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Observer-Based Adaptive Robust Control of Friction
Stir Welding Axial Force

Tyler A. Davis, Yung C. Shin, and Bin Yao, Member, IEEE

Abstract—Friction stir welding (FSW) is a relatively new and
promising joining process that is the subject of much current re-
search. When welding with constant parameters, the axial force
can vary significantly due to changes in workpiece temperature
and other process variations. These variations produce welds with
inconsistent microstructure and tensile strength. Control of the
axial weld force is desirable to improve the weld quality. In this
paper, an observer-based adaptive robust control (ARC) approach
for the axial force of FSW is presented to overcome process distur-
bances and model errors stemming from the simplistic dynamic
models suitable for control. Some correlation is shown between
spindle power and axial force, allowing readily available power
measurements to be used for feedback. A model of the axial force
is developed as a combination of a nonlinear static gain and linear
dynamics. An axial force controller is constructed using the ARC
approach and estimated state feedback from the adaptive divided
difference filter (ADDF). Verification experiments are conducted
on a vertical milling machine configured for FSW using an open
architecture controller. The combined ARC/ADDF technique is
shown to dramatically reduce axial force variations in the presence
of significant process disturbances.

Index Terms—Force control, friction stir welding (FSW), non-
linear systems, observers.

I. INTRODUCTION

FRICTION stir welding (FSW) is a promising new joining
process that is currently under heavy research. The FSW

process is typically used for aluminum alloys, but can be used
for other materials, including steel, titanium, and plastic. The
process uses a nonconsumable rotating tool consisting of a pin
extending below a shoulder that, in a butt-weld configuration, is
forced completely into the adjacent mating edges of two plates.
This process is illustrated in Fig. 1. Heat input from the material
plastic deformation and friction of the tool softens the material.
Combining the heat input and forging action of the tool shoulder
with the stirring action of the tool induces a plastic flow in the
material, forming a solid-state weld [1].

FSW control applications are subject to significant process
variations. For example, variations in workpiece geometry can
alter the heat transfer when welding. Changes in heat trans-
fer, and thus local workpiece temperature, lead to changes in
the weld force. Plunge depth may change during welding due
to inconsistent surface flatness thus affecting welding force.
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Fig. 1. FSW arrangement.

Effects such as these cannot be captured in a dynamic model,
and therefore must be addressed by the controller.

A number of research works on axial force control are avail-
able in the literature. In [2], axial force control is implemented
using position control of a robot arm to regulate plunge depth
in order to maintain a constant axial welding force. While ef-
fective, this approach also produces an uneven surface finish.
Since the majority of the force increase resulting from increased
plunge depth is transitory, this approach can lead to instability
in the form of constantly increasing plunge depth. For these
reasons, plunge depth is not a suitable control variable for force
control.

Zhao et al. [3] and Oakes and Landers [4] also use the plunge
depth to control force with a discrete controller designed by
pole placement. This design approach is viable, but lacks any
mechanism for handling uncertainties. Force sensing is accom-
plished by mounting six-axis force sensors to the welding head.
Such sensors can be prohibitively expensive or impractical when
retrofitting industrial equipment. Soron and Kalaykov [5] show
that industrial robots with existing force controllers can be used
for FSW force control, but again use plunge depth as the control
variable.

The main process variables governing FSW are spindle speed,
traverse rate, and plunge depth. Since traverse speeds are small
when compared with spindle speeds, the relative velocity be-
tween the tool and workpiece—and thus the heat generation
rate—is essentially governed by the spindle speed [6], [7]. In-
creasing the traverse speed leads to a decrease in the average heat
input and a slightly lower material temperature, which in turn
increases the force exerted on the tool. Decreasing the traverse
speed has the opposite effect. Higher temperatures increase the
size of the thermally affected zone, but also decrease the size of
the deformation region by improving the material flow around
the pin. Utilizing traverse speed as the control variable therefore
has the advantage of producing a weld with more consistent
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microstructure qualities while maintaining a constant plunge
depth to produce an even surface.

