Mathematical Preliminaries

0.1 Preliminary Notation

It is assumed that the reader is familiar with the notion of a set and its elementary operations, and with some basic logic operators, e.g.

 $x \in A$: x is an element of the set A

 $x \notin A$: x does not belong to A

 $B \subset A$: B is a subset of A $B \cap A$: intersection of B and A $B \cup A$: union of B and A

 $a \Rightarrow b : a$ is true implies that b is true (b not true implies a is not true)

 $a \Leftrightarrow b : a$ is true iff (if and only if) b is true

 \forall : symbol "for all"

Throughout the course, R will denote the set of all real numbers; C the set of all complex numbers and $R_+ = \{x \in R \mid x \ge 0\}$ (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all integers and Z_+ the set of all nonnegative integers.

0.1.1 Functions

Given two sets *X* and *Y*, we denote a function *f* by

$$f: X \to Y$$

to mean that, for every $x \in X$, f assigns one and only one element $f(x) \in Y$. X is called the *domain* of f and we say that f maps X to Y. We define

$$f(X) \triangleq \{f(x) \mid x \in X\}$$

as the *range* of *f*.

At times it is convenient to define a function explicitly, for example

$$t \mapsto cos(t)$$

means "the function that maps t to cos(t)".

- $f: X \to Y \text{ is onto if } F(X) = Y.$
- $f: X \to Y$ is one-to-one if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ (or equivalently, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$).

If f is one-to-one, then it has an inverse that maps $f(X) \to X$, which is normally represented as f^{-1} .

0.2 Vector Spaces

0.2.1 Algebraic Aspects

Definition A *field* F is a set of elements called *scalars* together with two binary operations, *addition* (+) and *multiplication* (·) such that for all α , β , $\gamma \in F$ the following properties hold:

- (a) Closure. $\alpha \cdot \beta \in F$, $\alpha + \beta \in F$
- (b) Commutativity. $\alpha \cdot \beta = \beta \cdot \alpha$, $\alpha + \beta = \beta + \alpha$
- (c) Associativity. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$, $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- (d) Distribution. $\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$
- (e) Identity. There exists an additive identity $0 \in F$ and a multiplicative identity $1 \in F$ such that $\alpha + 0 = \alpha$, $\alpha \cdot 1 = \alpha$
- (f) Inverses. For all $\alpha \in F$ there exists an additive inverse $-\alpha \in F$ such that $\alpha + (-\alpha) = 0$. For all $\alpha \in F$, $\alpha \neq 0$ and a *multiplicative inverse* $\alpha^I \in F$ such that $\alpha \cdot \alpha^I = 1$

Examples The following are examples of fields:

- R = the set of real numbers
- C = the set of complex numbers
- Q = the set of rational numbers
- R(s) = the set of rational functions in s with real coefficients

These are *not* fields:

- R[s] = the set of polynomials in s with real coefficients. Why?
- R^{2x^2} the set of real 2 × 2 matrices. Why?

Definition A *vector space* (V, F) is a set of *vectors V* together with a field F and two operations *vector-vector addition* (+) and *vector-scalar multiplication* (\circ) such that for all α , $\beta \in F$ and all v_1 , v_2 , $v_3 \in V$, the following properties hold:

- (a) Closure. $v_1 + v_2 \in V$, $\alpha \circ v_1 \in V$
- (b) Commutativity. $v_1 + v_2 = v_2 + v_1$
- (c) Associativity. $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$
- (d) Distribution. $\alpha \circ (\beta \circ v_1) = (\alpha \cdot \beta) \circ v_1$, $\alpha \circ (v_1 + v_2) = \alpha \circ v_1 + \alpha \circ v_2$
- (e) Additive Identity. There exists a vector $0 \in V$ such that v + 0 = v for all $v \in V$
- (f) Additive Inverse. For all $v \in V$, there exists a $(-v) \in V$ such that v + (-v) = 0

We shall henceforth suppress the cumbersome notation \cdot , \circ as the appropriate action will be clear from context. Also, we shall often refer to a vector space V without explicit reference to the base field F (which will exclusively be R or C). We should however caution the reader that different choices of the base field F result in fundamentally different vector spaces (see example below).

