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Multirate Adaptive Robust Control for Discrete-Time
Non-Minimum Phase Systems and Application to

Linear Motors
Hiroshi Fujimoto, Member, IEEE, and Bin Yao, Member, IEEE

Abstract—It is well known that a plant becomes non-minimum
phase in discrete-time domain when the relative degree of the orig-
inal continuous-time plant is greater than 2 even if the plant is
minimum-phase in continuous-time domain. Thus, it was difficult
to apply the conventional adaptive controllers directly to these sys-
tems. In this paper, multirate adaptive robust control (MARC)
is proposed for these systems. This scheme is developed by the
good combination of perfect tracking control (PTC) with multirate
feedforward control which has been proposed by the first author
and discontinuous projection based adaptive robust control (ARC)
which has been proposed by the second author. Although the orig-
inal PTC can assure perfect tracking only for nominal plant, the
proposed MARC can guarantee: 1) perfect tracking for plant with
parametric uncertainty and 2) overall stability even if there exist
modeling error and disturbance. The proposed scheme is applied
to the high-speed position control of a linear motor, and the advan-
tages are demonstrated through experiments.

Index Terms—Adaptive robust control, linear motor, multirate
control, non-minimum phase system.

I. INTRODUCTION

IN MOST STUDIES of the model reference adaptive sys-
tem (MRAS) or direct self tuning regulator (STR), the plant

is assumed to be minimum phase system [1]. These adaptive
controllers are usually implemented as digital control system.
However, the discrete-time plant P [z] discretized by zeroth-
order hold with short sampling period becomes non-minimum
phase system when the relative degree of the continuous-time
plant Pc(s) is greater than 2 [2]. Even if the relative degree is
2, P [z] has a poorly dumped zero which cannot be canceled by
controller to obtain smooth control input [1]. Thus, the MRAS
and direct STR could not be utilized directly for these systems.
In the indirect STR and the adaptive pole placement, only poles
and stable zeros can be allocated and the unstable zeros remains
in the reference model, which leads the poor performance of
command response.

The unstable-zeros problem of discrete-time plant has
been resolved by zero assignment based on multirate control
[3]–[5]. This advantage has been applied to adaptive control in
[6] and [7]. However, it is shown that those methods sometimes
have the disadvantages which are large overshoot and oscilla-
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tion in the intersample points [6], [8]. The reason of intersample
oscillation is that the sign of multirate control input changes
positive and negative alternatively during one sampling period.
Then, [9] tried to remove this input oscillation as possible.

In this paper, a novel adaptive controller is proposed using
multirate feedforward control [10] without zero assignment.
The advantage of this method is that the controller can generate
smooth control input by introducing the desired trajectory of
state variables. Moreover, by combining the proposed adaptive
feedforward control, robust feedback control, and discontinu-
ous projection based parameter identification [11], the overall
stability can be guaranteed even if the plant has modeling error
and disturbance. If the plant has parametric uncertainty only and
persistent excitation (PE) condition is satisfied, perfect tracking
is achieved at every sampling point of reference trajectory.

II. MOTIVATION AND FORMULATION

A. Perfect Tracking Control

In many control applications, tracking controllers are often
employed in order to let the plant output follow a smoothed
desired trajectory. The best tracking controller is perfect tracking
controller (PTC), which has zero tracking error [12]. Perfect
tracking control can be achieved by using d-step preview action
and the feedforward controller C1[z] which is realized by the
inverse of closed-loop system Gcl[z]

C1[z] =
1

zdGcl[z]
=

1 − P [z]C2[z]
zdP [z]

(1)

r[i] = yd [i + d] (2)

where d is the relative degree of Gcl[z], r[i] is the reference
input, yd [i] is the desired trajectory, and C2[z] is the feedback
controller, as shown in Fig. 1. H and S represent holder and
sampler, respectively.

