = + − = + − = −∑ ∑ ∑  (p59) 

 
Eq. (p58) implies that the cross-covariance function, uyR , is the output of the linear system (p57) excited by the 

autocovariance function of u, uuR .  Eq. (p59) implies that the autocovariance function of y, yyR , is the output 

of the linear system (p57) excited by the cross-covariance function, yuR , as illustrated by the following figure.   
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                                                     u(i)                              y(i) 
 
 
 

 Ruu(l)                             Ruy(l)                                                              Ryu(l)                             Ryy(l) 
 
 
                                                                                                                                                                                          
 
 
 
 
 

Fig. P-3   Generation of Ruy and Ryy from Ruu 
 

From (p58) and (p59), the cross-spectral density function of the output and the input of the linear system (p57) 
and the spectral density function of the output are related to the spectral density function of the input by  

2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

j
uy uu

j j j
yy uu uu

S G e S

S G e G e S G e S

ω

ω − ω ω

ω = ω

ω = ω = ω
    (p60) 

 
The ordinary coherence function between the input ( )u t  and the output ( )y t is defined as  

2

2 ( )
( )

( ) ( )
uy

uy
uu yy

S

S S

ω
γ ω =

ω ω
       (p61) 

From the inequility (p50) for cross spectra, it follows that   
20 ( ) 1uy≤ γ ω ≤        (p62) 

If ( )u t  and ( )y t are completely unrelated, 2 ( ) 0uyγ ω = , while if ( )y t and ( )u t are linearly related (e.g. the LTI 

system (p57)), then   2 ( ) 1uyγ ω = . 

 
An instantaneous value of a purely random process (white process) is not correlated with its value at other time 
instances.  Namely, the autocovariance function of a white process is 

2(0) and ( ) 0 for 0xx xx xxR R l l= σ = ≠     (p63) 

If a zero mean white process is not stationary, its auto-covariance function is given by 

[ ]( ) ( ) ( ) , 1 for and 0 forkj kjE x k x j Q k k j k j= δ δ = = = ≠     (p64) 

 
From Eqs. (p58) and (p59), the output of a linear system is correlated (or colored) even when the input is white.  
Consider a discrete transfer function 

1
1 0

1
1 0

( )
−

−
−

−

+ + +=
+ + +

"
"

n n
n n

n n
n

b z b z b
G z

z a z a
     (p65) 

If the input u is white with a variance of 1, from Eqs. (p60), the spectral density of the output, y, is 

( ) 2
1( ) ( ) ( ) | j

j
yy z eS G e G z G z ω

ω −
=ω = =      (p66) 

 

g(i) 

g(i) g(i) 
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We now consider a discrete time system described in the state space.  Let w be a zero mean white random 
vector with the covariance E[w(k)w(k)T] = W(k), and consider 

 
( 1) ( ) ( ) ( ) ( )+ = + wx k A k x k B k w k      (p67) 

 
The initial state is random, and its mean and covariance are given by 

0 0 0 0[ (0)] ( (0) )( (0) )T
x x xE x m and E x m x m X = − − =     (p68) 

Assume that x(0) and w(k) are not correlated. Under these assumptions, the mean and covariance of x(k) are 
obtained as follows.  By taking the expectation of Eq. (p67), we obtain the equation for the mean 

0( 1) ( ) ( ), (0)+ = =x x x xm k A k m k m m      (p69) 

where we have noted E[w(k)] = 0.  Subtraction of (p69) from (p67) yields 
( 1) ( 1) ( )[ ( ) ( )] ( ) ( )+ − + = − +x x wx k m k A k x k m k B k w k    (p70) 

Multiplying the left and right hand sides of (p70) by their transposed quantities from right and taking 
expectation, we obtain 

0( 1) ( ) ( ) ( ) ( ) ( ) ( ), (0)T T
w wX k A k X k A k B k W k B k X X+ = + =    (p71) 

where ( ) ( ( ) ( ))( ( ) ( ))T
x xX k E x k m k x k m k = − −   represents the covariance of  transient state ( )x k , and we 

have set E[(x(k)-mx)w
T(k)] = 0 because x(k) depends only on x(0), w(0), ... , w(k-2) and w(k-1), which are all 

uncorrelated with w(k).   
 
