
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

A Two-loop Performance Oriented Tip Tracking
Control of A Linear Motor Driven Flexible Beam

System with Experiments
Lu Lu, Student Member, IEEE, Zheng Chen Student Member, IEEE, Bin Yao, Senior Member, IEEE, and

Qingfeng Wang, Member, IEEE

Abstract—In this paper, a two-loop control structure for the
constrained tip regulation of a linear motor driven flexible beam
is developed to achieve high performance. Specifically, in the
inner loop, a feedback control law with freely assignable closed-
loop poles is designed to achieve arbitrarily good disturbance
rejection capability at steady state. In the outer loop, an online
trajectory replanning unit is constructed so that the tip position
output of the beam converges to its desired target as fast as
possible while all the constraints of the system are satisfied.
Theoretically, it is shown that the proposed approach can achieve
sufficiently fast transient converging speed of the tracking error
and a guaranteed steady-state tracking accuracy. The proposed
strategy is tested on a HIWIN linear motor driven stage system
with a flexible beam clamped. Experimental results obtained
demonstrate the effectiveness and applicability of the proposed
approach.

Index Terms—Flexible structures, Trajectory planning, Con-
strained Control, Input saturation.

I. INTRODUCTION

Robot manipulators are widely used in different scientific
researches and industrial applications [1], [2], [3], [4]. Tradi-
tionally, the robot manipulators are built with high stiffness
so that they can be treated rigidly and controlled easily.
However, the larger size of the actuators, the limitation of the
maximum acceleration of the system, and the higher energy
consumptions during the control process are also of significant
problems [5]. Alternatively, more and more lightweight robot
manipulators are designed and used in real applications to
achieve faster motion and smaller energy consumption. How-
ever, flexibility of the lightweight robot cannot be ignored
anymore when doing high speed motion control. It is known
that, in order to have good steady-state tracking accuracy,
higher feedback gains have to be used to suppress disturbances

Manuscript received August 24, 2011. Accepted for publication January 30,
2012.

Copyright c⃝2012 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org

The work is supported in part by the Ministry of Education of China through
a Chang Jiang Chair Professorship and in part by the US National Science
Foundation (Grant No. CMMI-1052872). Corresponding author: Bin Yao.

Lu Lu (lulu.lvlv@gmail.com) and Bin Yao (byao@ieee.org) are with the
State Key Laboratory of Fluid Power Transmission and Control of Zhejiang
University in China as a visiting PhD student and a Chang Jiang Chair Pro-
fessor respectively. They are also with the School of Mechanical Engineering,
Purdue University, West Lafayette, USA. Zheng Chen (cwlinus@gmail.com),
a student, and Qingfeng Wang (qfwang@zju.edu.cn), a professor, are
with the State Key Laboratory of Fluid Power Transmission and Control of
Zhejiang University, China.

of the system, which will inevitably excite the lower flexible
modes of the lightweight manipulator and make the closed-
loop system unstable when these modes are neglected in the
controller design stage.

Various types of control techniques have been designed
and applied to improve the performance of flexible-link robot
systems, which can be classified into two categories: non-
model based approach [6], [7] and model-based methods
[8], [9], [10], [11], [12], [13]. In non-model based boundary
controls [6], [7], simple PD-type feedback control laws with
collocated local feedback and actuation are used to dissipate
the total energy of the system for stability. Though easier
to implement due to simplicity of these energy-based control
laws, transient responses of the resulting closed-loop system
tend to be poor as there is no direct link between the tunable
controller parameters and the closed-loop performance. On
the other hand, model-based approaches are mainly based
on the truncated finite-dimensional models of the system.
Specifically, the linear quadratic (LQ) control with an observer
is used in [8] to synthesize a feedback control law to dampen
the vibration caused by flexible modes when tracking the
reference hub angle. Singular perturbation theory is applied
in [9] to decompose the flexible-link manipulator into slow
and fast subsystems and a composite controller is designed.
Trajectory tracking control of a one-link flexible arm using
feedback linearization is discussed in [10], in which the issue
of output tracking control with non-minimum phase zeros be-
comes clear. A two-part linear feedback controller is developed
in [11] to deal with the end-point tracking problem with non-
minimum phase, in which the model uncertainties such as the
Coulomb friction at the joint are not properly addressed and
the closed-loop systems has the integrator windup problem
for large movements. To deal with model uncertainties due to
parameter variations and disturbances, in [12], robust stability
and robust performance on tip tracking are expressed as the
minimization of H2/H∞ norms of the augmented system,
which is achieved by solving an optimization problem with
the tool of Linear Matrix Inequality (LMI).