However, the discrete-time plant P [z] discretized by zero-
order hold has unstable zeros or poorly dumped zeros as men-
tioned above. Thus, C1[z] becomes unstable because Gcl[z] has
unstable zeros. Therefore, in conventional digital control sys-
tems utilizing zeroth-order holds, perfect tracking is essentially
impossible [12].

On the other hand, the first author has developed perfect track-
ing control method using multirate feedforward control instead
of the single-rate zeroth-order hold in [10]. In the perfect track-
ing control, the tracking error of plant state becomes completely
zero at every sampling point of reference input for the nominal
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Fig. 1. Two-degree-of-freedom control system.

plant.1 However, perfect tracking was not achieved when the
plant had modeling error, although good tracking performance
was preserved by combining the perfect tracking feedforward
controller with a robust feedback controller. In this paper, the
feedforward controller is tuned by the parameters which are ob-
tained through on-line identification in order to keep the track-
ing performance against the parametric uncertainty of plant.
This new scheme is named multirate adaptive robust control
(MARC).

A digital tracking control system generally has two samplers
for the reference signal r(t) and the output y(t), and one holder
on the input u(t), as shown in Fig. 1. Therefore, there exist
three time periods Tr , Ty , and Tu , which represent the periods
of r(t), y(t), and u(t), respectively [13], [14]. The input period
Tu is generally decided by the speed of the actuator, the D/A
converter, or the calculations on the CPU. On the other hand,
the output period Ty is determined by the speed of the sensor or
the A/D converter.

In this paper, multirate adaptive robust controller is proposed
in the simplest case of a SISO plant without hardware restric-
tions on the sampler and holder, that means Ty = Tu . Because
actual control systems usually have restrictions on Tu and/or Ty ,
the proposed method can be extended to general systems with
these restrictions (Ty �= Tu ) by the formulation of [10]. In the
proposed multirate feedforward control, the control input u(t) is
changed n times during one sampling period (Tr ) of reference
input r(t), as shown in Fig. 2, where n is the plant order of (3).

B. Plant Modeling and Discretization

Consider the continuous-time nth-order plant Pθ (s) de-
scribed by

Pθ (s) =
y(s)
u(s)

=
cm sm + cm−1s

m−1 + · · · + c0

sn + an−1sn−1 + · · · + a0
(3)

where m < n and θ := [an−1, . . . , a0, cm , . . . c0]T is unknown
constant parameter. The following practical assumption is made.

Assumption 1: The extent of unknown parameters is known,
i.e.,

θj ∈ (θj min, θj max) (4)

where θj min and θj max are known for all j = 1, . . . , p, p :=
n + m + 1. �

1The phrase “perfect tracking control” is originally defined in [12], which
means the plant output tracks the desired trajectory with zero tracking error
at every sampling point. Note that perfect tracking was impossible by conven-
tional single-rate controller even in the ideal situation without disturbance and
modeling error.

Fig. 2. Multirate feedforward control.

Fig. 3. Multirate hold.

The controllable canonical form of (3) is given by

ẋ(t) = Acx(t) + bcu(t), y(t) = ccx(t) (5)

where x := [x, x(1), . . . , x(n−1)]T , x(i) := dix(t)/dti , and

Ac :=




0 1 · · · 0
. . .

0 0 · · · 1
−a0 −a1 · · · −an−1


 , bc :=




0
...
0
1


 (6)

cc := [c0, . . . , cm , 0 . . . 0]. (7)

Note that the coefficients include the unknown constants. The
discrete-time plant Pθ [zs ] discretized by the short sampling pe-
riod Ty (=Tu ) becomes

x[k + 1] = Asx[k] + bsu[k] (8)

y[k] = csx[k] (9)

where x[k] = x(kTy ), zs := esTy , and

As := eAc Ty , bs :=
∫ Ty

0

eAc τ bc dτ, cs := cc . (10)

In Fig. 3, the state transition state-space model of multirate
plant P θ [z] from t = iTr = kTy to t = (i + 1)Tr = (k + n)Ty

can be represented by

x[i + 1] = Ax[i] + Bu[i] (11)

y[i] = Cx[i] + Du[i] (12)

where x[i] = x(iTr ), z := esTr and multirate input and output
vectors u,y are defined as2

u[i] := [u1[i], . . . , un [i]]T

= [u(kTy ), . . . , u((k + n − 1)Ty )]T (13)

