Programmable Valves Enable Both Precision Motion Control and Energy Saving

Dr. Bin Yao

Purdue University West Lafayette, IN 47907, USA

Outline

- Development of Programmable Valves
- Control of Programmable Valves
- On-board Modeling of Valve Flow Mapping
- Programmable Valves Bypass Sandwiched Deadband Problem
- Summary

Outline

- Development of Programmable Valves
- Control of Programmable Valves
- On-board Modeling of Valve Flow Mapping
- Programmable Valves Bypass Sandwiched Deadband Problem
- Summary

E/H precision motion control system

Objective:

- Performance
- Energy efficiency
- Cost

Energy usage:
$$E = \int_{t_0}^{t_1} P_s(\tau) Q_s(\tau) d\tau$$

To reduce energy usage:

- Reduce the supply pressure $P_s(t)$
- Reduce the pump flow rate $Q_s(t)$

To reduce supply pressure ...

Must break the mechanical linkage between the meter-in and meter –out orifices

Meter-in and meter-out orifice areas are coupled in 4-way directional control valves

- Cannot control all cylinder states (pressures of both chambers)
- Deadband for PDC valves
- Leakage for servo valves

Arne Jansson and Jan-Ove Palmberg, "Separate controls of meter-in and meter-out orifices in mobile hydraulic systems", SAE Transactions, Vol.99, Sect 2, pp377-383, 1990

Dual-Valve Meter-in and Meter-out

Two valves:

Patented by:

J. Ardema, 1996

Uses two directional control valves to meter flows

J.A. Aardema, Caterpillar Inc., "Hydraulic circuit having dual electrohydraulic control valves", United States Patent 5,568,759, 1996

Four-Valve Meter-in and Meter-out

Four valves

J. Ardema and D. Koehler

Uses four poppet valves to independently control meterin and meter-out flows

Aardema and Koehler, Caterpillar Inc., "System and method for controlling an independent metering valve", United States Patent 5,947,140, 1999

Five-Valve Meter-in and Meter-out

Ruth Book and Carrol E. Goering , "Programmable electrohydraulic valve", SAE Vol. 1, No. 2, pp28-34, 1999

Use Regeneration Flow

Regeneration Valve

Patented by: K. Garnjost, 1989.

Uses one additional valve to provide regenerative flow for energy saving but cannot control both chambers independently

Garnjost, K. D., "Energy-conserving regenerative-flow valves for hydraulic servomoters", United States Patent 4,840,111, 1989

Energy Saving Programmable Valves

Purdue Energy Saving Programmable Valves

> Developed by: Bin Yao, 2000

- Take advantages of four valve configuration to control meterin/meter-out flows independently for precise cylinder positioning
- Use an additional valve to precisely control cross-port flow (or regenerative flow) for energy saving
- Overcome the sandwiched deadband control problem of conventional PDC valves through the use of cheap but fast acting cartridge valves

Programmable Valves Advantages

- Fully decoupled meter-in and meter-out flow
- Fully controlled true cross port regeneration flow
- More flexibility and controllability
- Completely solve/bypass the sandwiched deadband problem of EH systems controlled by closed-center valves
- Virtually eliminate leakage
- Faster response than PDC values
- Low cost
- Low maintenance cost

Outline

Development of Programmable Valves

- Control of Programmable Valves
 - Challenges
 - Two-level control system
 - Comparative experimental results
- On-board Modeling of Valve Flow Mapping
- Programmable Valves Bypass Sandwiched Deadband Problem
- Summary

Challenges

- Multi-input dual-objective system
- Lack for accurate mathematical model of cartridge valves
- Coordination of the five cartridge valves
- Highly nonlinear hydraulic dynamics
- Large parameter variations
- Uncertain nonlinearities such as external disturbances, flow leakage and seal frictions

Nonlinear Valve Flow Mapping

$$Q_{vi} = f_{vi}(\Delta P_{vi}, u_{vi})$$

$$u_{vi} = f_{vi}^{-1}(\Delta P_{vi}, Q_{vi})$$

Control of Programmable Valves

Schematic of the two-level Control System

Two-level Control System

- Task level (Working Mode Selection)
 - Proper hydraulic circuitry
 - Optimal valve configuration for maximal energy saving
- Valve level (ARC Control)
 - Nonlinear model based design to take the system nonlinearities into account explicitly
 - Adaptive model compensation to reduce the effects of parametric uncertainties and disturbances
 - Robust feedback to guarantee stability

