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Abstract

In this paper, the discontinuous projection based adap-
tive robust control (ARC) is extended to a class of un-
certain linear systems with large disturbances. An ob-
server is first designed to provide exponentially conver-
gent estimates of the unmeasured states. This observer
has an extended filter structure so that on-line param-
eter adaptation can be utilized to reduce the effect of
the possible large nominal disturbance that has a known
shape but unknown amplitude. Estimation errors are
dealt with via robust feedback at each step of the design
procedure. Compared to other existing robust adaptive
schemes, the proposed method explicitly takes into ac-
count the effect of disturbances and uses both param-
eter adaptation and robust feedback to attenuate its
effect for an improved performance. Furthermore, the
upper bound on the absolute value of the tracking error
over entire time-history is given and related to certain
controller design parameters in a known form, which is
more transparent than that in RAC design.

1 Introduction

During the last several years, a great deal of progress
has been made in the control of uncertain nonlinear sys-
tems [1, 2, 3, 4, 5, 6, 7] and some of the results have
been extended to the output feedback control. Kanel-
lakopoulos et al. introduce backstepping procedure for
a class of nonlinear systems, whose nonlinearities de-
pend only on the measured signals [8]. In [9], Krstic
et aL propose an adaptive controller for linear systems
with parametric uncertainties by using nonlinear meth-
ods, such as tuning functions and nonlinear damping.
The resulting controller possessesmuch better transient
and steady state performance, as compared with the
traditional one. Parameter convergence properties of
this controller are also analyzed by Zhang et ai. [10].
Recently, Ikhouane and Krstic showed that by using a
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switching a-modification [11] or parameter projection
[12] in the parameter adaptation law, the robustness
of this scheme can be improved with respect to both
unmodeled dynamics and bounded disturbances.

In this paper, we combine the approach developed
in [9] with the adaptive robust control (ARC) design
procedure [7] to construct controllers for a class of lin-
ear systems having both parametric uncertainties and
bounded disturbances. Since only output signal is avail-
able for measurement, an observer is first designed to
provide exponentially convergent estimates of the un-
measured states. This observer has an extended filter
structure so that parameter adaptation can be used to
reduce the effect of the possible large nominal distur-
bance, which is very important from the view point of
application. The destabilizing effect of estimation er-
rors is dealt with using robust feedback at each step
of the design procedure. Compared with the RAC ap-
proaches [11, 12], the proposed scheme explicitly takes
into account the effect of disturbance and puts more
emphasis on the robust control law design. In fact,
the parameter adaptation law in ARC can be switched
off at any time without affecting global stability or
sacrificing the guaranteed transient performance result
since the resulting controller becomes a deterministic
robust controller. Furthermore, the proposed controller
achieves a guaranteed transient performance and a pre-
scribed final tracking accuracy, i.e., the upper bound on
the absolute value of the tracking error over entire time-
history is given and related to certain controller design
parameters in a known form, which is more transparent
than that in RAC design.

2 Problem Statement

Consider the following single-input single-output plant
described by

Y(t) = ~~(~) + ~A(Y,O + ~u(~) (1)

in which A(s) = s“ + a~–ls”–l + . . . +als+ ao, B(s) =
b~sm+.. +bls+bo and D(s) = djs’+.. +dls+do, where
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i, m < n. The plant parameters ai and b; are unknown
constants. For simplicity, di are assumed to be known
here; the results can be easily extended to the case
where di are unknown constants. d~(t) is the output dis-
turbance and A(y, t) represents any disturbance coming
from the intermediate channels of the plant. In the fol-
lowing, A will be handled as follows: we first use the
prior information about the nature of the disturbance to
construct a nominal disturbance model A. = qT (y, t)c,
in which q(y, t) = [qP(g,t),. ... ql(y, t)]~ e 7ZP represents
the known basis shape functions, c = [cp,. . ~,cl]~ repre-
sents the unknown magnitudes; this nominal model will
be explicitly used in the controller design to improve
achievable performance. The disturbance modeling er-
ror ~ = A – An will be dealt with via robust feedback
to achieve a robust performance. With this disturbance
modeling, a state space realization of the plant (1) is
given by (without loss of generality, assume m < 1):