2In this paper, the time index k and operator zs represent the shorter period
Ty = Tu , and i and z represent the longer period Tr . The operations of (13)
and (14) are called “discrete-time lifting” in advanced sampled-data control
theory [15].
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y[i] := [y1[i], . . . , yn [i]]T

= [y(kTy ), . . . , y((k + n − 1)Ty )]T . (14)

The coefficient matrices are given by (15) at the bottom of the
page.

III. MULTIRATE ADAPTIVE ROBUST CONTROL

A. Design of Feedback Controller

Before the proposed feedforward controller is designed, the
feedback controller C2[zs ] is determined. Here, the following
assumption is made.

Assumption 2: The feedback controller C2[zs ] stabilizes
the plant (3), i.e., (1 + Pθ [zs ]C2[zs ])−1 is a stable transfer
function. �

Due to the recent advancement of robust control theory, it
became possible to design a stabilizing controller for a plant
with uncertainty. Thus, this assumption may not be so diffi-
cult. The only problem of the fixed robust controller is that the
performance of closed-loop system becomes too conservative
when the plant variation is too large. The proposed controller
can recover the tracking performance by adaptive feedforward
control.

In [16], it is proven that the feedback characteristics such
as disturbance rejection performance and stability robustness
cannot be improved by the multirate feedback control. This is
true only when there is no hardware restriction in the sampling
scheme, that is Ty = Tu . Thus, it is not necessary to design a
multirate feedback controller here. A single-rate feedback con-
troller C2[zs ] is adequate in the simple case of Ty = Tu . How-
ever, when the system has sampling restriction (Ty �= Tu ), mul-
tirate feedback controller should be designed to obtain higher
feedback performance [13], [14].

B. Design of MARC

In this section, the multirate adaptive robust controller is pro-
posed as a feedforward controller based on perfect tracking
control [10] and on-line robust adaptation [11]. From (11), the
transfer functions from x[i + 1] to u[i] and y[i] are described
as

u[i] = B−1(x[i + 1] − Ax[i])

= B−1(I − z−1A) x[i + 1] (16)

y[i] = z−1C x[i + 1] + D u[i]. (17)

Fig. 4. Multirate adaptive robust controller (MARC). (Ty = Tu = Tr /n.)

As shown in Fig. 4, the feedforward input u0 is generated with
estimated parameter θ̂ as

u0[i] = B̂
−1

(I − z−1Â) xd [i + 1] (18)

where Â and B̂ can be calculated by (15) with θ̂[i].
In Fig. 4, xd(t + Tr ) is the previewed desired trajec-

tory of plant state. It is assumed that the trajectory xd(t) =
[xd, x

(1)
d , . . . , x

(n−1)
d ]T is bounded. L is the discrete-time lift-

ing operator [15] which is defined in (13) and (14). The function
of HL−1 is also represented in Fig. 3.

The block “ID” is the proposed robust identification scheme
based on recursive least-squares (RLS) algorithm with discon-
tinuous projection and conditional updating. The continuous-
time version was originally proposed in [11]. The discrete-time
algorithm is represented as

θ̂[k] = θ̂[k − 1] + Projθ̂{K[k](y[k] − ϕ[k]T θ̂[k − 1])}
(19)

K[k] =
P [k − 1]ϕ[k]

λ + ϕ[k]T P [k − 1]ϕ[k]
(20)

P [k] = (I − K[k]ϕ[k]T )P [k − 1]/λ (21)

