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Abstract 

This paper studies the high performance robust motion con- 
trol of linear motors that have a negligible electrical dynam- 
ics. A discontinuous projection based adaptive robust con- 
troller (ARC) is first constructed. The controller guarantees a 
prescribed transient performance and final tracking accuracy 
in general while achieving asymptotic tracking in the pres- 
ence of parametric uncertainties only. A desired compen- 
sation ARC scheme is then presented, in which the regres- 
sor is calculated using desired trajectory information only. 
The resulting controller has several implementation advan- 
tages. Both schemes are implemented and compared on an 
epoxy core linear motor. Extensive comparative experimen- 
tal results are presented to illustrate the effectiveness and the 
achievable control performance of the two ARC designs. 

1 Introduction 

Direct drive linear motor systems gain high-speed, high- 
accuracy potential by eliminating mechanical transmissions. 
However, they also lose the advantage of using mechanical 
transmissions - gear reductions reduce the effect of model 
uncertainties. Furthermore, certain types of linear motors are 
subjected to significant force ripple [ 1]. These uncertain non- 
linearities are directly transmitted to the load and have signif- 
icant effects on the motion of the load. 

A great deal of effort has been devoted to solving the difficul- 
ties in controlling linear motors [1]-[5]. Alter and Tsao [2] 
proposed an H** controller to increase dynamic stiffness for 
linear motor driven machine tool axes. In [3], a disturbance 
compensation method based on disturbance observer (DOB) 
[6] was proposed to make linear motors robust to model un- 
certainties. To reduce the effect of force ripple, in [1], feed- 
forward compensation terms, which are based on an off-line 
experimentally identified model, were added to a position 
controller. In [4], a neural-network-based feedforward con- 
troller was proposed to reduce the effect of reproducible dis- 
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turbances. In [5], the idea of adaptive robust control (ARC) 
[7, 8] was generalized to provide a theoretic framework for 
the high performance motion control of linear motors. 

In this paper, the proposed ARC algorithm [5] is applied on 
a linear motor in which the current dynamics is neglected 
due to the fast electric response. As pointed out in [9], how- 
ever, this algorithm may have several potential implementa- 
tion problems since the regressor depends on the states of the 
system. As a remedy, a desired compensation ARC [9, 10] 
in which the regressor is calculated by desired trajectory in- 
formation only is then developed. The proposed controller 
has several implementation advantages such as reducing on- 
line computation time, separating the robust control design 
from the parameter adaptation process, reducing the effect 
of measurement noise, and having a faster adaptation pro- 
cess. Finally, comparative experimental results are presented 
to show the advantages and the drawbacks of each method. 

2 Problem Formulation and Dynamic Models 

The mathematical model of a current-controUed three-phase 
linear motor system is assumed to be of the form: 

M ~i = u - F,  F = F f + Fr - Fd , (1) 

where q represents the position of the inertia load, M is the 
inertia of the payload plus the coil assembly, u is the input 
voltage, F is the lumped effect of uncertain nonlinearities 
such as friction F/, ripple forces Fr and external disturbance 
Fd. While there have been many friction models proposed 
[11], a simple and often adequate approach is to regard fric- 
tion force as a static nonlinear function of the velocity: 

Ff( il) = Bq + rfn( ¢~), (2) 

where B is the viscous friction cocfficiem, and Ffn is the non- 
linear friction term which can be modeled as [I I] 

F f n ( q )  = - [ f c  "t" ( f s  - f c )e - l '~ /# ' l~]sgn(#) ,  (3) 

where fs is the level of static friction, fc is the level of 
Coulomb friction, and qs and ~ are empirical parameters used 
to describe the Stribeck effect. Substituting (2) into (1) yields 

• ~i = x 2 ,  
M x 2  = u - Bx2  - F fn  "l- A ,  (4) 
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where x = [xl ,xz] T represents the position and velocity, y is the 

output, and A =a (Fd - Fr) represents the lumped disturbance. 

The control objective is to synthesize a control input u such 
that y tracks a desired trajectory ya(t) that is assumed to be 
second-order differentiable. 