The above feedback control approaches may be adequate
in dealing with disturbances and achieving good steady-
state tracking accuracy. However, transient performances of
the closed-loop systems are not clear for these feedback-
based control strategies, especially for large tip movements.
In reality, systems are often subject to a number of physical
constraints, such as the input saturation limit of the actuator,
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the velocity constraints of the moving elements, and the allow-
able deflection range of the tip position of the flexible beam.
Furthermore, the initial states of the system are sometimes very
far away from the desired trajectory. To drive the states towards
the desired trajectory as quickly as possible while satisfying
all the constraints becomes a very difficult task that may not
be achieved through pure feedback approaches alone. One
has to resort to additional constrained optimization algorithms
in order to solve the problem completely. A large class of
control strategies such as optimal control and model predictive
control[14], [15], [16], [17] do exist. However, the high com-
plexity of these constrained optimization algorithms makes
them implementable only with low sampling rate, which leads
to poor disturbance rejection capability of the resulting closed-
loop system. As a result, successful applications of these
approaches to the precision motion control of mechanical
systems are rare.

In this paper, the problem of tip position tracking control
of the linear motor driven flexible beam with constraints and
input disturbance is considered. The truncated mode method
with clamped-mass boundary condition [6], [12] is firstly used
to obtain the dynamic model of the Euler-Bernoulli beam.
Overall dynamic equations of the system is then constructed
by combining the above beam model with the 2rd-order model
of the linear motor [18], [4]. Based on the model of the system,
the novel two-loop control structure in [19] is generalized
to achieve fast transient response with constraint satisfaction
and good steady-state tracking accuracy simultaneously: a
nonlinear feedback control law in continuous time domain in
the inner-loop and a constrained optimization based trajectory
replanning unit implemented in the discrete-time domain with
the sampling rate chosen to account for the potential heavy
computation in the outer loop. The proposed control strategy
is also implemented on a HIWIN linear motor stage with
a flexible beam attached to it. Comparative simulation and
experimental results obtained demonstrate the effectiveness of
the proposed approach in practical applications.

In sum, this paper develops a novel two-loop control strat-
egy that may be extended to the control of more general
flexible systems. By seamlessly incorporating an outer-loop
online trajectory replanning unit into the feedback control
structure as done in the paper, transient performance of the
resulting closed-loop responses of the flexible system could
be improved significantly when compared to the traditional
feedback-based approaches.

II. MODELING OF THE SYSTEM

Schematic diagram of the system under study is shown
in Fig. 1. The beam is assumed to be a cantilever beam
with uniformly distributed mass. One end of the beam is
clamped to a stage having an inertia of M and the other end
is rigidly attached to a tip load which is assumed to be a
point mass of m and is free to move. The stage is powered by
the electro-magnetic force f (t) generated by a linear motor
and is constrained to move along the Y-axis direction only.
The motion of the system is in the horizontal plane, and thus
the effect of gravity is ignored. Furthermore, since the beam

deflection is very small when compared to the length of the
beam, the axial motion of the flexible beam is ignored and
only the lateral vibration of the beam is considered. Let w(x, t)
be the lateral displacement of the point on the beam having
a distance of x to its base before the beam deflects. Then,
the x-coordinate of the tip position shown in Fig. 1 is the
same as the beam length L and its y-coordinate is represented
by the lateral vibration of the beam at x = L. Let pb(t) and
pe(t) be the position of the linear motor stage and the tip of
the beam in the Cartesian coordinate OXY respectively. Then,
pe(t) = p(L, t) = pb(t) + w(L, t). The goal is to decide the
control input signal u(t) to be applied to the linear motor stage
such that the tip position pe(t) reaches to any given position
ped as fast as possible. It is noted that, though vibration of the
beam is caused by the translational acceleration at the base, the
control approach proposed in this paper can be easily extended
to the case when the movement of the base is rotational.