Projθ̂j
(•j ) :=




0, if θ̂j ≥ θj max & •j > 0
0, if θ̂j ≤ θj min & •j < 0
•j , otherwise

(22)

where λ is the forgetting factor. When the persistent excitation
of regressor ϕ[k] is not satisfied, θ̂[k] and P [k] are not updated,
i.e., θ̂[k] = θ̂[k − 1] and P [k] = P [k − 1]. Several practical
methods to check the PE condition are proposed in [1] and [11].
From (22), this scheme can guarantee that θ̂[k] is bounded [11].
The output of the identified plant model can be calculated by

y0[i] = z−1Ĉxd [i + 1] + D̂u0[i] (23)

where Ĉ and D̂ is calculated by (15) with θ̂[i]. When the
tracking error e[k] is caused by disturbance or identification

[
A B

C D

]
:=




An
s An−1

s bs An−2
s bs · · · Asbs bs

cs 0 0 · · · 0 0
csAs csbs 0 · · · 0 0

...
...

...
csA

n−1
s csA

n−2
s bs csA

n−3
s bs · · · csbs 0




. (15)
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error, it can be attenuated by the robust feedback controller
C2[zs ] by applying

u[k] = u0[k] + u2[k], u2[k] = C2[zs ](y0[k] − y[k]). (24)

Theorem 1: If the PE condition of ϕ[k] and zero initial condi-
tions at t0 = i0Tr are satisfied, then perfect tracking is achieved,
i.e., x[i] = xd [i] for ∀i ≥ i0. �

Here, the zero initial conditions are defined as x[i0] =
xd [i0],u2[i0] = 0, where u2[i] is the lifting of u2[k]. The proof
is shown in the Appendix. This theorem assumes that the plant
has parametric uncertainty only, which has not disturbance and
modeling error. If persistent excitation (PE) condition of the
regressor is satisfied and disturbance is sufficient small, the pa-
rameter estimation error generally goes to zero (θ̂ → θ0) [1],
where θ0 is the true value. Moreover, the zero initial conditions
at t0 will be satisfied by C2[zs ] if the desired trajectory has a suf-
ficient long period t1 ≤ t ≤ t0 when xd(t) = 0. Then, the plant
state x[i] completely tracks the desired trajectory xd [i] at every
sampling period Tr after the instance of t0. Note that perfect
tracking is enabled by the proposed new scheme of multirate
feedforward control, while it was impossible by conventional
single-rate controllers even if θ̂ → θ0 and the zero initial con-
ditions are satisfied.

C. Robustness Against Modeling Error and Disturbance

In this section, the robustness of MARC is considered against
disturbance d, measurement noise ξ, and modeling error ∆(s).
As shown in Fig. 6, the actual plant is given by

y = P (s)(u + d), P (s) := Pθ (s) + ∆(s). (25)

The measured output ym includes the noise as ym = y + ξ. In
this case, the estimated parameter does not converge to its true
value in general. In this analysis, θ̂ is assumed to converge to
a constant value θ̂∞ �= θ0. This assumption could be achieved
by the discontinuous projection and conditional updating [11].
The discrete-time transfer functions of identified plant Pθ̂∞

(s)
and real plant P (s) are denoted as P̂ [zs ] and P [zs ] with shorter
period Ty , respectively.

In order to analyze the robustness of proposed MARC scheme
in shorter Ty domain, the transfer function from u0[k] to y[k]
of Fig. 4 is represented as in Fig. 5. Here, y0[k] = P̂ [zs ]u0[k] is
obtained from (18) and (23). The time origin k = 0 is defined
at a point after θ̂ converged to θ̂∞. Fig. 5 can be converted to
Fig. 6 equivalently [17], which shows

y[k] = P̂ [zs ]u0[k] + δ[k] (26)

δ[k] = − P̂ [zs ] − P [zs ]
P [zs ]

Ŝ[zs ]y[k] − T [zs ]ξ[k]

+ P̂ [zs ]S[zs ]d[k] (27)

where

S[zs ] = (1 + P [zs ]C2[zs ])−1 (28)

T [zs ] = 1 − S[zs ] (29)

Ŝ[zs ] = (1 + P̂ [zs ]C2[zs ])−1. (30)

Fig. 5. Single-rate system with Ty from u0[k] to y[k].