Examples The following are examples of vector spaces:

- (R, R), (C, C) with addition and multiplication as defined in the field. Any field is a vector space over itself.
- $-(R^n, R), (C^n, C)$ with component-wise addition and scalar multiplication.
- (R[s], R) with formal addition and scalar multiplication of polynomials.
- (C, R) is a vector space. Note that this vector space is fundamentally different from (C, C). Why?
- The space of infinite sequences of real numbers $x = (x_1, x_2, \dots)$ with $x_i \in R$ on the field R.
- $C[a, b] = \{f : [a, b] \to R, f \text{ is continuous } \}$ (i.e., the set of all continuous functions which map the interval $[a, b] \subset R$ to R) is a vector space over R with pointwise addition and multiplication.
- The Lebesgue spaces L_p [a,b], $1 \le p < \infty$ defined as

$$L_p[a,b] = \left\{ f : [a,b] \to R, \quad \int_a^b |f(t)|^p \, dt < \infty \right\}$$

are vector spaces over R with pointwise addition and multiplication. (We will later talk more about L_p vector spaces).

(R, C) is not a vector space with the usual complex arithmetic. Why?

Definitions A set (possibly infinite) $S = \{v_i : i \in I\}$ of vectors from V is called *linearly dependent* if there exist scalars α_i , not all zero and only *finitely* many α_i being nonzero such that

$$\sum_{i \in I} \alpha_i v_i = 0$$

otherwise, the set of vectors S is said to be *linearly independent*.

The dimension of a vector space V is the maximal number of linearly independent vectors in V.

A set B of vectors in V is called a *basis* for V if every vector in V can be *uniquely* expressed as a finite linear combination of vectors in B.

Basis are not unique.

Examples

-- In the vector space (R^2, R) ,

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \ v_3 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

is a set of linearly dependent vectors because $-v_1 + 2v_2 + v_3 = 0$.

--

$$v_1 = \begin{bmatrix} \frac{1}{s+1} \\ \frac{1}{s+2} \end{bmatrix}, \ v_2 = \begin{bmatrix} \frac{s+2}{s^2+4s+3} \\ \frac{1}{s+3} \end{bmatrix}$$

are linearly dependent in $(R^2(s), R(s))$, but linearly independent in $(R^2(s), R)$. Why?

- -- The set of vectors $S = (1, t, t^2, ...)$ are linearly independent in C[0,1].
- -- The dimension of (R^n, R) is n and the set

$$B = \left\{ \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \right\} = \left\{ e_1, e_2, \dots e_n \right\}$$

qualifies as a basis for this vector space.

-- The dimension of (C^n, R) is 2n. Exhibit a basis for this space.

Theorem Let V be an n-dimensional vector space and let B be a collection of vectors drawn from V. then, B is a basis if and only if B contains n linearly independent vectors.

Definition Let V be a vector space. A subset $W \subseteq V$ is called a *subspace* if W is itself a vector space.

Let $S = \{v_i : i \in I\}$ be a set of vectors drawn from V. The *span* of S is the set of all finite linear combinations of vectors in S. We will denote this set SP(S).

Notice that S is a basis of V if

- S is a linearly independent set, and
- SP(S) = V.

Theorem A set $W \subseteq V$ is a subspace if and only if it is closed under vector addition and scalar multiplication, i.e.

$$\alpha w_1 \in W, \quad w_1 + w_2 \in W$$
 for all $\alpha \in F$, $w_1, w_2 \in W$.

It is clear that the zero vector must lie in every (nonempty) subspace.

Using the above result, it is easy to verify that given a set of vectors S, $SP\{S\}$ is a subspace.

0.2.2 Normed Vector Spaces

In the sequel, we consider vector spaces over the field C of complex numbers or the field R of real numbers.

Definition Let *V* be a vector space. A *norm* on *V* is a function $\|\cdot\|: V \to R$ such that

(a)
$$||v|| \ge 0$$
 and $||v|| = 0 \iff v = 0$.