Figure 1. Schematic diagram of a flexible beam

Assuming that the flexible beam is very lightly damped,
using the truncated mode method with clamped-mass bound-
ary condition [6], [12], dynamic model of the system can be
obtained as follows:

(ρ
Ĺ

0
φi(x)dx+mφi(L))p̈b(t)+ q̈i(t)+2ξiωiq̇i(t)

+ω2
i qi(t) = 0, i = 1, · · · ,∞

(M+m+ρL)p̈b(t)+
∞
∑

i=1
(ρ

Ĺ

0
φi(x)dx+mφi(L))q̈i(t)

= kS(u)−bṗb(t)−∆(t).

w(x, t) =
∞
∑

i=1
φi(x)qi(t)

(1)

where ρ is the linear density of the beam inertia, φi(x) and qi
are the eigenfunction and the generalized coordinates of the
i-th vibration mode of the beam deflection respectively, with
ξi ≪ 1 and ωi being the damping ratio and the oscillating
frequency of the mode, f (t) = kS(u) represents the electro-
magnetic force generated by the linear motor when ignoring
the amplifier dynamics, in which k is the amplifier static gain,
u(t) is the input voltage, and S(.) is the saturation function
given by

S(u) =
{

u, if |u| ≤ uM
uMsign(u), if |u|> uM,

(2)

where uM denotes the input saturation limit. b represents
the viscous friction coefficient of the stage system and ∆(t)
denotes the lumped input disturbances and uncertainties such
as the un-modeled nonlinear friction acting on the stage.
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Let E and I be the Young’s modulus and the moment of
inertia of the cross section area with respect to the z-axis
of the beam respectively. Then, the frequency ωi and the
eigenfunction φi(x) of all modes are determined by [12]

ωi =
√

EI
ρ

β 2
i

L2

φi(x) = ai[cosh(βi
L x)− cos(βi

L x)
− cosh(βi)+cos(βi)

sinh(βi)+sin(βi)
(sinh(βi

L x)− sin(βi
L x))]

(3)

where βis are all the positive solutions of

1+cos(β )cosh(β )+
mβ
ρL

[cos(β )sinh(β )−sin(β )cosh(β )]= 0,

(4)
and ais are nonzero constants determined from the normaliza-
tion conditions

Lˆ

0

ρφi(x)φi(x)dx+mφi(L)φi(L) = 1 (5)

In actual applications, only the first few modes need to
be considered when the closed-loop bandwidth of the con-
troller is limited below certain values. Suppose that only
the first l modes need to be considered. Defining ∆1(x, t) =

∞
∑

i=l+1
φi(x)qi(t), Mb = M +m+ ρL and Mqi = ρ

Ĺ

0
φi(x)dx +

mφi(L), ∀i = 1, · · · ,∞, the truncated dynamical model of the
flexible beam can be written in the following compact form:[

Il×l Mq
MT

q Mb

][
q̈
p̈b

]
+

[
Cξ 0l×1
01×l b

][
q̇
ṗb

]
+

[
Kω 0l×1
01×l 0

][
q
pb

]
=

[
0l×1

kS(u)−∆(t)−∆2(t)

]
,

w(x, t) =
l
∑

i=1
φi(x)qi(t)+∆1(t),

(6)
where

q = [q1, · · · ,ql ]
T , Mq = [Mq1, · · · ,Mql ]

T ,
Cξ = diag{2ξ1ω1, · · · ,2ξlωl},
Kω = diag{ω2

1 , · · · ,ω2
l }, ∆2(t) =

∞
∑

i=l+1
Mqiq̈i(t)

(7)

III. PROBLEM FORMULATION

Let x = [q1, q̇1, · · · ,ql , q̇l , pb, ṗb]
T . Assuming that the high-

order modes can be neglected (i.e., ∆1(x, t)≈ 0 and ∆2(t)≈ 0),
the system (with input as u(t) and output as pe(t)) can then
be represented in the following state-space form:

ẋ = Ax+B(S(u)+∆′(t))
pe = Cx, (8)

where

A = {ai j}(2l+2)×(2l+2), B = {bi}(2l+2)×1,
C = [φ1(L),0, · · · ,φl(L),0,1,0],
∆′(t) =− ∆(t)

Mb−
l
∑

j=1
M2

qi

.
(9)