The performance of common linear control techniques such as
PID or various state space methods can suffer from the presence
of model uncertainties or disturbances. When applied to non-
linear systems, the ignored nonlinearities may be large enough
to destabilize linear controllers. Adaptive controllers (AC) such
as those introduced in [8] and [9] produce excellent control
results for nonlinear systems in response to linear plant parame-
ter variation. However, nonlinear uncertainties and disturbances
can introduce steady-state tracking error, diminish the transient
performance, and may cause the control system to lose stability.
Robust controllers (RC) [10], [11] or the sliding mode controller
(SMC) [12] can guarantee the transient performance as well as
the steady-state error in the presence of uncertainties and dis-
turbances, but these designs suffer from the matching condition
problem and utilize high or switched gains that are unrealizable
or introduce control input chattering.

The adaptive robust control (ARC) discussed in [13] com-
bines the AC and RC techniques by taking advantage of reason-
ably available system information such as parameter variation
bounds to utilize the strengths of each method while eliminat-
ing their shortcomings. Using ARC in a backstepping frame-
work [14]–[16] avoids the matching condition problem and
makes the ARC technique systematically applicable to systems
in the semistrict feedback form. The backstepping approach re-
quires that all system states be available for feedback, which is
impossible for many systems. Therefore, an observer is required
to estimate the unmeasured states.

Nonlinear observers are typically constructed using the sys-
tem model in combination with existing nonlinear control tech-
niques such as sliding mode [17] or unique Lyapunov-based
applications [18], [19]. These methods are difficult to apply in a
systematic manner, so efforts have been made to develop nonlin-
ear extensions of systematic linear techniques. Most common is
the extended Kalman filter (EKF) [20]. This approach is based
on a first-order linearization of the nonlinear system that fre-
quently introduces enough error to cause significant estimate
error or even stability problems. The inadequacies of the EKF
have been largely resolved by a number of improved methods
such as the unscented Kalman filter (UKF) [21] and the di-
vided difference filter (DDF) [22]. However, even the improved
methods can diverge in the presence of model error. To address
the issue of estimate divergence resulting from model error an
adaptive divided difference filter (ADDF) has been developed
in [23].

By using ARC in a backstepping framework supported by
ADDF state estimates, a robust and adaptive nonlinear observer-
based control scheme is achieved. This scheme can be system-
atically applied to a large set of nonlinear control problems,
including many that are encountered in manufacturing. In this
paper, the combined ARC/ADDF approach is used to control the
axial force of FSW. A spindle power-based feedback signal is
used to eliminate the need for expensive force sensors. The tra-
verse rate is used as the plant input to improve weld quality and
surface finish. Experimental implementation of the approach is
provided.

Fig. 2. Mazak OAC layout.

TABLE I
MAZAK COMMUNICATION SPECIFICATIONS

II. EXPERIMENTAL SETUP

The FSW experimental setup consists of a Mazak VQC-
15/40 vertical machining center configured to perform butt
welds. Since this is a conventional computer numerical con-
trolled (CNC) machining center, a small welding tool must be
used to keep the welding forces within ranges that are safe
for the mill. The Mazak can be controlled using an open ar-
chitecture controller (OAC) developed in [24], which has been
upgraded with a National Instruments real-time operating sys-
tem computer [25]. The OAC can send axis position and spindle
velocity commands to the Mazak, as well as receive feedback
signals reporting the true position and spindle velocity. The
axis and spindle commands override those sent by the built-
in Mazatrol M-32 controller while leaving the programmable
logic controller (PLC) functions such as overtravel switches
and emergency stops intact.