(b)
$$\|\alpha v\| = |\alpha| \|v\|$$
 for all $\alpha \in F$, $v \in V$.

(c)
$$||v_1 + v_2|| \le ||v_1|| + ||v_2||$$
. (Triangle inequality)

A vector space on which a norm has been defined is called a *normed space*.

Examples The following are examples of norms.

(i) On R^n or C^n :

-- $\|v\|_1 = \sum_{i=1}^n |v_i|$ -- $\|v\|_2 = \left(\sum_{i=1}^n |v_i|^2\right)^{1/2}$ (Euclidean norm)

-- $\|v\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$, $1 \le p < \infty$ (p-norm)

-- $\|v\|_{\infty} = \max_i |v_i|$ (sup norm)

where

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \cdot \\ \cdot \\ v_n \end{bmatrix}$$

(ii) On the space of infinite sequences of real numbers $x = (x_1, x_2, \cdots)$ with $x_i \in R$ on the field R. Frequently used norms on the subspaces l_1 , l_p and l_∞ are respectively:

--
$$\|x\|_{1} = \sum_{i=1}^{\infty} |x_{i}|$$

-- $\|x\|_{p} = \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{1/p}$, $1 \le p < \infty$

-- $\|x\|_{\infty} = \sup_{i > i} |x_{i}|$

(iii) On the function spaces $L_1[a,b]$, $L_p[a,b]$, $L_{\infty}[a,b]$:

--
$$||f||_1 = \int_a^b |f(t)| dt$$

-- $||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{1/p}$ $1 \le p < \infty$
-- $||f||_\infty = \sup_{t \in [a,b]} |f(t)|$,

By sup we mean the essential supremum, i.e.,

$$\sup_{t \in [a,b]} |f(t)| = \inf \{a: |f(t)| < a \text{ almost everywhere} \}$$

(except on a set of measure zero).

- (iv) On the space of matrices $R^{n \times n}$ or $C^{n \times n}$:
 - -- The *induced 2-norm*

$$\|M\|_{2} = \sup_{x \neq 0} \frac{\|Mx\|_{2}}{\|x\|_{2}} = \sqrt{\lambda_{\max}(M^{T}M)} = \sigma_{\max}(M)$$

-- Other *induced norms*

$$\|M\|_{\infty} = \sup_{x \neq 0} \frac{\|Mx\|_{\infty}}{\|x\|_{\infty}} = \max_{i} \sum_{j} |m_{ij}| \quad \text{(row sum)}$$

$$\|M\|_{1} = \sup_{x \neq 0} \frac{\|Mx\|_{1}}{\|x\|_{1}} = \max_{j} \sum_{i} |m_{ij}| \quad \text{(column sum)}$$

-- The *Frobenius norm*

$$\|M\|_{F} = \left[\sum_{1 \leq i,j \leq n} |m_{i,j}|^{2}\right]^{1/2} = \left[trace(M^{T}M)\right]^{1/2}$$

where $m_{i,j}$ is the i, j-th element of the matrix M.

0.2.3 Equivalent Norms

Definition Let V be a vector space on C. Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two norms on V. The norms $\|\cdot\|_a$ and $\|\cdot\|_b$ are said to be **equivalent** if there exist two positive numbers m_l and m_u such that $m_l\|v\|_a \le \|v\|_b \le m_u\|v\|_a$, for all $v \in V$.

Theorem All norms on finite dimensional spaces (e.g., R^n , C^n) are equivalent.

Example On \mathbb{R}^n :

$$\begin{aligned} & \|v\|_{\infty} \le \|v\|_{2} \le \sqrt{n} \|v\|_{\infty} \\ & \|v\|_{\infty} \le \|v\|_{1} \le \sqrt{n} \|v\|_{\infty} \\ & \frac{1}{n} \|v\|_{1} \le \|v\|_{2} \le \|v\|_{1} \end{aligned}$$

0.2.4 Relations Between Normed Spaces

Norms in infinite dimensional spaces are generally not equivalent. However, several important relations can be established.