The coefficients of A and B are computed as follows:

a2i−1,2i = 1, ∀i = 1, · · · , l +1;

a2l+2,2i−1 =
Mqiω2

i

Mb−
l
∑

j=1
M2

q j

, ∀i = 1, · · · , l;

a2l+2,2i =
2Mqiξiωi

Mb−
l
∑

j=1
M2

q j

, ∀i = 1, · · · , l;

a2l+2,2l+2 =
−b

Mb−
l
∑

j=1
M2

q j

;

a2i,2i−1 =−Mqia2l+2,2i−1 −ω2
i , ∀i = 1, · · · , l;

a2i,2i =−Mqia2l+2,2i −2ξiωi, ∀i = 1, · · · , l;
a2i,2 j−1 =−Mqia2l+2,2 j−1,

∀i = 1, · · · , l, j = 1, · · · , i−1, i+1, · · · , l;
a2i,2 j =−Mqia2l+2,2 j,

∀i = 1, · · · , l, j = 1, · · · , i−1, i+1, · · · , l;
a2i,l+2 =−Mqia2l+2,2l+2, ∀i = 1, · · · , l;
ai, j = 0, for other i, j ≤ 2l +2.
b2i−1 = 0, ∀i = 1, · · · , l +1;
b2l+2 =

k

Mb−
l
∑

j=1
M2

q j

;

b2i =−Mqib2l+2 ∀i = 1, · · · , l.

(10)

It is easy to verify that the pair (A,B) is controllable. The
system is assumed to have the following state constraints:

x ∈ X , (11)

where X
∆
= {x : ximin ≤ xi ≤ ximax} is a bounded convex set

in R2l+2 whose bounds incorporates the information of the
position and velocity constraints of the base and the maximum
deflection constraints of the flexible beam.

Assumption 1: There exists a known constant d such that

|∆′(t)| ≤ d < uM (12)

The above assumption states that the maximum level of
the unknown input disturbance must be less than the input
saturation limit so that it is possible to design an input control
law within the saturation limit to suppress the disturbance. It is
also assumed that the values of all the generalized coordinates
q1, q̇1, · · · ,ql , q̇l , the position and velocity of the linear motor
are available for the design of feedback control law. Optical
devices, strain gauges, vision systems or real-time observers
[20] can be used to directly or indirectly obtain the values of
qis and their derivatives.

The reference tracking problem is considered in this paper.
The objective is to design a control law u(t) such that the
output pe(t) converges to the constant desired output ped as
fast as possible and the tracking error ed(t) = pe(t)− ped at
the steady state is as small as possible while the constraints
(11) are not violated all the time. For the desired reference
ped to be trackable, there exists xd = [0, · · · ,0, pbd ,0]T such
that pbd = ped , where xd satisfies the following assumptions

Assumption 2:
xd ∈ X ′, (13)

where X ′ ∆
= {x′ : x′imin ≤ x′i ≤ x′imax} is a convex set contained

in the interior of X , i.e., x′imin > ximin, x′imax < ximax.
Remark 1: Assumption 2 requires that the valid region for

the desired setpoint (and for the replanned trajectory to be
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synthesized in the future as well) X ′ should be smaller than
the region X . The margin is left for the tracking error.

IV. OVERALL CONTROLLER STRUCTURE

It is seen from the above section that two objectives - fast
transient converging speed under the constraints of the system
and good steady state tracking accuracy - need to be met
simultaneously. In the following, similar to [19], a two-loop
control structure shown in Fig. 2 is developed to solve the
problem and is outlined below:

Figure 2. Overall control structure.

• In the inner loop, a trajectory tracking controller that
explicitly takes into account the constraints of the system
to achieve a guaranteed output tracking performance
even in the presence of disturbances is designed and
implemented in continuous-time domain. Specifically, as
long as the states of the tracking error dynamics with
respect to the replanned trajectory per(t) are within a pre-
specified region Ω at certain time instance, the tracking
error dynamics will stay inside Ω thereafter in spite of the
disturbances assumed in (12) and exponentially converge
to zero when the disturbances disappear, assuming that
the replanned trajectory satisfies certain conditions set
forth.

• In order to prevent constraints violation from happening
when the initial states of the tracking error dynamics with
respect to the desired target xd are large, the reference
trajectory actually fed into the inner trajectory tracking
controller, i.e., per(t), is replanned such that (i) the initial
states of the tracking error dynamics with respect to xr are
always within Ω, (ii) per(t) satisfies all the conditions set
forth in the design of inner trajectory tracking controller,
and (iii) per(t) converges to ped as quickly as possible
for a fast overall response speed. It should be noted
that, the replanned trajectory to be generated contains not
only per(t), but also the corresponding xr(t) and ur(t).
Specific trajectory replanning algorithms that accomplish
these objectives will be developed and implemented in
discrete-time domain using relatively low sampling rate
of 1/T to accommodate the potential computation burden
in solving the posted constrained optimization problem.