The OAC is implemented using a National Instruments (NI)
PXI-8176 computer with the LabView real-time operating sys-
tem to ensure deterministic calculation of axes commands. The
computer uses digital I/O cards to communicate with the in-
house built data interface board that in turn communicates with
the axes drive data bus. A graphical user interface (GUI) is
implemented on a remote desktop computer. Communication
between the GUI and the real-time operating system is accom-
plished using a combination of TCP/IP and high-speed digital
I/O protocols. This arrangement is illustrated in Fig. 2. The
communication sample time and resolution for each axis of the
Mazak is listed in Table I.
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The FSW tool has a shoulder diameter of 5 mm with a tapered
pin that is threaded and has three flats. The pin is 2.5 mm long
with an upper diameter of 3.0 mm and a lower diameter of
2.0 mm. The workpieces are 76× 101× 6.35 mm plates of 7075
aluminum. The plates are mounted to a 25.4-mm-thick steel
backing plate, using two bolts and two clamps. This backing
plate is used to prevent flexing of the workpiece by providing
support against the axial force of the welding. The backing plate
can be mounted to a dynamometer to allow force measurements,
or directly to the work table.

The welding forces are measured using a three axes Kistler
9257B dynamometer with a Kistler 5004 dual mode amplifier.
The dynamometer output is then sampled by the NI computer.
The spindle motor power is simultaneously measured with a
Load Controls, Inc., PH-3 A power cell that is also sampled
by the NI computer, and is used as the process feedback signal.
Direct force measurements from the dynamometer are used only
for experimental verification.

III. FORCE MEASUREMENT

As an alternative to expensive or impractical force sensors,
the spindle motor power is considered as a force feedback signal.
Spindle motor power sensors are much less expensive than force
sensors and are already present on most machine tools. The use
of spindle motor power as a force feedback signal is described
below.

A. Force Calculation From Power

In [26], the authors calculate tool Pt (W), or heat input per
unit time q0 , as

q0 = Pt = SM =
2
3
μeπSpR3 (1)

where S (r/s) is the spindle speed, M (Nm) is the torque, μe is
an effective friction coefficient that lumps the effects of spindle
motor efficiency, tool pin profile, and workpiece shearing, p
(Pa) is the pressure on the plate, and R (m) is the radius of the
tool shoulder. Since the axial force is Fz = πpR2 (N), one can
obtain

Pt =
2
3
μeSFzR. (2)

The tool power can be related to the measured spindle power
Pm (W) by subtracting the power required to idle the tool Pi (W)
at a given spindle speed: Pt = Pm − Pi . Combining this with
(2) and solving for Fz allows the axial force to be calculated
from the measured power as

Fz = 90
(Pm − Pi)
(2πμeωR)

(3)

where ω = (60/2πS) is the spindle speed in RPM.

B. Spindle Idle Power Identification

The idle power was identified by measuring the spindle power
at various speeds in the expected FSW operating range of 1000–
3000 RPM (CCW) while idling the spindle. The power was
measured both with and without the tool in the spindle, and linear

TABLE II
FRICTION COEFFICIENT EXPERIMENT CONDITIONS

Fig. 3. Calculated μe for experiments 1–2 (typical of remaining experiments).

trend lines were fit to both sets of data. The data show a good fit
with R2 = 0.999 in both cases. The relationship including the
tool was selected, i.e.,

Pi = aiω + bi = 0.13ω + 24.3 (4)

where ai and bi are linear fit coefficients. Combining (4) with
(3) yields the final axial force equation

Fz =
90

(2πμeR)

(
Pm − bi

ω − ai

)
. (5)

C. Effective Friction Coefficient Identification

To identify μe welding experiments were performed across
a range of values for spindle speed, plunge depth, and feed
rate. The selected experimental conditions are listed in Table II.
Measurements of the weld forces and spindle power were taken
during welding. Each welding process consists of three stages:
plunging into the workpiece at a rate of 12 mm/min, preheat
welding at a rate of 40 mm/min for 5 mm, and finally, welding
at full speed for 85 mm. At the end of the weld, the tool is
immediately withdrawn from the workpiece. All welding op-
erations are performed on the face of a single workpiece, i.e.,
bead-on-plate.

The experimental data are used to identify the effective fric-
tion coefficient by solving for μe in (5). The friction coefficient
value fluctuates during the tool plunge and preheating stages
of the welding process, but becomes nearly constant during the
full speed portion of the weld. This trend is shown in Fig. 3
for the first two experiments. The average experimental friction
coefficient is 1.12 with a standard deviation of 0.09.
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Fig. 4. Proposed model structure.