3 Adaptive Robust Control of Linear Motor Systems 

3.1 Design Models and Projection Mapping 
It is seen that the friction model (3) is discontinuous atx2 = 0. 
Thus one cannot use this model for friction compensation. To 
by-pass this technical difficulty, a simple continuous friction 
model Pfn = ASf(x2), where the amplitude A is unknown and 
Sf(x2) is a smooth function, will be used to approximate the 
actual friction model (3) for model compensation. The sec- 
ond equation of (4) can thus be written as: 

M~2 = u - Bx2 - ASz + d, (5)  

where d = PZ, - Ffn + A. Define an unknown parameter set 
0 = [01, 02 , 03 , 04] as 0t = M, 02 = B, 03 = A and 04 = d,, where 
dn is the nominal value ofd. Equation (5) can thus be linearly 
parameterized in terms of O as 

0~2 = u -  02x2 - 03Sf + 04 + d, (6) 

where d = d - dn. For simplicity, in the following, the fol- 
lowing notations are used: -i for the i-th component of the 
vector 0, emi a for the minimum value of 0, and *max for the 
maximum value o f . .  The operation < for two vectors is per- 
formed in terms of the corresponding elements of  the vectors. 
The following practical assumptions are made: 

Assumption 1 The extent o f  the parametric uncertainties 
and uncertain nonlinearities are known, i.e., 

0 E D,e.~.{O: Omin<0<Omax} (7) 

d~ ~ & i d :  Idl_<~e} (8) 

where Om = [Otmin,'"" ,04~n] r, Onyx = [O,~,,- . . ,  04max] r and 
~id are known, o 

Let 6 denote the estimate of 0 and 6 the estimation error (i.e., 
6 = 6 - 0). In view of  (7), the following adaptation law with 
discontinuous projection modification can be used 

6 = proj~,(r~) (9) 

where r > 0 is a diagonal matrix, x is an adaptation function 
to be synthesized later. The projection mapping Projt(. ) = 
[Proj6 t ( ' t ) , " ' ,  Projt, (.p)]r is defined in [7, 12] as 

0 if0t = 0/max and • i > 0 
Proj~(.i) = 0 i f t i  = 0imin and • i < 0 (10) 

• ~ otherwise 

It can be shown [7, 12] that for any adaptation function x, the 
projection mapping used in (10) guarantees 

P1 6 ~ ~ & {6 : 0 ~  _< 6 _< 0rex} 
P2 6r(F-lProjt(Fx) - x )  < 0, W 

3.2 ARC Controller Design 
Define a switching-function-like quantity as 

A . 
p = ~ + k l e =  x2-x2eq,  x2eq = y d - k l e ,  (12)  

where e = y -ya( t )  is the output tracking error, and kl is any 
positive feedback gain. If p is small or converges to zero 
exponentially, then the output tracking error e will be small 
or converge to zero exponentially since Gp(s) = ~ =s+~l is 
a stable transfer function. So the rest of the design is to make 
p as small as possible. Differentiating (12) and substituting 
the expression given by (6), one obtains 

Mp = u +tpr0 + d  (13) 

A . .  ~0 T where ~2eq = Yd -- k# and = [-~2eq,-x2,-Sf(x2), I]. Not- 
ing the structure of (13), the following ARC control law is 
proposed: 

u = Ua + us, Ua = -~OrO, (14) 

where ua is the adjustable model compensation needed for 
achieving perfect tracking, and us is a robust control law to 
be synthesized later. Substituting (14) into (13), and then 
simplifying the resulting expression, one obtains 

M p  = us - ¢r6+ d. (15) 

The robust control law Us consists of two terms given by: 

us = Usl +Us2, usl = -k2p,  (16) 

where usl is used to stabilize the nominal system, which is a 
simple proportional feedback with k2 being the feedback gain 
in this case; us2 is a robust feedback used to attenuate the ef- 
fect of model uncertainties. Noting Assumption 1 and P1 of 
(11), there exists a us2 such that the following two conditions 
are satisfied 

i p{us2 --¢prO+d') _< e (17) 
ii pus2 _< 0 

where e is a design parameter that can be arbitrarily small. 
Essentially, i of  (17) shows that us2 is synthesized to domi- 
nate the model uncertainties coming from both 6 and d; ii of 
(17) is to make sure that us2 is dissipating in nature so that it 
does not interfere with the functionality of the adaptive con- 
trol part Ua. One smooth example of us2 satisfying (17) is 
given by 

1 

us2 = - ~ h 2 P ,  (18) 

where h is any smooth function satisfying h _> II0uU[k0ll +~ia, 
0M = 0rex -- 0rain. 