V. DESIGN OF INNER-LOOP CONTROLLER

Suppose that the replanned trajectory per(t) to be syn-
thesized in the outer loop satisfies the following dynamic
equations:

ẋr = Axr +Bur
per = Cxr,

(14)

where xr is the time-varying state of replanned trajectory,
and ur is the time-varying input of the replanned trajectory.
Defining zr = x− xr to be the vector of tracking error and
er = pe − per to be the output tracking error with respect to
the replanned trajectory, the tracking error dynamics is then
represented by

żr = Azr +B[S(u)−ur +∆′(t)],
er = Czr.

(15)

Let the control law be

u = ur −σ(Kzr), (16)

where K is the vector of feedback gain such that the matrix
A−BK is Hurwitz, and the nonlinear function σ(Kzr) is
defined by

σ(Kzr) =


Kzr, if zT

r Pzr ≤ c1,
(zT

r Pzr−c1)σ1(zr)
c2−c1

+ (c2−zT
r Pzr)Kzr

c2−c1
,

if c1 < zT
r Pzr ≤ c2,

(17)

in which c1 and c2 are two positive numbers with c2 > c1.
P is the positive definite solution of the Lyapunov equation
(AT −KTBT)P+P(A−BK) =−Q where Q is some positive
definite matrix. The function σ1(zr) is defined by

σ1(zr) = 0, if zT
r PB = 0 or zT

r Qzr
2|zT

r PB| ≥ d + ε,(
d + ε − zT

r Qzr
2|zT

r PB|

)
· sign(zT

r PB), else.

(18)

where ε is a positive constant such that uM −d − ε > 0. It is
easily checked that σ1(zr) is continuous everywhere in R2l+2

except for the origin. Thus, the nonlinear function σ(Kzr) is
always continuous.

In the above control law, the nonlinear feedback term
σ(Kzr) has two regions. The linear region with zT

r Pzr ≤ c1
represents the normal operation of the system with K prop-
erly selected to meet the disturbance rejection performance
requirement at the steady-state while not being overly large
to avoid potential implementation problems such as the severe
sensitivity to noise at the steady-state and the excitation of
neglected high-frequency dynamics. The nonlinear region with
c1 ≤ zT

r Pzr ≤ c2 has a higher feedback term, which is to make
sure that when the tracking error is about to go out of the
region defined by Ω = {zr : zT

r Pzr ≤ c2}, large enough control
effort will be generated to pull the tracking error back. With
this control law, the set Ω is a positive invariant set, i.e., once
the zr is within this positive invariant set, it will not go out of
this set any more, as detailed in the following lemma:

Lemma 1: With the control law (16), the set Ω = {zr :
zT

r Pzr ≤ c2} is a positive invariant set and (11) is always
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satisfied ∀zr ∈ Ω if the following conditions are satisfied:

c2 <
ε2

KP−1KT ,

|ur| ≤ uM −d − ε,√
c2z′iP−1z′Ti ≤ min{ximax − x′imax,x

′
imin − ximin},

∀i = 1, · · · ,2l +2,
xr ∈ X ′.

(19)

In the above, z′i = [0, · · · ,0, 1︸︷︷︸
i

,0, · · · ,0].

Proof: A simple calculation shows that within the ellipse
zT

r Pzr ≤ c2, the maximum value of |Kzr| is bounded by√
c2
√

KP−1KT. Thus, the 1st inequality of (19) guarantees
that |Kzr| < ε < d + ε ≤ uM − ur. Furthermore, |σ1(zr)| ≤
d + ε ≤ uM − ur. Thus, from the expression (17), it is ob-
vious that |σ(Kzr)| ≤ uM − ur, which means that the input
u = ur −σ(Kzr) never saturates within Ω, i.e., S(u) = u. The
tracking error dynamics can then be represented as

żr = Azr +B[−σ(Kzr)+∆′(t)],
er = Czr.

(20)

Furthermore, a simple calculation also shows that√
c2z′iP−1z′Ti is the maximum absolute value of i-th

coordinate for all the points inside the ellipse zT
r Pzr ≤ c2.

From the 3rd inequality of (19), the tracking error in each
dimension is always within the margin between X and X ′.
Thus, the 4th inequality of (19) guarantees that the state
constraints are never violated.