Working Mode Selection ---Tracking Task

Table 3.1 Programmable valves tracking mode selection

\dot{x}_d	P_{lda}	Valve Configuration	Off-side	Mode
> 0	> 0	$Q_1 = Q_{v2}$ $Q_2 = Q_{v5}$	P_2	Τ1
> 0	< 0	$Q_1 = Q_{v2} - Q_{v3}$ $Q_2 = -Q_{v3}$	P_1	T2
< 0	> 0 $P_1 > P_2$	$Q_1 = -Q_{v3}$ $Q_2 = Q_{v5} - Q_{v3}$	P_2	T3
< 0	> 0 $P_1 \le P2$	$Q_1 = -Q_{v1}$ $Q_2 = -Q_{v4}$	P_2	T4
< 0	< 0	$Q_1 = -Q_{v1}$ $Q_2 = -Q_{v4}$	P_1	T5

Working Mode Selection ---Regulation Task

Table 3.2 Programmable valves regulation mode selection

\dot{x}_d	$x - x_d$	Valve Configuration	Off-side	Mode
= 0	$> \varepsilon$	$Q_1 = -Q_{v3}$ $Q_2 = Q_{v5} - Q_{v3}$	P_2	R1
= 0	$< -\varepsilon$	$Q_1 = Q_{v2}$ $Q_2 = Q_{v5}$	P_2	R2
= 0	otherwise	$Q_1 = 0$ $Q_2 = 0$		R3

Г

Desired Cylinder
/elocity > 0
Desired Cylinder
Force >0

Jses Valve #2 and /alve #5 /laintain P2 as .ow as Possible

Mode T3

- Desired Cylinder
 Velocity < 0
- Desired Cylinder
 Force >0
- P1 >P2
- Uses Valve #3 and Valve #5
- Maintain P2 as Low as Possible

Valve-Level Control --- Adaptive Robust Controller

- Nonlinear model based controller design
- Compensate known nonlinearities and disturbances
- Guarantee stability and prescribed transient performance in the presence of unmodeled uncertainties and external disturbances
- Achieve asymptotic stability in the absence of disturbance

Adaptive Robust Control Structure

Valve-Level Control

- Off-side pressure regulator
 - Maintain the off-side chamber at a constant low pressure
- Working-side motion controller
 - Control the working-side pressure so that the desired trajectory is followed as close as possible
- Flow distribution
 - convert flow commands to valve voltage input signals

Flow distribution

< 0	> 0	$Q_1 = -Q_{v3}$	P_2	Τ3
	$P_1 > P_2$	$Q_2 = Q_{v5} - Q_{v3}$		

$$Q_{v1} = 0$$

$$Q_{v2} = 0$$

$$Q_{v4} = 0$$

$$Q_{v3} = -Q_{1md}$$

$$Q_{v5} = Q_{2md} + Q_{v3} = Q_{2md} - Q_{1md}$$

Flow distribution

 Inverse flow mapping to convert flow commands to valve voltages input signals

Experimental Setup

Smooth Working Mode Switching

Comparative Experiment

•PDC valve

Vickers KBFDG4V-5-2C50N-Z-PE7-H7-10

- •Servo valve Parker BD760AAAN10
- •Programmable valves Vickers EPV10-A-8H-12D-U-10

Comparison of Performance

Comparison of Cylinder Force

Comparison of Cylinder Pressures

31

Comparison of Energy Usage, Constant Supply Pressure Ps=1000psi

Comparison of Energy Usage Ps=Working Pressure + 500KPa

Outline

- Development of Programmable Valves
- Control of Programmable Valves
- On-board Modeling of Valve Flow Mapping
 - Problem formulation
 - Localized basis functions and smooth blending
 - On-board modeling
 - o Comparative experimental results
- Programmable Valves Bypass Sandwiched Deadband Problem
- Summary

Cartridge Valve Flow Mapping

- Individually calibrated flow mapping (2002-2003)
 - Accurate
 - Off-board test, time consuming, additional calibration equipments, not suitable for industrial application
- Manufacture supplied flow mapping (2004)
 - Ready to use
 - Inaccurate, large modeling error exists, system performance compromised
- Automated on-board modeling of cartridge valve flow mapping (2004-2005)
 - Accuracy & easy implementation