IV. AXIAL FORCE DYNAMICS

The dynamic model for axial force of FSW Fz (N) is con-
structed as the combination of a static nonlinear input gain
portion and a unity gain linear dynamic portion in an approach
based on the Hammerstein model [27], as shown in Fig. 4. The
input velocity v, spindle speed ω, and plunge depth d are mapped
through the nonlinear input gain f (ω, d, v). The linear dynamic
submodel represents the dynamic behavior of the average axial
force Fz . An output disturbance Δ is also considered.

The dynamic model is fit to the step responses taken from
experiments 13 and 14 (described in Table II) across the tran-
sition from slow speed preheating to normal welding regions.
This corresponds to a traverse velocity step change from 40 to
180 mm/min. The experimental axial force data contain noise
at 33.3 Hz (2000 RPM) from the spindle rotation. A Fourier
analysis of the spindle power measurement did not contain any
significant component at 33.3 Hz, thus it is believed that this
force fluctuation is due to the run out of the tool. This noise
was filtered out to aid model identification using a fourth-order
low-pass Butterworth filter with a cutoff frequency of 15 Hz.

The filtered data are next offset and scaled to yield a unity
gain step response. The dynamic response of the offset and
normalized data is represented by the transfer function

(Fz − Fz,0)
(Fz,ss − Fz,0)

= G (s) (6)

where Fz,0 , Fz,ss are the initial and steady-state axial force val-
ues, respectively. A continuous unity gain model was fit to the
offset and normalized data using the MATLAB system identifi-
cation toolbox. The resulting model is

G (s) =
614.6

s2 + 54.57s + 614.6
. (7)

The full-scale signal can be reconstructed by rearranging (7) as

Fz = G (s) (Fz,ss − Fz,0) + Fz,0 . (8)

The full-scale simulated dynamics are compared with the unal-
tered experimental data in Fig. 5.

The input parameters will be used to model the steady-state
axial force using the form

Fz,ss = f (ω, d, v) = Kωαdβ vγ (9)

similar to that used in [28]. K,α, β, γ are coefficients that must
be determined. Force data collected from the friction coeffi-
cient experiments show that a steady-state axial force is rarely
achieved during the full-speed welding portion. To fit a model
such as (9) an effective average force for each experiment was
determined by taking the average of the axial force over the

Fig 5. Full-scale simulated dynamic response (dashed) compared with ex-
perimental axial force response to traverse velocity step change from 40 to
180 mm/min from experiment #13 (solid).

Fig. 6. Typical axial force variation during the constant parameter portion of
a stir weld.

last half of the full-speed portion of each weld. This region was
selected to capture the typical amount of variation while ex-
cluding any start-up transients. One additional data point was
taken from the “slow” portion of exp. #13 just prior to the step
change to normal traverse speed. It is referred to below as exp.
#0. This data point was added to allow the static model to in-
clude the parameter range used in the dynamic step response
analysis. The force variation during the normal speed portion of
the process is significant, as shown in Fig. 6. Variations of over
500 N are common, and the nature of the variation is not repeat-
able. The axial force tends to increase with increasing traverse
rate and decreasing spindle speed. The effect of plunge depth is
less consistent—sometimes increasing the force and sometimes
decreasing it.

The model coefficients were fit using the least squares ap-
proach after setting K = eκ and taking the natural log of (9),
i.e.,

ln (Fz,ss) = ln
(
eκωαdβ vγ

)
= κ · 1 + α ln (ω) + β ln (d) + γ ln (v)

= 12.92 − 0.7817 ln (ω) − 0.0308 ln (d)

+ 0.1623 ln (v) . (10)
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Fig. 7. Experimental versus modeled forces.

After fitting, the R2 coefficient is .702 and the average absolute
error is 141 N. The model predictions are compared with the
experimental data in Fig. 7. The model captures the general trend
of the data, but does not accurately predict each point. This is as
good as can be expected since the large axial force variations in
the identification experiments prevent the true steady state force
values from being observed. Adaptive control will be required
for good system performance with such large model error.