Define V (zr) = zT
r Pzr. To prove that Ω = {zr : V (zr)≤ c2}

is a positive invariant set, it is sufficient to check that V̇ < 0
on the boundary of Ω, ∂Ω = {zr : V (zr) = c2}. To show this,
first notice that σ(Kzr) = σ1(zr) on ∂Ω. Thus, on ∂Ω, we
have the following two cases:

Case 1 : zT
r PB = 0 or zT

r Qzr
2|zT

r PB| ≥ d + ε
In this case,

V̇ = zT
r (ATP+PA)zr +2zT

r PB[−σ1(zr)+∆′(t)]
=−zT

r Qzr +2zT
r PB[Kzr −σ1(zr)+∆′(t)]

≤−zT
r Qzr +2|zT

r PB|[Kzr +d].
(21)

1⃝ When zT
r PB = 0, V̇ ≤−zT

r Qzr < 0.
2⃝ When zT

r PB ̸= 0, since |Kzr|< ε in Ω, it follows that
V̇ <−zT

r Qzr +2|zT
r PB|[ε +d]≤ 0.

Case 2 : If zT
r Qzr

2|zT
r PB| < d + ε

In this case, noticing that |Kzr|< ε in Ω:

V̇ =−zT
r Qzr +2zT

r PB[Kzr −σ1(zr)+∆′(t)]
=−2|zT

r PB|(d + ε)+2zT
r PB[Kzr +∆′(t)]

< 0.
(22)

Thus, V̇ < 0 for all the points on ∂Ω, which completes the
proof.

Lemma 2: Inside Ω, the steady-state output tracking error
(with respect to the replanned trajectory) er = pe − per is
bounded above by |er(∞)| ≤

√
min(c2,c3)

√
CP−1CT, where

c3 =
4λmax(P)BTPQ−2PBd2

λmin(Q) .
Proof: It can be checked out that, ∀c > 0, the maximum

value of |er|= |Czr| within the ellipse set Ωc = {zr :V (zr)≤ c}

is bounded by
√

c
√

CP−1CT. It is thus obvious that the lemma
is true if the level function V stays within min(c2,c3) at steady
state. When c3 ≥ c2, as Ω is a positive invariant set by Lemma
1, V ≤ c2 = min(c2,c3) which shows that the lemma is true.
When c3 < c2, we show in the following that V̇ < 0 for all the
points in Ω with c3 <V ≤ c2:

• 1) If σ(Kzr) takes the value of Kzr, then

V̇ = zT
r (ATP+PA)zr +2zT

r PB[−Kzr +∆′(t)]
= −zT

r Qzr +2zT
r PB∆′(t)

≤ − 1
2 zT

r Qzr +2∆′(t)BTPQ−2PB∆′(t)
≤ − 1

2 zT
r Qzr +2BTPQ−2PBd2

≤ − λmin(Q)
2λmax(P)zT

r Pzr +2BTPQ−2PBd2

< 0
(23)

• 2) If σ(Kzr) takes the value of σ1(zr), the proof that
V̇ < 0 is similar to that in Lemma 1. Specifically, it can
be seen from the two cases in the proof of Lemma 1 that
the fact V̇ < 0 is true not only for all the points zr on
the boundary ∂Ω = {zr : V (zr) = c2}, but also for all the
points zr with c3 <V (zr)≤ c2.

From (17), the function σ(Kzr) is either Kzr or some value
between Kzr and σ1(zr). It is thus easy to show that V̇ < 0
for all the points in Ω with c3 <V ≤ c2.

The proof is thus complete.
Remark 2: In order to better deal with the constant portion

of input disturbances, an integrator with saturation limit can be
introduced to the control law through the use of discontinuous-
projection-based adaptation law for constant input disturbances
as in [21], [22], [23]. The modified control law u is then given
by

u = ur −σ(Kzr)− ∆̂, (24)

where the integration term ∆̂ is updated by [24], [25]:

˙̂∆ = Pro j∆̂(2γzT
r PB) (25)

in which γ > 0 is an arbitrary positive value and the projection
mapping Pro j∆̂(•) is defined as

Pro j∆̂(•) =

 0 if ∆̂ = d and •> 0
0 if ∆̂ =−d and •< 0
• otherwise

(26)

Since the maximum absolute value of the term ∆̂ is d, the
disturbance estimation error ∆̃= ∆̂−∆ is bounded by 2d. Thus,
only the ′d′ in (18) needs to be replaced by ′2d′ should the
modified control law (24) is used.