Theorem 1 Suppose that the adaptation function in (9) is 
chosen as x = tpp. Then the A R C  control law (14) guarantees: 

A.  In general, all signals are bounded. Furthermore, a posi- 
tive semi-definite function Vs = ½ M p 2 is bounded above by 

< exp(-kt)Vs(0) + ~[1 - exp(-ht)], (19) es 

where k = 2k2/Olr~x. 

B. I f  after a finite time to, there exist parametric uncertainties 
only (i.e., d = O, Vt > to), then, in addition to result A, zero 

(11) final tracking error is achieved, i.e, e ~ O and p ~ O as t ~ **. 

Proof: The theorem can be proved in the same way as in [9]. 
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4 Desired Compensation ARC (DCARC) 

In the ARC design presented in Section 3, the regressor ¢ in 
Ua (14) and 17 depends on state x. Such an adaptation struc- 
ture may have several potential implementation problems [9]. 
Firstly, the effect of  measurement noise may be severe, and 
a slow adaptation rate may have to be used, which in turn 
reduces the effect of parameter adaptation. Secondly, there 
may exist certain interactions between the model compensa- 
tion ua and the robust control u,, since Ua depends on the ac- 
tual feedback of the state. This may complicate the controller 
gain tuning process in implementation. In [13], Sadegh and 
Horowitz proposed a desired compensation adaptation law, 
in which the regressor is calculated by desired trajectory in- 
formation only. The idea was then incorporated in the ARC 
design in [9, 10]. In the following, the desired compensation 
ARC will be applied on the linear motor system. 

The proposed desired compensation ARC law and the adap- 
tation law have the same forms as (14) and (9) respectively, 
but with the regressor tp replaced by the desired regressor {Pd: 

u = Ua ÷ Us, Ua = -{p;O, 17 ---- (PdP, (20) 

where {p~ = [-Yd,--5'd,-Sff(Pd), 1]. Substituting (20) into (13), 
and noting x2 = Y'd + ~, one obtains 

Mp = u~ - {p~fifi + (01kl - 02)d+ 03[Sf(Pa) - Sf(x2)] +d. (21) 

Comparing (21) with (15), it can be seen that two additional 
terms appear, which may demand a strengthened robust con- 
trol function us for a robust performance. Applying Mean 
Value Theorem, it follows that 

S f ( x 2 )  - -  Sf (~d  ) = S ( X 2 s / ) £ ,  (22) 

where g(x2,t) is a nonlinear function. The strengthened ro- 
bust control function us has the same form as (16): 

Us = Usl +Us2, Usl = -kstp, (23) 

but with ksl being a nonlinear gain large enough such that the 
matrix A defined below is positive semi-definite 

A =  [ k s x - k 2 - O l k l ' F 0 2 ÷ 0 2 g  -½kl~ 02-1-03g) 1 (24) 
- ½k~ (02 + 03s) ~M~ j 

The robust control law u,2 is required to satisfy the following 
constrains similar to (17), 

i plus2 --{pdTO+d -} _< e 
ii pus2 _< 0 (25) 

One smooth example of u,2 satisfying (25) is us2 ---- - -  ~ 1  hap,2 
where hd is a smooth function satisfying ha _> IIOMIIIledll +~d. 

Theorem 2 I f  the DCARC law (20) is applied, then 

A.  In general, all signals are bounded. Furthermore, a p.s.d. 
function Vs = ½MP 2 + ~Mk~e 2 is bounded above by 

[1 - exp(-kt)], (26) V, _< exp(-~)V,(0) + 

where k = min{2k2/0tnm,kx}. 

B. I f  after a finite time to, there exist parametric uncertainties 
only (i.e., d = O, Vt _> to), then, in addition to result A, zero 
final tracking error is achieved, i.e, e ~ 0 and p --4 0 as t ~ .0. 

Proof: The theorem can be proved in the same way as in [9]. 