One can obtain from equations (8) and (9)

Fz = G (s) (f (ω, d, v) − f (ω, d, v0)) + f (ω, d, v0) . (11)

Defining an offset regime “∗” for control design where F ∗
z =

Fz − f (ω, d, v0) and f ∗ (ω, d, v) = f (ω, d, v) − f (ω, d, v0)
and substituting them into (11) yields the nominal offset
dynamics

F ∗
z = G (s) f ∗ (ω, d, v)

=
614.6

s2 + 54.57s+ 614.6
e12.92ω−0.7817d−0.0308v0.1623 . (12)

For a given set of constant parameter values ω and d the sim-
plified notation f ∗

ω,d (v) is used for the nonlinear input gain.
After including the output disturbance the dynamic model is
represented in the state-space form as

ζ̇ = Aζ + Bf ∗
ω,d (v)

F ∗
z = Cζ + Δ (13)

where ζ is the state vector and

A =

[
0 1

−614.6 −54.57

]
B =

[
0

614.6

]
C =

[
1 0

]
.

The modeled magnitude shows significant error during the
weld due to the large disturbances, but is at least in the correct
range of the weld force when comparing the modeled step re-
sponse with the full duration of the normal weld. Variations in
the substrate surface cause the actual plunge depth to change
during the welding process, which leads to uncertainty in the
value of f ∗

ω,d . This uncertainty is represented by introducing

a bounded unknown parameter θ1 such that f ∗
ω,d = θ1 f̂

∗
ω,d . To

accommodate control design the system input can be linearized
with the substitution u = f̂ ∗

ω,d (v). After determining the con-
trol effort u the commanded velocity is then calculated from
v = f̂ ∗,−1

ω,d (u). The output disturbance is defined as Δ = θ2 + Δ̃
where θ2 is a bounded unknown parameter representing the
slowly varying component of the disturbance, and Δ̃ represents

the high frequency noise. The linearized model dynamics are
now represented in terms of the unknown parameters θ1 , θ2 as

ζ̇ = Aζ + Bθ1u

F ∗
z = Cζ + θ2 + Δ̃. (14)

Define the parameter estimates θ̂i = θi − θ̃i , where θ̃i is the
estimate error. Assuming that the bounds θi,min and θi,max of
θi are known, the following discontinuous projection adaption
law will be used

˙̂
θi = Projθ̂ i

(γiτi) (15)

where γi > 0 is the adaptation gain and τi is an adaptation
function that will be determined later. The projection mapping
is defined in [15] as

Projθ̂ i
(•i) =

⎧⎪⎨
⎪⎩

0, if θ̂i = θi,max and •i > 0

0, if θ̂i = θi,min and •i < 0

•i , otherwise.

(16)

V. CONTROL DESIGN

The ARC method is applied to the system in a backstep-
ping framework to accommodate the unmatched disturbances
in the system. The first state can be calculated from the output
measurement, but the second state must be estimated. Observer
design for the second state will be discussed in the following
section. The first error term is defined as z1 = F ∗

z − F ∗
z ,d and

has the derivative ż1 = ζ2 + ˙̃Δ − Ḟ ∗
z ,d . The first virtual control

law can then be chosen as

ζ2,d = −k1z1 + Ḟ ∗
z ,d + α1s (17)

where k1 > 0 is a control gain and α1s is a robust control term
which is designed later. The second error term is then z2 =
ζ2 − ζ2,d . The dynamics of the first error term are considered
with the Lyapunov function V1 = 1/2z

2
1 , which has the derivative

V̇1= z1 ż1

= z1(ζ2 + ˙̃Δ − Ḟ ∗
z ,d)

= z1(z2 + ζ2,d + ˙̃Δ − Ḟ ∗
z ,d)

= z1(z2 − k1z1 + Ḟ ∗
z ,d + α1s + ˙̃Δ − Ḟ ∗

z ,d)

= −k1z
2
1 + z1(α1s + ˙̃Δ) + z1z2 . (18)

A Lyapunov function considering both error terms is V2 =
1/2z

2
1 + 1/2z

2
2 , which has the derivative

V̇2 = z1 ż1 + z2 ż2

= −k1z
2
1 + z1(α1s + ˙̃Δ) + z2(z1 + ż2) (19)

where

ż2 = −614.6ζ1 − 54.57ζ2 + 614.6θ1u + k1 ż1 − F̈ ∗
z ,d + α̇1s .