Fig. 6. Equivalent system with Fig. 5.

Fig. 7. Experimental setup.

Fig. 8. Nominal sensitivity functions.

Theorem 2: If assumption 2 holds for the actual plant (25),
the all signals are bounded. Furthermore, when θ̂ converges to
a constant value θ̂∞ �= θ0, the plant output follows:

y[i] = yd [i] + δ[i] (31)
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Fig. 9. Experimental results of proposed method (Tu = 1 [ms], with load-): (a) Output; (b) error; and (c) input.

where yd [i] := ccxd [i] and δ[i] is the sampled signal of (27) at
every Tr . �

The proof is shown in the Appendix. As the PE condition is
not assumed in this section, Theorem 2 can guarantee robust
performance in terms of transient tracking error.

From (27), T [zs ] should be small in the noise frequency
(normally high band) and S[zs ] should be small in the dis-
turbance frequency (normally low band) to make δ small. This
can be done by the disturbance observer or robust control the-
ory. The effect of modeling error and identification mismatch
P̂ [zs ] − P [zs ] can be eliminated by making Ŝ[zs ] small in the
frequency of desired trajectory. However, if the parameter ex-
tent (4) is too big, it becomes difficult to make these functions
small enough since the fixed robust controller C2[zs ] must be
designed conservatively.

IV. APPLICATION TO PRECISION POSITION CONTROL OF

LINEAR MOTOR

In this section, the proposed MARC is applied to X-Y stage
with liner motor shown in Fig. 7 [18]. In the experiments, only
the Y-axis is utilized. The plant is a current controlled linear
motor which can be modeled as

mÿ = u − bẏ − d (32)

where y is the position, m is the mass, b is the viscous friction
coefficient, d is the external disturbance which is assumed to
be a constant or slowly varying, and u is the control input
voltage which corresponds to the force command. The unknown
parameters (m, b, d) are estimated through the regression model
defined as

η = ϕT θ (33)

where η = F (s)u,ϕT = F (s)[ÿ, ẏ, 1],θ = [m, b, d]T , and
F (s) = ω2

f /(s + ωf )2 is the low-pass filter to realize the deriva-
tives in ϕ, i.e., ϕ1 = (ω2

f s2/(s + ωf )2)y. Since y(t) and u(t)
are sampled at every Ty , the discrete-time RLS is utilized and
the filter is implemented in discrete-time domain. The periods
are set to Ty = Tu = 1 [ms] and Tr = nTu = 2 [ms] because
(32) is a second-order system.

Fig. 10. Estimated parameters. (Tu = 1 [ms], with load, RLS forgetting factor
λ = 0.999, and conditional updating.)

The extent of θ is assumed to be as follows:

m ∈ (0.025, 0.2), b ∈ (0, 1.0) (34)

d ∈ (−10.0, 10.0). (35)

The feedback controller is designed based on refined disturbance
observer [19] given as

C2(s) =
Q(s)

Pn (s)(1 − Q(s))
(36)

where the nominal plant is Pn (s) = (1/(mns2)) and mn =
0.08. The poles of nominal closed-loop system are set to ωc =
2π50. Since the Pn (s) has unstable poles, Q(s) is selected
appropriately to avoid the the unstable pole/zero cancellation
between Pn (s) and C2(s) [19]. From (36), the discrete-time
controller C2[zs ] is discretized by Tustin transformation with
Tu = Ty = 1 [ms]. Fig. 8 shows the sensitivity function S[z] �
1 − Q[z] and complementary sensitivity function T [z] � Q[z]
for nominal plant. We numerically checked that this C2[zs ]
stabilized the plant Pθ [zs ] for θ in (34).
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Fig. 11. Tracking error (Tu = 1 [ms]): (a) MARC; (b) PTC; and (c) STR.