5 Comparative Experiments 

5.1 Experiment Setup 

I O  ~Itl  

x-v Itq* Ion~ be m KCAWd ~ 1  

Figure 1: Experimental Setup 

To test the proposed nonlinear ARC strategy and study fun- 
damental problems associated with high performance motion 
control of linear motor systems, a two-axis positioning stage 
is set up as a test-bed. As shown in Figure 1, the test-bed con- 
sists of four major components: a precision X-Y stage with 
two integrated linear motors, two linear encoders, a servo 
controller, and a host PC. The two axes of the X-Y stage are 
mounted orthogonally on a horizontal plane with the Y-axis 
on top of the X-axis. A particular feature of the set-up is 
that the two linear motors are of different type: the X-axis is 
driven by an Anorad LCK-S-1 linear motor (iron core) and 
the Y-axis is driven by an Anorad LEM-S-3-S linear motor 
(epoxy core). The resolution of the encoders is 1/an after 
quadrature. The velocity signal is obtained by the difference 
of two consecutive position measurements. In the experi- 
ments, only Y-axis is used. 

Standard least-square identification is performed to obtain 
the parameters of  the Y-axis. The nominal values of M is 
0.027(V/m/s2). To test the learning capability of the pro- 
posed ARC algorithms, a 201b load is mounted on the motor 
and the identified values of the parameters are 

01 = 0.1 (V/m/s2), 02 = 0.273 (V/m/s), 03 = 0.09 (V). (27) 

The bounds of the parameter variations are chosen as: 

Omin= [0.02,0.24,0.08,-1] r ,  Omax= [0.12,0.35,0.12, 1] T. (28) 

5.2 Performance Index 
As in [10], the following performance indexes will be used 
to measure the quality of each control algorithm: 

• Ilell,ms = (~ f~e(t)2dt) 1/2, the rm$ value of the tracking er- 
ror, is used to measure average tracking performance, where 
T represents the total running time; 
• eM = max{le(t)[}, the maximum absolute value of the track- 

ing error, is used to measure transient performance; 
• e F  = r_m<axt<r{[e(t)l }, the maximum absolute value of the 

tracking error during the last 2 seconds, is used to measure 
final tracking accuracy; 
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• IlU[lrras = (~, f~u( t )2d t )  1/2, the average control input, is used 
to evaluate the amount of control effort; 

• c= = 1 ~ _ ,  the normalized control variations, is used to 
measure the degree o f  control chattering, where 

IIAullr~ = ~ = l u ( j A T ) - u ( ( j -  1)AT)I 2 . 

is the average of control input increments. 

5.3 Comparative Experimental Results 
The control system is implemented using a dSPACE DS 1103 
controller board. The controller executes programs at a sam- 
piing rate of Ts = 0.4ms, which results in a velocity measure- 
ment resolution of 0.0025m/sec. The following four con- 
trollers are compared: 

PID: PID Control with Feedforward Compensation - Sup- 
pose that the parameters of (5) are known, the control objec- 
tive can be achieved with the following PID control law: 

u = 01Yd(t) + 02.9(t) + 03S/(.9) - Kpe - Ki f e tit - Kdd. (29) 

Closing the loop by applying (29) to (5) easily leads to the 
closed-loop characteristic equation 

s 3 + ~ s  2 + ~1 s + ~ = 0. (30) 

By placing the closed-loop poles at desired locations, the de- 
sign parameters Kp,Ki and K d c a n  thus be determined. In the 
experiments, since 01, 02 and 03 are unknown parameters, in- 
stead of using (29) the following control law is applied 

u = Ol (0)Yd + 02 (0).9 + 63 (0)S/(.9) -- rpe  - g~,l" e dt - Kdd, (31) 

where §t (0), 02(0) and 03(0) are the fixed parameter estimates 
chosen as 0.05, 0.24 and 0.1, respectively. By placing all 
closed-loop poles at -300 when 01 = 01rain = 0.02, one ob- 
tains Kp = 5.4x 103, Ki ---- 5.4 x 105 and Kd = 18. 

gains. However, in practice, feedback gains have upper lim- 
its because the bandwidth of every physical system is finite. 
To verify this claim, the closed-loop poles of the PID con- 
troller are placed at - 3 2 0  instead of  -300, which is easily 
translated into Kp = 6144, K~ = 655360 and Kd = 19.2. With 
these gains, the closed-loop system is found to be unstable in 
experiments. This indicates that the closed-loop bandwidth 
that a PID controller can achieve in implementation has been 
pushed almost to its limit and not much further performance 
improvement can be expected from PID controllers. Thus, in 
order to realize the high performance potential of the linear 
motor system, a PID controller even with feedforward com- 
pensation may not be sufficient. 