(20)
Substituting ζ1 = F ∗

z − θ2 − Δ̃ from the output equation and
ż1 from earlier into (20) yields

ż2 = −614.6(F ∗
z − θ2 − Δ̃) − 54.57ζ2 + 614.6θ1u
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+k1ζ2 + k1
˙̃Δ − k1 Ḟ

∗
z ,d − F̈ ∗

z ,d + α̇1s . (21)

The control law u = ua + us , where ua is a model compensa-
tion term and us is a robust term, can now be constructed. The
control law must use θ̂1 , θ̂2 , ζ̂2 since the actual values are not
available. This lead to a final control law of

ua =
1

614.6θ̂1

(
614.6(F ∗

z − θ̂2) + 54.57ζ̂2 − k1(ζ̂2 − Ḟ ∗
z ,d)

+ F̈ ∗
z ,d − α̇1s

)

us =
1

614.6θ̂1
(−k2z2 − z1 + α2s) (22)

where k2 > 0 is a control gain and α2s is a robust term designed
later. Substituting (22) into (21) produces the Lyapunov function
dynamics

V̇2 = −k1z
2
1 + z1(α1s + ˙̃Δ) − k2z

2
2

+ z2(−614.6(θ̃1u + θ̃2 − Δ̃ − k1 ζ̃2 + k1
˙̃Δ)

+ 54.57ζ̃2 + α2s) (23)

which are stable if

z1(α1s + ˙̃Δ) ≤ ε1

z2(−614.6(θ̃1u + θ̃2− Δ̃− k1 ζ̃2+ k1
˙̃Δ)+ 54.57ζ̃2+ α2s)≤ ε2

(24)

where ε1 , ε2 are design parameters. The adaptation terms are
selected to be

τ1 = 614.6z2u τ2 = 614.6z2 . (25)

For implementation proportional gains are used for the ro-
bust control terms αis , and are lumped with the ki gains. Con-
trol gains of k1 = 10 and k2 = 50 place the error system poles
near the open-loop system poles to ensure reasonable settling
times and control efforts. The adaptation gains are selected as
γ1 = 2e − 11 and γ2 = 2e − 4, which provided a good bal-
ance between adaptation speed and noise sensitivity in sim-
ulation. The parameter estimates were limited to the ranges
0.75 ≤ θ1 ≤ 1.25 and−500 ≤ θ2 ≤ 500 to correspond with the
experimentally observed process variation.

A. Observer Design

The ADDF developed in [23] is applied directly to estimate
the unmeasured states. The ADDF operates on systems of the
form

xk+1 = fm (xk , ux,k ) + wx,k

yk = Hxk + wy,k (26)

where xk ∈ Rn is the state vector restricted to the compact
domain D ⊂ Rn , yk ∈ Rp is the output vector, ux,k ∈ Rm is the
input vector, and the globally Lipschitz nonlinear plant model
is fm (xk , ux,k ). wx,k and wy,k are independent, identically
distributed Gaussian random variables with covariances Qk and
Rk .

The ADDF is applied to the FSW system model by using
an Euler integration to discretize the continuous model. The

TABLE III
ADDF PARAMETER VALUES

TABLE IV
AXIAL WELDING FORCE EXPERIMENTAL PROCESS CONDITION SETS

observer state vector is defined to be xk = ζ (tk ) with input
ux,k = u (tk ). The state transition function can then be defined
as fm = (Axk + Bθ1ux,k ) ts + xk , where ts (s) is the discrete
time step. The output is defined as yk = f ∗

z (tk ) with H = C.
The noise terms wx,k and wy,k are not known, nor are they
required for implementation of the ADDF. However, the noise
covariance terms Qk and Rk must be specified. Since the true
covariance values are unknown, the terms are used as tuning
parameters that describe the error expected from the system
model and measurement. Other parameters include P̂ u

0 , which
relates to the confidence in the initial state estimate α, which
scales the state estimate covariance increase at each time step
β, which determines the amount of adaptation allowed, and ρ,
which determines the weighting given to a priori covariance
data. A complete explanation of the parameters is given in [23].
The parameter values selected for the experiments in this work
are given in Table III. After specifying these tuning parameters
the ADDF implementation is completely systematic.