il = X2—an_lzl
X2 = x3 —a..zxl

in...l--l = X.–J — al+lzl

Xn_I = Z.–-I+I – arzl + dlqTc+dl A

(2)

zp_l =xp —am+lzl + d~+lqTc + d~+lA
XP = XP+l —a~xl + d~qTc+ d~A + b~u

x. = –aozl + doq~c + dOA + bou
y=zl+dy

where p = n – m is the relative degree of the sys-

tem. The unknown parameter vector is defined as O~
[-an_ l,. ~, b—ao,b~, ..., O,cp, . ..j cl]~ E 7Zm+”+p+l. The
following notations are used: ●i for the i-th component
of the vector ●, •~i. for the minimum value of ., and

•~az f~r the mtimum value of ● . The operation < for
two vectors is performed in terms of the correspond-
ing elements of the vectors. The following standard
assumptions are made:

Al. The plant is minimum phase. i.e., the polynomial
B(S) is Hurwitz. The plant order (n), relative de-
gree (p= n–m) and the sign of the high frequency
gain (sgn(b~)) are known. o

A2. The extent of parametric uncertainties 8, uncer-
tain nonlinearities A, dv, and dv are known, i.e.,

@~Q04{0: 8min<0<0maz}

A G Q* s {A : @(y, t)l < b(t)}

du c @ ~ {d, : Idv(t)l < &(t)}
(3)

i, E of ~ {ti, : @,(t)l < Jf(t)}

where t?~i~, O~~Z, d(t),&(t)and b~(t) are known.
o

Given the reference trajectory y,(t), the objective
is to synthesize a control input u such that the output
u tracks y,(t) as closely as possible in spite of various

model uncertainties. The reference signal y, and its
first p derivatives are assumed to be known, bounded,
and, in addition, y:) is piecewise continuous.

3 State Estimation

Since only the output y is available for measurement,
we first design an observer [1] to provide exponentially
convergent estimates of the unmeasured states. Rewrit-
ing (2)-in the form

2= AOz+(~– a)xl+dqTc+bu +dA

where

Ao=

a=

.

–kl

–in

an–l

ao

(4)

In-l [1
kl

,k= :

0 0,
k;. . .

[1[

b~

,b= %7-_l)xl
,6= :

(5)
b

bo

dl

d=
I

O(n-l:l)xl

d

] [“1,d=:
do

Bv suitablv choosing k, the observer matrix AO will be
st~ble. This, there ~xists a symmetric positive definite
(s.p.d.) matrix P such that

PAo + A;P = –I, P=PT >0 (6)

Following the design procedure of [1], we define filters

~. = Aog. + ~11,
~i=Aoti+e~-iy, O<i Sn–1 (7)
W;= Ao~i + e~–i~, O~i<m
~i = AO@i + dqij O<izp

where ei denotes the i-th standard basis vector in 7?”.
Note that, departing from [1], the last equation of (7) is
introduced so that parameter adaptation can be used
to reduce the effect of unknown nominal disturbance
represented by unknown parameters ci. The state esti-
mates can thus be represented by

~ = (n —~~~ol ai~i + ~~=o bi~i + ~~=1 ci~i (8)

Let .G = x – ii be the estimation error, from (4), (7) and
(8), it can be verified that the observer error dynamics
is given by

&m= Ao&z + (a – k)dY + dA (9)

The solution of this equation can be written as E= = E+

q, where E is the zero input response satisfying i = AOE

and SWis the zero state response. Noting Assumption
A2 and the fact that matrix AO is stable, we have

&u e Q. ~ {Ew : IEti(t)l< J,(t)} (lo)

where JC(t) is known. In the following controller design,
e and E. will be treated as disturbances and accounted
for using different robust control functions at each step
to achieve a guaranteed final tracking accuracy.
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Remark 1 The jilter states &j and vi can be obtained
ji-orn the algebraic expressions