Theorem On the normed spaces l_1 , l_p and l_{∞} , which are subspaces of the set of infinite sequences of real numbers $x = (x_1, x_2, \dots)$ with $x_i \in R$ on the field R,

$$l_1 \subset l_p \subset l_\infty \; , \qquad \quad 1$$

Proof:

- Consider any integer $p \in [1, \infty]$. If $x \in l_p$, then $\sum_{i=1}^{\infty} |x_i|^p < \infty$. Hence, $x \in l_{\infty}$ and $l_p \subset l_{\infty}$ for $p \in [1, \infty]$.
- For any integer $N \ge 0$ and any integer $p \le 1$,

$$\sum_{i=1}^{N} \left| x_i \right|^p \le \left(\sum_{i=1}^{N} \left| x_i \right| \right)^p \le \left(\left\| x \right\|_1 \right)^p.$$

Hence, as $N \to \infty$, if $x \in l_I$, $\|x\|_p \le \|x\|_1 < \infty$. Thus, $l_I \subset l_p$.

Fact: If $f: R_+ \to R$ and $f \in L_I \cap L_\infty$ (i.e., f belongs to both L_I and L_∞), then $f \in L_p$ for $p \in [1, \infty]$.

Proof:

- Define the set $I = \{t \mid |f(t)| \ge 1\}$. Since $f \in L_I$, the Lebesgue measure of the set I is finite. This fact, together with the fact that $f \in L_{\infty}$ implies that $\int_{I} |f(t)|^{p} dt < \infty$.
- Defining now the complement of I, $I^c \triangle \{t \mid |f(t)| < 1\}$,

$$\int_{I^c} |f(t)|^p dt \le \int_{I^c} |f(t)| dt < \infty, \text{ for all } p \in [1, \infty].$$

The conclusion follows from these two observations.

0.2.5 Inner Product Spaces

Definition Let *V* be a vector space on *C*. An *inner product* on *V* is a function $\langle \cdot, \cdot \rangle : V \times V \to C$ such that

- (a) $\langle v, w \rangle = \overline{\langle w, v \rangle}$
- (b) $\langle v, \alpha w \rangle = \alpha \langle v, w \rangle$.
- (c) $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$.
- (d) $\langle v, v \rangle \ge 0$, $\langle v, v \rangle = 0 \iff v = 0$.

where $\overline{\alpha}$ denotes the complex conjugate of $\alpha \in C$.

A vector space on which an inner product has been defined is called an *inner product space*.

Examples The following are examples of inner products.

- -- In R^n , $\langle v, w \rangle = v^T w$
- -- In C^n , $\langle v, w \rangle = v^* w$ where v^* denotes the complex conjugate transpose of $v \in C^n$, i.e., $v^* = \overline{v}^T$,
- -- In $L_2[a, b]$,

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t) dt$$

Theorem Let V be an inner product space. Then

$$||v|| = \langle v, v \rangle^{1/2}$$

qualifies as a norm on V.

The norm defined above is said to be *induced* by the inner product. In an inner product space, this is the natural norm to use.

Cauchy Schwartz Inequality

Let V be an inner product space. Then

$$|\langle v, w \rangle| \le ||v||^{1/2} ||w||^{1/2}$$

An immediate consequence of the Cauchy-Schwartz inequality applied to the inner product space $L_2[a, b]$ is

$$\int_{a}^{b} f(t)g(t) dt \le \left[\int_{a}^{b} f^{2}(t) dt \right]^{1/2} \left[\int_{a}^{b} g^{2}(t) dt \right]^{1/2}$$

Definition In an inner product space V, two vectors v, w are said to be *orthogonal* if $\langle v, w \rangle = 0$. This is often written as $v \perp w$. Further, v is orthogonal to the set of vectors S if $v \perp w$ for all $w \in S$. This is often written as $v \perp S$. A set of vectors S is called *orthogonal* if

$$v \perp w$$
 for all $v \neq w$, v , $w \in S$

and is called *orthonormal* if in addition ||v|| = 1 for all $v \in S$.

We now provide a simple geometric interpretation of the inner product.