Modeling of Cartridge Valve Flow Mapping

$$Q(u,\Delta P) = C_d A_v \left(x_v(u,\Delta P) \right) \sqrt{\frac{2}{\rho}} \sqrt{\Delta P}$$

$$Q = k_q u \sqrt{\Delta P}$$

Unknown nonlinear function $Q(u, \Delta P)$

On-board Modeling of Cartridge Valve Flow Mapping --- Observer Approach

On-board Modeling of Cartridge Valve Flow Mapping

$$Q(u,\Delta P) = \overline{Q}(u,\Delta P) + \Delta, \quad \overline{Q} = \varphi_N^T(u,\Delta P) \cdot w_N$$

- Huge number of basis functions and weighting factors
- Limited experimental data
- Dynamic flow rate unavailable

Cylinder Dynamics Based Estimation

Cylinder dynamics: $\frac{V_1(x)}{\beta_e}\dot{P}_1 = -A_1\dot{x} + Q_1(u_1,\Delta P_1)$ Define $\theta_{\beta_e} = \frac{1}{\beta_e}$ $A_1 \dot{x} = -V_1(x) \dot{P}_1 \cdot \theta_{\beta_e} + \varphi_N(u_1, \Delta P_1)^T \cdot \theta + \Delta$ Defining $\varphi_{new}^T = \begin{bmatrix} -V_1(x)\dot{P}_1 & \varphi_N(u_1,\Delta P_1)^T \end{bmatrix} \theta_{new}^T = \begin{bmatrix} \theta_{\beta_e} & \tilde{\theta^T} \end{bmatrix}$ $A_1 \dot{x} = \varphi_{new}^T \cdot \theta_{new} + \Delta$

Why localized estimation?

$$\tilde{\theta} = \Phi^{+}[\Delta] = (\Phi^{T} \Phi)^{-1} \Phi^{T}[\Delta]$$

Localized Basis

$$Q(u,\Delta P)|_{(u,\Delta P)\in I_{ij}} = Q(\bar{u}_i,\Delta\bar{P}_j) + \frac{\partial Q}{\partial u}|_{(\bar{u}_i,\Delta\bar{P}_j)}\tilde{u} + \frac{\partial Q}{\partial\Delta P}|_{(\bar{u}_i,\Delta\bar{P}_j)}\tilde{P} + \frac{1}{2}\frac{\partial^2 Q}{\partial u^2}|_{(\bar{u}_i,\Delta\bar{P}_j)}\tilde{u}^2 + \frac{1}{2}\frac{\partial^2 Q}{\partial\Delta P^2}|_{(\bar{u}_i,\Delta\bar{P}_j)}\tilde{P}^2 + \frac{1}{2}\frac{\partial^2 Q}{\partial u\partial\Delta P}|_{(\bar{u}_i,\Delta\bar{P}_j)}\tilde{u}\tilde{P} + \Delta$$

$$\varphi_{ij}^{T} = \begin{cases} [1, \ \tilde{u}, \ \tilde{P}, \ \tilde{u}^{2}, \ \tilde{P}^{2}, \ \tilde{u}\tilde{P}] & (u, \Delta P) \in I_{ij}, \\ [0, \ 0, \ 0, \ 0, \ 0, \ 0] & \text{otherwise.} \end{cases}$$

$$\bar{Q}(u,\Delta P)|_{(u,\Delta P)\in I_{ij}} = \varphi_{ij}^T \cdot \theta_{ij}$$
$$\bar{Q}(u,\Delta P) = \sum_{j=1}^{N_y} \sum_{i=1}^{N_x} \varphi_{ij}^T \cdot \theta_{ij}$$

41

- PE condition is easily satisfied in small local region rather than globally
- Estimation error can be controlled by checking the condition number instead of invertibility
- Discontinuity may happen at the block borders

Smooth Blending

 $P^{+}f(t) = \beta(t)[\beta(t)f(t) + \beta(-t)f(-t)]$ $P^{-}f(t) = \beta(-t)[\beta(-t)f(t) - \beta(t)f(-t)]$ $\beta(t) = \begin{cases} 0 & \text{if } t < -1 \\ 1 & \text{if } t > 1 \end{cases} \text{ and } \beta^{2}(t) + \beta^{2}(-t) = 1 \quad \forall t \in [-1, 1]$ 1^{-}

Theorem 1: (Coifman and Meyer) The operators P^+ and P^- are orthogonal projectors respectively on W^+ and W^- . The spaces W^+ and W^- are orthogonal and $P^+ + P^- = Identity$. Automated On-board Modelling of Valve Flow Mapping

$$\theta_{new}^T = \begin{bmatrix} \theta_{\beta_e} & \theta^T \end{bmatrix}$$

$$\varphi_{new}^T = \begin{bmatrix} -V_1(x)\dot{P}_1 & \varphi_N(u_1, \Delta P_1)^T \end{bmatrix}$$

$$H_f(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \qquad A_1 \dot{x}_f = \varphi_{newf}^T \cdot \theta_{new} + \Delta_f$$

On-line Estimation

On-line, Swiped sinusoidal trajectory, 0.1Hz~0.5Hz over 80sec.