& = –,A8q,
<i = A~v, O<i<n–1 (11)
v< = A~A O<i~m

where q and A are the states of the following jilters

i = Aoq+ e~y
~ = AoA + enu

4 ARC Backstepping

4.1 Parameter Projection
Let # denote the estimate of 0 and

(12)

o

Design

@the estimation
error (i.e., ~ = P – d). Under Assumption A2, the
discontinuous projection based ARC design [7] can be
used to solve the robust tracking control problem for
(l). Specifically, the parameter estimate # is updated
through a parameter adaptation law having the form
given by

e = Pr0je(r7) (13)

where the projection mapping Projb (D) is defined by
[13] (for simplicity, assume that r is a diagonal matrix
in the following)

{

0 if& = 19;~~,and ● >0
Proj# (o) = 0 if ei = 64~i~ and ● <0 (14)

● otherwise

It can be shown [5] that the projection mapping has the
following nice properties

PI #E@?= {8: emi. sdstkc}
P2 ~T(r-1Pr0~6(r0) – ●) <0, VO

(15)

4.2 Step 1
The design combines the backstepping design in [9] with
the ARC design procedure in [7]. From (2), the deriva-
tive of the output tracking error Z1= y – y, is

Z1 =zz—a~–ly+a~–ldv+dv —i, (16)

Since X2 is not measurable, we replace it by its expres-
sion from (8)

*Z = f~,z —~(qa + V(z)b+ 4(2)C+ Ezz (17)

where Ez2.= E2+ .5tizis the estimation error of X2, and

((2) : [&n-1,2,” ‘ “ ,(0,2], V(2)~ [vm,2, . . . ,V0,2],
(18)

4(2) = [4P,2,“ “ “ ,@l,21

in which .1,3 represents the jth element of ●i. Substi-
tuting (17) into (16), gives

~1= bmvrn,z + (.,2 + dTti —y, + Al + E2 (19)

where wTA
– [C(2), v(2J,@(2)l+ elTy,~ ~ w – e~+1vm,2,

AI A a.-lciy + dv + E.2, and e: is the a-th standard basis

vector in ‘Rn+~+P+l. If we treat Vm,z as the input, we
can synthesize a virtual ARC cent rol law a 1 for v~,z
such that .z1 is as small as possible:

.
al(y, q’, Am+l, ?#(2),e,t) = ala +0’1s
ala = –~{’g.,2 + eTti – y.}

(20)

where xi = [Al, . - ~, Ai]T, crla functions as an adaptive
control law used to achieve an improved model com-
pensation, and al. is a robust control law to be syn-
thesized later. Noting Assumption Al that sgn(bm) is
known, without loss ofAgenerality, we assume b~ >0.
Then, from P1 of (15), b~ 2 b~i~ >0, where bmin is the
lower bound in A2 for b~. Thus the control function
(20) is well defined. Let m = v~,z - a, denote the input
discrepancy. Substituting (20) into (19) leads to

~1 =bm(zz+crls) ‘~T@l +& +S2 (21)

A_
where 41 = w + e~+lcrl=.

In [9], it needs to incorporate the tuning functions
in the construction of control functions. Here, due to
the use of discontinuous projection (14), the adaptation
law (13) is discontinuous and thus cannot be used in the
control law design at each step since backstepping de-
sign requires that the control function synthesized at
each step be sufficiently smooth in order to obtain its
partial derivatives. In the following, it will be shown
that this design difficulty can be overcome by strength-
ening the robust control law design. The robust control
function al. consists of three terms given by

al~ = —*k18zl + Crlsl + cllsz (22)-In

where al,l and al,z are robust control functions de-
signed in the following and kl, is any nonlinear feedback
gain satisfying

kl. 2 llc~lrdlllz +91, gl>o (23)

in which C’41 is a positive definite constant diagonal
matrix to be specified later. Substituting (22) into (21),

.il = b~.zz – +&l,zl +bm(al,l +W32)