If w(k) is stationary, A and Bw do not depend on k, and A is asymptotically stable, then, mx(k) converges to zero 
and ( )X k  converges to the stationary solution, ssX . Eq. (p71) thus becomes a Lyapunov equation. Because of 

the whiteness of w(k), the autocorrelation (autocovariance) of x(k) at the steady state is 

( ) [ ( ) ( )] ( ) andT T l
ss ssR l E x k x k l X A= + =  

( ) [ ( ) ( )] [ ( ) ( )]T T l
ss ssR l E x k x k l E x k l x k A X− = − = + =    (p72) 

 
Example: 

2( 1) ( ) 1 ( ), [ ( )] 0, [ ( ) ( )]+ = + − = = δkjx k ax k a w k E w k E w k w j W  

x(0) and w(k) are uncorrelated.  Note that mx(k) = 0 at the steady state.  The steady state solution of Eq. (p71) 
satisfies 

2 2(1 )= + − ⇒ =ss ss ssX a X a W X W  

From Eq. (p72), 

( ) ( ) l
ss ss ssR l R l a X= − =  

Thus, x(k) has a stronger correlation for increasing a.  For stability, a must be less than 1. 
 
Note:  In discussing the random process, we did not specify the shape of the probability density function.  
Namely, ideas such as whiteness and correlation are independent from the density function.  In most cases, 
we assume that the density (distribution) function is Gaussian.  For example, we say that random processes are 
white and Gaussian.  Recall that if the input of a linear system is Gaussian, the output is also Gaussian. 

 
 
Random Process (Continuous Time) 

 
Various ideas and quantities introduced for discrete time random processes are similarly defined for continuous 
time random processes.  We will summarize them below. 
 
Let x(t) be a random process.  For a sample process, the time average of x(t) is 

1
( ) lim ( )

2→∞
−

= ∫
T

T
T

x t x t dt
T

      (p51C) 

x(t) is stationary in the strict sense if 
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1 1 1 1Pr{ ( ) , , ( ) , } Pr{ ( ) , , ( ) , }≤ ≤ = + ≤ + ≤… … … …i i i ix t x x t x x t l x x t l x   (p72) 

for all ti’s, xi’s and l .  It is stationary in the weak (wide) sense if its mean does not depend on t and its auto-
covariance function depends only on the time difference. 
 
For a stationary and ergodic process, its mean and auto-covariance function can be computed by (p51C) and 

1
( ) [ ( ) )( ( ) )] lim ( ( ) )( ( ) )

2

T

xx x x x x
T

T

R E x t m x t m x t m x t m dt
T→∞

−

τ = − + τ − = − + τ −∫   (p52C) 

For two random processes, x and y, the cross-covariance function satisfies 
( ) ( )xy yxR Rτ = −τ      (p50C) 

The (variational) (auto) spectral density function is  

1
( ) ( ) and ( ) ( )

2
j j

xx xx xx xxS R e d R S e d
∞ ∞

− ωτ ωτ

−∞ −∞

ω = τ τ τ = ω ω
π∫ ∫    (p53C) 

If u is a random process and y is the output of a linear system 

( ) ( ) ( ) ( ) ( ) ( )
∞

−∞

= = η − η η∫Y s G s U s or y t g u t d     (p57C) 

the cross-covariance function for u and y and the auto-covariance function for y are 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )uy uuR u t u t g d u t u t g d R g d
∞ ∞ ∞

−∞ −∞ −∞

τ = + τ − η η η = + τ + η η η = τ − η η η∫ ∫ ∫  (p58C) 

( ) ( ) ( )yy yuR R g d
∞

−∞

τ = τ − η η η∫        (p59C) 

The cross-spectral density function of the output and the input of the linear system (p57C) and the spectral 
density function of the output are related to the spectral density function of the input by  

2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

uy uu

yy uu uu

S G j S

S G j G j S G j S

ω = ω ω

ω = ω − ω ω = ω ω
     (p60C) 

 
 
The auto-covariance function of a purely random process (white process) is 

2( ) ( )xx xxR τ = σ δ τ        (P63C) 

where δ is a delta function.  If a zero mean white process is not stationary, its auto-covariance function is 
[ ( ) ( )] ( ) ( )+ τ = δ τE x t x t Q t       (p64C) 