Off-line Estimation

Comparison of Different Flow Mappings

Outline

- Development of Programmable Valves
- Control of Programmable Valves
- On-board Modeling of Valve Flow Mapping
- Programmable Valves Bypass Sandwiched Deadband Problem

Summary

EH system controlled by a closedcenter valve

SD is hard to deal with ---Feedforward Compensation

- Use feed-forward controller to increase the actuator dynamics so that it is sufficiently high to be neglected
- Used the inverse deadband function to compensate the nonlinear deadband
- Depends on the accuracy of the valve dynamics, can only achieve limited improvements in practice due to the unavoidable uncertainties in the valve model

SD is hard to deal with ---Feedback Compensation

- Use local high gain feedback control to attenuate the deadband
- Require actuator output/state feedback. Significantly increases system cost.
- Sometimes actuator output/state signals are too noisy to help increasing the bandwidth significantly.

SD simple solution ---Direct Compensation

- Simply neglect valve (spool) dynamics
- Economical, easy to implement
- Limit cycle may happen if closed loop bandwidth is not low enough
- Closed loop system is usually conservative, i.e., bandwidth is limited quite low in order to safely neglect valve dynamics

Deadband of poppet-type cartridge valves

 The input signal has to be large enough to overcome the spring force and static friction.

Deadband Compensation of Poppet Valve

- Input deadband is easier to compensate
- Cartridge valve dynamics is much more faster than PDC valves.

Outline

- Development of Programmable Valves
- Control of Programmable Valves
- On-board Modeling of Valve Flow Mapping
- Programmable Valves Bypass Sandwiched Deadband Problem

Summary

Conclusions

- Eliminate the mechanical linkage between the meter-in and meter-out orifices and enable accurately using the cross port regeneration flow for a controlled motion.
- Energy saving can be achieved without sacrificing precision motion performance.
- The two-level control system successfully control the system to achieve the dual objectives.
- Sandwiched deadband in EH systems can be bypassed by the programmable valves.
- Promising alternatives of conventional four-way valves in precision motion control.

Acknowledgement

Formal Students:

Dr. Song Liu Chris Deboer

Past Caterpillar Collaborators:

John Litherland Doug Koehler J. Ardema

Acknowledgements

Sponsors:

National Science Foundation

CAREER Grant CMS-9734345 Regular Grant CMS-0220179

Purdue Electro-Hydraulic Research Center

Valve Donations by:

Department of Mechanical Engineering, Purdue University 9

References

Bin Yao and C. Deboer, "<u>Energy-saving adaptive robust motion control of</u> <u>single-rod hydraulic cylinders with programmable valves</u>", the *American Control Conference*, pp4819-4824, Alaska, May, 2002

S. Liu and Bin Yao, "Energy-saving control of single-rod hydraulic cylinders with programmable valves and improved working mode selection", the SAE Transactions – Journal of Commercial Vehicle, SAE 2002-01-1343, pp51-61, 2002

S. Liu and Bin Yao, "Programmable Valves: a Solution to Bypass Deadband Problem of Electro-Hydraulic System", the American Control Conference, pp4438-4443, Boston, 2004.

Liu and Bin Yao, "<u>Characterization and Attenuation of of Sandwiched</u> <u>Deadband Problem of Electro-Hydraulic Systems Controlled by Closed-Center</u> <u>Valves using Describing Function Analysis</u>", the *ASME International Mechanical Engineers Congress and Exposition (IMECE)*, IMECE2004-60946, pp1-8, 2004

S. Liu and Bin Yao, <u>"Adaptive Robust Control of Programmable Valves with</u> <u>Manufacture Supplied Flow Mapping Only</u>", the *IEEE Conference on Decision and Control,* pp1117-1122, 2004.

References

S. Liu and Bin Yao, "<u>Automated Modelling of Cartridge Valve Flow</u> <u>Mapping</u>", the *IEEE/ASME Conference on Advanced Intelligent Mechatronics (AIM'05)*, pp789-794, Monterey, California, 2005.

(Winner of the Best Student Paper Competition)