–~Trjl + Al + e2
(24)

Define a positive semi-definite (p.s. d.) function V1 =
~wlz~ , where W1>0 is a weighting factor. From(24),
its time derivative satisfies

V1 ~ b~wlzlzz – llllkl, Z12+ wlzl(bmal~l

‘~T#l + &) + wlzl(bmalsz + E2)
(25)

where

IAII < ~l(t) ~ max{lan-ll}~~(t) + Jf (t) + &2 (26)

Since & is known, there exists a robust control function
CM,1 satisfying the following conditions [7]

condition i zl{b~alsl – ~Tl#l +Al} s 611
(27)

condition ii zl~lsl < 0

where El 1 is a design parameter which can be arbitrar-

ily small. Essentially, condition i of (27) shows that
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al, 1 is synthesized to dominate the model uncertainties
coming from both # and AI with the level of control
accuracy being measured by the design parameter c11,

and condition ii is to make sure that aI.1 is dissipating
in nature so that it does not interfere with the func-
tionality of the adaptive control part cu..

In principle, the same strategy can be used to design
a robust control function alsz to handle the effect of .52.
However, since the bound of .cZis unknown, we cannot
pre-specify the level of control accuracy. So we relax
the condition i to

z1(b~cY1s2 + E2) < C12 E; (28)

with clz being a design parameter [14].

4.3 Step 2
Fkom (20), (11), (12), and the rearrangements from (16)
to (19)

Ci’lu= *(–A) + & +&z) + *e

In (29), noting that ~, & and ~j can be calculated from
(12) and (7) respectively, &lc is calculable and can be
used in the design of control functions, but cil~ cannot
due to various uncertainties. Therefore, cil~ has to be
dealt with via robust feedback in this step design. From
(7) and (29), we express the derivative of .zz= 7J~,z-cu
as

i2 = v~,3 — kwnt,l —cilc —tilti (30)

Consider the augmented p.s.d. function Vz = V1+~wzz~,
where wz >0. Noting (25) and (30), its derivative is

V2 = Vllal + w2z2{~bmz1 + vnt,3 – k2vm,l
(31)

—tile — &l. }

where V1la, denotes V1 under the condition that v~,2 = a 1

(or 22 = O). Similar to (20), the virtue control input cw =
v~,q – 23 consists of two parts given by

.
a2(y, q, L+2, @, e, t)= a2a + cr2s

%mzl + luvm,lCua = — ~2 + Lilt
(32)

az~ = —kz~.rz+ cr2S1+ CMS2,
kz, 2 g2 + l&ce2112 + lp3@2r42112

where gz > 0 is a constant, ClW and C42 are positive defi-
nite constant diagonal matrixes , CMS1 and az~z are robust
control functions to be chosen later. Substituting (32) and
(29) into (31) leads to

ti~ = t’~ 1=1 + w2z2z3 – wzkz,.z~ + W2Z2(C12S12– ~T@2
(33)

+A2) + w2z2(a2s2 – *52) – w2z2*@

=Zl — ~vin which @2 = e~+l ~z &uw ~d ~2 c — ~~l. Since

l&l < &(i!) ~ 1~$1, similar to (27) and (28), the robust

control functions crzs 1 and CY2S2are chosen to satisfy

condition i Z2(CY2.1— fr42 + A2) < ~21

condition ii z2cr2.91 <0 (34)
condition iii -&2) < .522c;Z2(C12=2 — ~y

where CZ.1and 622 are design parameters. Noting (25) and
(33), the derivative of Vz satisfies

VZ < w2~2z3 – ~~=1 wjkj. zj 2 + wlzl{bmcrl.2 – 8T@Jl

+Al} + W2Z2{C1282 – @42 + A2} + ‘wIzl (bmcYls2 (35)

+E2) + ‘W2Z2(a2s2 – ,gV*&2) – w2z2Q#

4.4 Stepi(3<i<p–1)

Mathematical induction will be used to prove the general
results for all intermediate design steps. At step i, the same
ARC design as in the above two steps will be employed
to construct a control function a; for v~,i+l. For step j,
V3<j<i– l,let Zj=U~,j – cq – 1 and recursively define
the following functions