TABLE I
MAXIMUM ERROR IN STEADY-STATE. (Tu = 1 [ms], fc = 50 [HZ])

Based on (18), the proposed MARC is adaptively tuned with
θ̂[i] as

Âc :=
[

0 1
0 − b̂

m̂

]
, b̂c :=

[
0
1
m̂

]
(37)

cc := [1, 0], x := [y, ẏ]T . (38)

The d̂ in θ̂ is not used here since the C2[zs ] includes an integrator
to reject step-type disturbance.

Fig. 9 shows the experimental results of proposed MARC.
As shown in Fig. 9(a), the plant output follows the desired tra-
jectory very well. Moreover, Fig. 9(c) shows that the control
input is very smooth in spite of using multirate control. Thus,
the proposed method has resolved the problem of the conven-
tional zero-assignment method [6] which had oscillated multi-
rate input. Fig. 10 shows the estimated parameters θ̂[k] when
20-lb load is mounted on the motor. The initial value is set to
θ̂[0] = [0.027, 0.1, 0]T which corresponds to no-load condition.
The θ̂[k] converges to the parameters with load quickly by the
RLS algorithm. Thus, the tracking error of Fig. 9(b) decreases
immediately after the parameter convergence.

Fig. 11 and Table I show the comparison results between the
proposed method (MARC), feedforward self-tuning regulator
(STR) without pole/zero cancellation [1], and non adaptive per-
fect tracking controller (PTC) which is represented by (18) with
fixed parameter θ̂[0]. These three methods utilize the same feed-
back controller designed by (36). The STR has larger tracking er-
ror than the proposed MARC because the effect of unstable zero
remains in the feedforward characteristics of STR. While PTC
without adaptive scheme has good performance ‖e‖∞ = 21.4
[µm] in the no-load case, the error becomes big (50.7 µm) when
the model in feedforward controller includes the parameter mis-
match. This drawback is overcome by the proposed adaptive
scheme as ‖e‖∞ = 25.2 [µm].

V. CONCLUSION

A novel multirate adaptive robust controller using multi-
rate feedforward control was proposed. The advantage of this
method is that the feedforward controller can be designed
without considering the unstable zero problem. Thus, it is
applicable to discrete-time non-minimum phase systems. More-
over, by combining the proposed feedforward controller with
robust feedback controller and adaptive scheme, high robust
tracking performance is obtained. Finally, the proposed scheme
is applied to motion control of linear motor, and the advantages
of this approach were demonstrated through experiments.

APPENDIX

A. Proof of Theorem 1

Proof: Since the θ̂ is bounded by (22) [11] (Âc , bc) is
a controllable pair where Âc is defined in (6) with θ̂. Thus,
(Âs , b̂s) is a controllable pair for almost every period Ty [5],
[20]. Because B̂ is a controllability matrix of (Âs , b̂s) from
(15), B̂ is nonsingular in (18).

Here, the state–space representation of (18) is given by

u0[i] =

[
O −Â

B̂
−1

B̂
−1

]
xd [i + 1] (39)

which is a stable system because all poles are located at origin.
Thus, if xd [i] is bounded, the feedforward input u0 is bounded,
which means the overall system is internal stable.

When θ̂ = θ0, Â = A and B̂ = B. From (11), (18), and
(24), we find x[i0 + 1] = xd [i0 + 1] if x[i0] = xd [i0] and
u2[i0] = 0. Subsequently, it can be shown that x[i] = xd [i]
for ∀i ≥ i0. �

B. Proof of Theorem 2

Proof: Even in the case of (25), the discontinuous projec-
tion can guarantee that θ̂ is bounded [11]. Thus, in the same
way as the previous proof, we can prove that u0[k] and y0[k]
are bounded from the nonsingularity of B̂ and stability of (18).
Therefore, all signals are bounded from the assumption 2 for
P (s).
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The first term of (26) means that the fixed plant P̂ [zs ] with
θ̂∞ is controlled by u0[k] as (18) with θ̂∞. Thus, the output of
P̂ [zs ]u0[k] perfectly tracks to the desired trajectory at every Tr

from the Theorem 1. Therefore, (31) has been proven. �
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