VI. EXPERIMENTAL RESULTS

Experiments were conducted to verify the functionality of
the ARC/ADDF approach. Each run consisted of plunging the
tool into the material at 12 mm/min, then preheating the part by
moving in the traverse direction for 3 mm at a rate of 6 mm/min.
Control was then enabled and welding was performed until a to-
tal length of 90 mm had been traversed. To maintain consistency
between experiments, subsequent welding was not performed
until the workpiece temperature had returned to 30 ◦C or less.
Three sets of process conditions within the modeled parameter
range were tested (see Table IV). The expected axial force vari-
ation is above 25% of the desired value for each condition set.
Three runs of each set were performed to verify repeatability.

Fig. 8 shows the measured and calculated (i.e., spindle power-
based) axial force typical of each condition set. The commanded
velocity results for each set are shown in Fig. 9. The estimated
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Fig. 8. Calculated and measured axial force for each experimental condition
set. Horizontal dotted lines indicate desired force.

Fig. 9. Commanded velocity for each experimental condition set.

parameter values are shown in Fig. 10. Vertical dotted lines
indicate the start of control. In the preheating section prior to
the start of control the traverse rate is fixed at 6 mm/min, and
the axial force decreases as the process approaches equilibrium
after the tool is plunged into the work piece. In each case, the
calculated axial force is maintained at or very near the desired
force during the controlled portion of the weld. The average
1% settling time is 0.257 s. Fig. 10 shows that the adaptation
mechanism responds correctly to significant disturbances. Ex-
ternal disturbances of 250–500 N are estimated with θ2 , while
θ1 varies by up to 10%, which corresponds to a change in input
of up to 230 N.

The only significant deviation from the desired force occurs
at the end of the weld when the tool is approaching the end of the
workpiece. This behavior can be attributed to significant heat
buildup in the workpiece near the edges. As the tool approaches
the workpiece edge heat generated by the tool can no longer
be transferred away from the tool in all directions. The heat
is instead reflected by the end of the workpiece, causing the
material temperature near the tool to increase significantly. This
heat buildup softens the material and reduces weld forces. The

Fig. 10. Estimated values of unknown parameters for each experimental
condition set.

controller responds by increasing traverse velocity to near the
allowed maximum of 240 mm/min.

In each case, some discrepancy is observed between the cal-
culated axial force derived from the spindle power and the actual
axial force measured by the dynamometer. More interestingly,
the slopes are not always in agreement. The discrepancy indi-
cates that the method used to calculate axial force from spindle
motor power (5) does not consider all the necessary variables.
Similarities in the shape of the actual power measurement and
the velocity profile hint that the force calculation could be im-
proved by also considering the traverse velocity in (5).

These results demonstrate the effective control of FSW ax-
ial force by manipulating the traverse velocity. The combined
ARC/ADDF approach is shown to perform well even in the
presence of significant process variation and model error. Us-
ing the spindle motor power as a measure of axial force is also
shown to be feasible, but may require further refinement if more
accurate control is required.

VII. CONCLUSION

The FSW is a new and advantageous welding technique, but
can produce welds of inconsistent quality when performed with
constant process parameters. To improve weld consistency, axial
force control was implemented in this paper. An observer-based
nonlinear controller was constructed using the systematically
applicable ARC and ADDF techniques. Experimental imple-
mentation shows that the control approach offers significant
improvements to the weld force consistency in the presence of
large model uncertainty and external disturbances. Comparisons
between the actual force and the spindle power-based calculated
force indicate that the modeled relationship could be improved.
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