~j = –**, Aj = ‘*AI (36)

Lemma 1 At step i, choose the control function ~i as

ai(g, q, Xm+i, +, 4, t) = Cli. + ai,
Wi—1

CYh = —— ~i z-1 + kiwm,l + ~(i–l)c

Cti. = –ki~zi + aisl + ais2,
(37)

kis z gi + IIa~e-’-Ce~112 + llC~;I’#;112

where h(i–l)c = ~(fn,z+dTw)+~ti+E~=~-l ~

‘j + ~~=1 ~ij + ‘“~t-’ ,— gi is a positive constant, Ce;
and C4i are positive definite constant diagonal matrixes, wi
is a weighting factov, CU,l and ~iaz satisfy

i zi(~isl —~T@i+ Ai) < Cil
ii ZiCli.91<0
. . . 8Lli_*
al’1 Zi (Clis2 — ~&2) < 6;2 e;

Then the i-th error subsystem is

(38)

Za = Zi+l — ~zi–l – ki. zi + (aisl – ~T@i + ~i)

+(%2 –
aa;_~ : (39)

*E2) – --#ii

and the derivative of the augmented p.s. d. function Vi =
w-l + ~WiZ~ satisfies

vi < wi~i~i+l – ~~=1 wjkj. zj2 + wl~l(hn~lsl

‘fJT#l + Al)+ ~~=2 WjZj(O!jsl – tiT#j + Aj)
(40)

+wlzl(bm~lsz + E2)+ ~j.=2 wjzj(~j.z
—E&&2) – ~:.=2 Wjzj +8

The Lemma can be proved in the same way as in [7].

4.5 Step p

This is the final design step, in which the actual control u
will be synthesized such that v~,P tracks the desired control
function cr– 1. We express the derivative of ZP as

2P = I&z,p+l — kPvnz,l + u —&l)c — *(-8TW

+Al +e2) – we

(41)
if we treat the v~,P+l + u as the input, (41) has the same
form as the intermediate step i. Therefore, the general form
(36)=(40) applies to Step p. Since u is the actual control
input, we can choose it as u = a. — v~,P+l , where aP is
given by (37). Then, ZP+l = u + v~,p+l – crp = O.
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Theorem 1 Let the parameter estimates be updated by the
adaptation law (13) in which T = ~$=1 wj #j ~j. If con-

troller parameters Cej and c~k are chosen such that c~k, k

~ E;=, ~, where @j. andc+k. are the r-th elements of

Cej and c~k respectively. Then, the control iaw guarantees
that

A. In general, the control input and all internal signals are
bounded. Furthermore, VP is bounded above by

v,(t) < exp(–APt)VP(0) + “’+’~~’e’”% [1 – exp(–~pt)] (42)

where /!P = 2min{gl, . . . ,9P}, ‘pl = ~~=1 wj~jl, ~p2 =

~~=1 wjei2, and IIllm stands for the injinity norm. Noting
that &z(t) ezponentiaUy converges to zero, Vp(t) is ultimately
bounded by Vp(co) < ~.

B. If after a finite time to, A = O and dg = O, i.e., in the
presence of parametric uncertainties only, then, in addition
to results in A, asymptotic output tracking (or zero final
tmcking error) is also achieved. A

The Theorem can be proved in the same way as in [7].

Remark 2 Results in A of Theorem 1 indicate that the pro-
posed controller has an exponentially converging transient
performance with the exponentially converging mte Ap and
the jinal tmcking ewor being able to be adjusted via certain
controller pammeters (g; and eil) freely in a known fo~.
Theoretically, this result is what a well-designed robust con-
troller can achieve. In fact, when the parameter adaptation
law (13) is switched off, the proposed ARC law becomes a
deterministic robust control law and Results A of the Theo-
rem remain valid [5, 6].