Let *V* be an inner-product space and fix $v \in V$. Let $b \in V$ be a unit vector and consider the subspace $S = Span\{b\}$. Define

$$\hat{s} = \langle v, h \rangle s$$

We wish to find an optimal approximation for v from the subspace S. More precisely we wish to solve the following problem:

$$\min_{s \in S} \| v - s \|$$

We have the following result:

Lemma The vector \hat{s} above is the optimal approximation in S of v.

Thus $\langle v, b \rangle$ may be regarded as the length of the *projection* of v on S.

0.3 Hermitian and Positive Definite Matrices

Definition A matrix $U \in C^{n \times n}$ is called *unitary* if $U^*U = I = UU^*$.

A real unitary matrix is called an *orthogonal* matrix.

Lemma Let $U \in C^{n \times n}$ be unitary and consider the Hilbert space C^n equipped with the usual inner product. Then,

(a) The columns of U form an orthonormal basis of Cⁿ.

(b)
$$||Ux|| = ||x||$$

(c)
$$< Ux$$
, $Uy > = < x$, $y >$

(d)
$$U^{-1} = U^*$$
.

Rotation matrices are unitary.

Definition A matrix $H \in C^{n \times n}$ is called *Hermitian* if $H = H^*$. Symmetric matrices are in particular Hermitian.

We will now prove several results regarding Hermitian matrices. These results also hold almost *verbatim* for symmetric matrices.

Theorem The eigenvalues of a Hermitian matrix H are all real.

 Δ

Δ

Theorem A Hermitian matrix H has a full set of eigenvectors. Moreover, these eigenvectors form an orthogonal set. As a consequence, Hermitian matrices can be diagonalized by unitary transformations, i.e., there exists a unitary matrix U such that

$$H = UDU^*$$

where D is a diagonal matrix whose entries are the (real) eigenvalues of H.

Theorem Let $H \in \mathbb{C}^{n \times n}$ be Hermitian. Then,

(a)
$$||H||_2 = \sup_{v \neq 0} \frac{||Hv||_2}{||v||_2} = \lambda_{\max}(H)$$

(b)
$$\inf_{v \neq 0} \frac{v^* H v}{v^* v} = \lambda_{\min}(H) \text{ or } \lambda_{\min}(H) v^* v \leq v^* H v \leq \lambda_{\max}(H) v^* v, \quad \forall v$$

Definition A matrix $P \in C^{n \times n}$ is called *positive-definite* and written as P > 0 if P is Hermitian and further,

$$v^*Pv > 0$$
. for all $0 \neq v \in C^n$

A matrix $P \in \mathbb{C}^{n \times n}$ is called *positive-semi-definite* and written as P if P is Hermitian and further,

$$v^* P v \ge 0$$
, for all $v \in C^n$

Analogous are the notions of *negative* and *negative-semi-*definite matrices.

Theorem Let $P \in \mathbb{C}^{n \times n}$ be Hermitian. The following are equivalent.

- (a) P > 0
- (b) All the eigenvalues of P are positive.
- (c) All the leading principal minors of P are positive.

 Δ

Example For the matrix

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$$

the leading principal minors are

$$p_{11}$$
, Det $\left\{\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}\right\}$ and Det $\{P\}$.

Theorem Let $P \in \mathbb{C}^{n \times n}$ be Hermitian. The following are equivalent.

- (a) $P \ge 0$
- (b) All the eigenvalues of P are ≥ 0 .
- (d) $P = N^*N$, where N is any matrix.

A principal minor test for positive-semi-definiteness is significantly more complicated. Δ

Lemma Let $0 < P \in C^{n \times n}$ and let $X \in C^{n \times m}$.

- (a) $||x||^2 = x^* Px$ qualifies as a norm on C^n
- (b) $X^*PX \ge 0$
- (c) $X^*PX > 0$ if and only if rank (X) = m Δ

Definition Let $0 \le P \in C^{n \times n}$. We can then write $P = UDU^*$ where U is unitary. Define the *square-root* of P (written as $P^{1/2}$) by

$$P^{1/2} = UD^{1/2}U^*$$

It is evident that $P^{1/2}$ as defined above is Hermitian, and moreover $P^{1/2} \ge 0$. Furthermore, if P > 0, then $P^{1/2} > 0$.