controller PID DRC ARC DCARC 
eM (/.an) 156 56.3 36.1 30.4 
eF (ltrn) 21.2 11.2 5.1 5.1 

Ilell,,~ (tan) 8.04 5.07 1.99 1.78 
Ilull-= (V) 0.20 0.19 0.19 [ 0.19 
Ilg~kUllrms (V) 0.06 0.10 0.12 I 0.09 

cu 10.28 0.56 0.66 0.47 

Table 1 

The tracking errors are given in Figure 2 (the tracking error 
of the PID controller is chopped off). If  one compares ARC 
with DCARC, it is seen that ARC has a relatively poor tran- 
sient tracking performance. The reason is that only slower 
adaptation rate can be used for ARC, which reduces the effect 
of parameter adaptation. When we tried to increase the adap- 
tation rate for ARC further, the system is subjected to quite 
severe control chattering due to the measurement noises (es- 
pecially velocity feedback). Comparatively, due to the use of 
desired compensation structure, DCARC is not so sensitive 
to velocity measurement noise. In return, a larger adapta- 
tion rate can be used and the parameter adaptation algorithm 
of DCARC is able to pick up the actual value of the inertial 
load more quickly. 

ARC: the controller proposed in section 3. The smooth func- 
tion Sy(x2) is chosen as ~ arctan(900x2). For simplicity, in 
the experiments, only three parameters, 01, 03 and 04, are 
adapted. The control gains are chosen as: kl = 400, k2 = 32. 
The adaptation rates are set as lf" = diag{5,0, 2, 1000}. The ini- 
tial parameter estimates are: O(0)= [0.05, 0.24, 0.1, 0] r. 

DRC: the same control law as ARC but without using pa- 
rameter adaptation, i.e., letting F = diag{0, 0, 0, 0}. 

DCARC: the controller proposed in section 4. The control 
gains are chosen as: kl = 400 and ksl = 32. The adaptation 
rates are set as F = diag{25, 0, 5,1000}. 

The motor is first commanded to track a sinusoidal trajec- 
tory: Yd = 0.05sin(4¢), with a 201b load mounted on the motor 
(The inertia is equivalent to M = 0.1). The experimental re- 
suits in terms of performance indexes are given in table 1. 
As seen from the table, in terms of eM, eF and [lellrms, PID 
performs poorly but with a slightly less degree of control in- 
put chattering. One may argue that the performance of PID 
control can be further improved by increasing the feedback 

To test the performance robustness of the algorithms to pa- 
rameter variations, the 201b payload is removed, which is 
equivalent to M = 0.027. The tracking errors are given in Fig- 
ure 3. It shows that both ARC and DCARC achieve good 
tracking performance in spite of the change of inertia load. 

Finally, the controllers are test for tracking a fast point-to- 
point motion trajectory shown in Figure 4. The trajectory 
has a maximum velocity of Vmx = lra/s and a maximum ac- 
celeration of amax = 12m/s 2. The tracking errors are shown 
in Figure 5. As seen, the proposed DCARC has a much bet- 
ter performance than PID and DRC. Furthermore, during the 
zero velocity portion of motion, the tracking error is within 
±l/an. 

6 Conclusions 

In this paper, an ARC controller and a desired compensa- 
tion ARC controller have been developed for high perfor- 
mance robust motion control of linear motors. The proposed 
controllers take into account the effect of model uncertain- 
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ties coming from the inertia load, friction force, force ripple 
and external disturbances. The resulting controllers guaran- 
tee a prescribed transient performance and final tracking ac- 
curacy in general while achieving asymptotic tracking in the 
presence of parametric uncertainties only. Furthermore, it is 
shown that the desired compensation ARC scheme, in which 
the regressor is calculated using desired trajectory informa- 
tion only, offers several implementation advantages such as 
less on-line computation time, reduced effect of  measure- 
ment noise, a separation of the robust control design from 
the parameter adaptation, and a faster adaptation rate in im- 
plementation. Experimental results illustrate the high perfor- 
mance of the proposed ARC strategies and show the advan- 
tages and drawbacks of each method. 
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Figure 2: Tracking errors for sinusoidal trajectory with load 
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Figure 3: Tracking errors for sinusoidal trajectory without load 
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