B of Theorem 1 implies that without using high gain, the
controller may have a very small tracking error due to the
reduced parametric uncertainties. Theoretically, Result B is
what a well-designed adaptive controller can achieve. O

Remark 3 It is seen from (42) that transient tracking er-
ror is affected by the initial value VP(0). To further reduce
transient tracking error, the idea of filter initialization [9]
can be used to render VP(0) = O. 0

5 Conclusions

In this paper, an output feedback ARC scheme baaed on dis-
continuous projection method is presented for a class of lin-
ear systems having model uncertainties. In contrast to other
existing robust adaptive control schemes, the proposed con-
troller uses on-line parameter adaptation to compensate for
the effect of disturbances that can be modeled for an im-
proved performance. The uncompensated disturbances and
the estimation errors are effectively handled via robust feed-
back to achieve a robust performance. Furthermore, the
resulting controller achieves a guaranteed transient perfor-
mance and a prescribed final tracking accuracy in the pres-
ence of both parametric uncertainties and bounded distur-
bance. In the presence of parametric uncertainties only,
asymptotic tracking is achieved without using an infinite
fast switching control law or an infinite-gain feedback.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic,
Nonlinear and adaptive control design. New York: Wi-
ley, 1995.

M.M. Polycarpou and P. A. Ioannou, “A robust adap-
tive nonlinear control design,” in Proc. of American
Control Conference, pp. 1365-1369, 1993.

R. A. Freeman, M. Krstic, and P. V. Kokotovic, “Ro-

bustness of adaptive nonlineax control to bounded un-

certainties,” in IFA C World Congress, Vol. F, pp. 329–
334, 1996.

Z. Pan and T. Baaar, “Adaptive controller design for
tracking and disturbance attenuation in pararnetric-
strict-feedback nonlinear systems,” in IFA C World
Congress, VO1.F,,pp. 323-328, 1996.

B. Yao and M. Tomizuka, “Smooth robust adaptive
sliding mode control of robot manipulators with guar-
anteed transient performance,” ASA4E J. of Dynamic
Systems, Measurement, and Control, vol. 118, no. 4,
pp. 764-775, 1996.

B. Yao and M. Tomizuka, “Adaptive robust control of
siso nonlinear systems in a semi-strict feedback form,”
Automatic, vol. 33, no. 5, pp. 893-900, 1997.

B. Yao, “High performance adaptive robust control
of nonlinear systems: a general framework and new
schemes,” in Proc. of IEEE Conference on Decision
and Control, pp. 2489–2494, 1997.

I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse,
“Adaptive output-feedback control of a class of nonlin-
ear systems, “ in Proc. 30th IEEE Conf. on Decision

and Control, pp. 1082–1087, 1991.

M. Krstic, I. Kanellakopoulos, and P. V, Kokotovic,
“Nonlinear design of adaptive controllers for linear sys-
tems,” IEEE Tbans. on Automatic Control, vol. 39,
pp. 738–752, 1994.

Y. Zhang, P. A. Ioannou, and C. C. Chien, “Paramet-
er convergence of a new claas of adaptive controllers,”
IEEE Tkans. on Automatic Control, vol. 41, no. 10,
pp. 1489-1493, 1996.

F. Ikhouane and M. Krstic, “Robustness of the tuning
functions adaptive backstepping design for linear sys-
tems,” in Proc. IEEE Conf. on Decision and Control,
pp. 159–164, 1995.

F. Ikhouane and M. Krstic, “Adaptive backstepping
with parameter projection: robustness and asymptotic
performance,” Automatic, vol. 34, no. 4, pp. 429-435,
1998.

G. C. Goodwin and D. Q. Mayne, “A parameter esti-
mation perspective of continuous time model reference
adaptive control,” Automatic, vol. 23, no. 1, pp. 57-
70, 1989.

B. Yao and M. Tomizuka, “Adaptive robust control
of nonlinear systems: effective use of information,” in
Proc. of 11th IFA C Symposium on System Identifica-
tion, pp. 913–918, 1997. (invited).

560


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