If the input u(t) of the transfer function 

0
1

1 0

( ) ,
m

m
n n

n

b s b
G s m n

s a s a−
−

+ += <
+ + +

…
…

    (p65C) 

is white and has an unity variance, the (variational) spectral density function of the output is 

2( ) ( )
( ) ( )

( ) ( )yy
s j

B s B s
S G j

A s A s = ω

 −ω = = ω − 
    (p66C) 

Consider 
( )

( ) ( ) ( )w
dx t

A t x t B w t
dt

= +      (p67C) 

where 0 0 0 0 0 0 0[ ( )] 0, [ ( ) ( )] ( ) ( ), [ ( )] , [ ( ) )( ( ) ) ]T
x m xE w t E w t w t W t E x t m E x t m x t m X= + γ = δ γ = − − = and 

0 0[( ( ) ) ( ) ] 0T
xE x t m w t− = .  Then, the mean and covariance of x(t) are given by 

0 0
( )

( ) ( ), ( )x
x x

dm t
A t m t m t m

dt
= =      (p69C) 
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0 0
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ), ( )w w
dX t

A t X t X t A t B t W t B t X t X
dt

= + + =    (p70C) 

If W, A and Bw do not depend on t and A is asymptotically stable, mx(t) converges to zero and X(t) converges to 
the steady state solution, Xss, of Eq. (p70C).  Xss is the positive (semi-)definite solution of the Lyapunov 
equation. 

T T
w wAX XA B WB+ = −      (p73) 

The auto-covariance of x(t) is 

( ) [ ( ) ( )] and ( ) [ ( ) ( )]
TT A T A

ss ss ss ssR E x t x t X e R E x t x t e Xτ ττ = + τ = −τ = − τ =  (p72C)  

 
 

Derivation of Eqs. (p69C) and (p70C):  
 
We derive these two equations in the following three steps: 1). obtain a discrete time approximation of 
Eq.(p67C) (sampling time = ∆t);  2). apply Eqs. (p69) and (p71) to the approximate discrete time system; and 
3). take the limit of ∆t approaching to zero. 
 
Step 1. 

(( 1) )
( ) ( )w

x k t
Ax k t B w k

t

+ ∆ = ∆ +
∆

 

( 1) ( ) ( ) ( )wx k I A t x k B tw k⇒ + = + ∆ + ∆  

where w(k) is the average of w(t) over [ , ( 1) ],k t k t∆ + ∆  
( 1)

1
( ) ( )

k t

k t

w k w t dt
t

+ ∆

∆

=
∆ ∫  

The mean and covariance of w(k) are 
( 1)

1
[ ( )] [ ( ) 0

k t

k t

E w k E w t dt
t

+ ∆

∆

= =
∆ ∫  

( 1) ( 1) ( 1) ( 1)

1 1 2 2 1 2 1 22

1 1 1
[ ( ) ( )] [ ( ) ( ) ] [ ( ) ( )]

k t j t j t k t
T T T

k t j t j t k t

E w k w j E w t dt w t dt E w t w t dt dt
t t t

+ ∆ + ∆ + ∆ + ∆

∆ ∆ ∆ ∆

= =
∆ ∆ ∆∫ ∫ ∫ ∫  

                                 0 for j k= ≠  

                                 
1

W for j k
t

= =
∆

 

Step 2. 

0(( 1) ( ) ( ), (0)x x xm k t I A t m k t m x+ ∆ = + ∆ ∆ =  

0(( 1) ( ) ( )( ) , (0)T T
w w

W
X k t I A t X k t I A t B t B X X

t
+ ∆ = + ∆ ∆ + ∆ + ∆ =

∆
 

    
(( 1) ) ( )

( )x x
x

m k t m k t
Am k t

t

+ ∆ − ∆
⇒ = ∆

∆
 

(( 1) ) ( )
( ) ( ) ( )T T T

w w
X k t X k t

AX k t X k t A AX k t A t B WB
t

+ ∆ − ∆ = ∆ + ∆ + ∆ ∆ +
∆

 

 
Step 3.  Let ∆t → 0 in the above expressions to obtain (p69C) and (p70C). 
 
 

 
 

 
 
 
 