Combining proofs of the above two lemmas with properties
of the discontinuous-projection-based adaptation law [21],
[24], [25], it can be shown that with the modified control
law (24), Lemma 1 and Lemma 2 are still true. Furthermore,
if the disturbance term ∆ is constant, we can define a new
Lyapunov function Va = V + 1

2γ ∆̃2 and prove the asymptotic
output tracking at steady state. These proofs are technically
complicated in details and are thus omitted here for simplicity.
In the experiment section later, the modified control (24)
will be used and its effectiveness will be shown through the
excellent experimental results obtained. △
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Remark 3: In this paper, the inner-loop controller is de-
signed based on the truncated-mode model of the flexible beam
system. However, the stability of the system may be affected
by the ignored high-order mode of the flexible beam vibration
if the controller gains are not properly selected, which is
known as "spillover problem" [26]. To avoid this problem, the
first 2l elements of the gain vector K representing the feedback
gains on the generalized coordinates of the first l modes should
be chosen small enough such that the bandwidth of the closed-
loop system is sufficiently low to avoid the excitation of the
ignored high-frequency vibration modes.
In order for (19) to be satisfied, the following controller
parameter selection procedure is proposed:

• Step 1: Choose K such that the closed-loop poles (the
eigenvalues of A − BK) are properly assigned and the
steady-state output tracking performance is met according
to Lemma 2. Compute the corresponding P by solving the
Lyapunov equation.

• Step 2: Choose ε > 0 such that uM −d − ε > 0.
• Step 3: Choose c1 and c2 to be two positive constants

such that c2 < min
[

ε2

KP−1KT ,
[min(ximax−x′imax,x

′
imin−ximin)]

2

z′iP
−1z′Ti

]
and c1 < c2.

It is easy to verify that, if the replanned trajectory yr(t) is
chosen such that

|ur(t)| ≤ uM −d − ε,
xr(t) ∈ X ′ (27)

then the above design procedure guarantees that all the in-
equalities in (19) are satisfied. Thus, noting that arbitrarily
good disturbance rejection performance has been achieved
inside the set Ω with the above design procedure, all the three
objectives stated at the beginning of this section will be met
simultaneously if the reference trajectory per(t) is generated
in such a way that it converges to the desired target ped fast
enough while satisfying (27) and keeping the initial tracking
errors zr(0) within Ω for the initial states of the system xr(0).
Such a trajectory replanning design is given in the next section.

VI. TRAJECTORY REPLANNING

The outer loop implements an online trajectory replanning
algorithm when the initial state x(0) is far away from the
desired target xd(t).

Set xr(0) = x(0) so that zr(0) = 0 ∈ Ω. Then, the following
constrained optimization problem needs to be solved so that
the constraints (27) are satisfied and the replanned trajectory
converges to the desired target as fast as possible:

min
u′r(t), t∈[0, t f ]

t f subject to

xr
′(0) = xr(0),

xr
′(t f ) = xd,

ẋr
′(t) = Ax′r(t)+Bu′r(t),
|u′r(t)| ≤ uM −d − ε,
xr

′(t) ∈ X ′, ∀t ≥ 0.

(28)

It may take some time to solve the above constrained
optimization problem, which makes it difficult to implement
the algorithm online at a high-sampling rate. However, since
the disturbance rejection performance goal has already been

met by the inner loop controller in continuous-time domain,
it is not necessary to use high-sampling rate in the outer loop
to generate the replanned trajectory. The sampling period for
the outer loop can be selected to be long enough to take
into account the heavy computational burden when solving
the constrained optimization problem (28) on-line.

Besides explicitly solving the constrained optimization al-
gorithm (28) online, a more efficient algorithm that employs
the offline pre-parametrization of the optimal trajectory can
be used as follows. It is seen that, when the constraints
|u′r(t)| ≤ uM − d − ε and xr

′(t) ∈ X ′ are fixed, the optimal
solution u∗r (t) of the above problem only depends on the
initial states xr(0) and the target output ped . Thus, one
can first solve the problem (28) off-line with various initial
conditions in the region X ′ and output targets ped , and then
parameterize the optimal solution u∗r (t) as a function of the
initial states and the desired target. The parametrized optimal
solutions are subsequently stored into the memory so that in
online implementation, only a simple evaluation procedure is
executed every time T to fetch the optimal solution u∗r (t) to
be applied in the future. This algorithm is detailed as follows:

• Offline: Solve the problem

min
u′r(t), t∈[t0, t f ]

t f subject to

xr
′(t0) = v1,

xr
′(t f ) = [0 · · · ,0, · · · ,v2,0]T ,
ẋr

′(t) = Ax′r(t)+Bu′r(t),
|ur(t)′| ≤ uM −d − ε,

xr
′ ∈ X ′, ∀t ≥ 0,

(29)

for various v1 ∈ X ′ and p′bmin ≤ v2 ≤ p′bmax, where
p′bmin and p′bmax are the lower and upper bounds of the
projection of X ′ onto the pb-axis.
The optimal solution in the future time T period, i.e.,
u∗r (t), t ∈ [t0, t0+T ], is thus a function of v1 and v2. This
function, denoted as f (v1,v2), is obtained in the offline
computation and saved into the memory for the online
use.

• Online:
– Initialization: Set ur(t) = 0, ∀t ∈ [0,T ].
– During the time period [kT,(k+1)T ], k ≥ 0:

1) Solve the following linear differential equation
with initial condition xr(kT ) to obtain xr(t), ∀t ∈
[kT,(k+1)T ]:

ẋr(t) = Axr(t)+Bur(t). (30)

The obtained xr(t) is fed into the inner-loop track-
ing controller together with ur(t) as the replanned
trajectory.
2) Plug in the values of xr((k+ 1)T ) and ped into
the function f to obtain the optimal ur(t) during the
next sampling period, i.e.,

ur(t)
t∈[(k+1)T,(k+2)T ]

= f (xr((k+1)T ), ped) (31)

Denote Xc ⊂ X as the set of all initial conditions xr(t) such
that the problem (28) is feasible. It is obvious that, if xr(t) =
exp(At)xr(0) ∈ Xc,∀t ∈ [0,T ], then ur(t) generated from the
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above on-line algorithm will be the same as the off-line time-
optimal solution in (29) with t0 = T and v1 = exp(AT )xr(0),
which definitely drives xr towards zero in a finite time.

In actual implementation, the original system can be dis-
cretized and multi-parametric programming technique [16],
[27] can be applied to solve the problem (29) offline and pa-
rameterize the optimal solution as a piecewise affine function
of the states and desired target with each definition region
being a polytope inside X ′. Commercial tools for solving
this type of problems are available [28].

It should be noted that in the offline part of the algo-
rithm, "Solving the problem (29) for various v1 ∈ X ′ and
p′bmin ≤ v2 ≤ p′bmax" does not literally mean that one has to
really evaluate all the possible initial conditions and desired
target. Actually, as detailed in the book on multi-parametric
programming [16], the overall parameterized optimal control
law is a function of the initial conditions and desired target
that consists of only finite number of pieces. Each piece of
this function has one simple expression only. Thus, it is only
necessary to pick up some finite number of initial states and
desired targets to solve for the overall parameterized control
law without any degradation of the accuracy.

Remark 4: It is seen that the set Xc determines the "maxi-
mum domain of attraction" of the desired state xd under the dy-
namic constraint ẋr

′(t) = Ax′r(t)+Bu′r(t), the input constraint
|u′r(t)| ≤ uM − d − ε and the state constraints xr

′(t) ∈ X ′.
If xr(T ) = exp(AT )xr(0) ∈ Xc, the time-optimal solution of
problem (29) exists and can be computed by the proposed
algorithm. Theoretically, it is very difficult to quantify the
exact size of Xc because of various types of constraints of the
systems. However, in actual implementation, after the original
system is discretized, Xc can be easily computed by using the
polytope algorithms in [28]. The size of Xc is generally very
large and contains the actual states of the system in almost all
the cases. Thus, the existence of the solution for (28) and (29)
will not be a serious problem in actual implementation.

VII. THEORETICAL RESULT

Noting Lemmas 1 and 2 with properties of the trajectory
replanning algorithm, the following theoretical results are
obtained for the proposed two-loop control structure strategy:

Theorem 1: Consider the inner-loop trajectory tracking
control law (16) with all the controller parameters chosen by
Steps 1 to 3 and the reference trajectories generated on-line
through the outer-loop trajectory replanning algorithm given
in section VI. Then, when xr(t) = exp(At)xr(0) ∈ Xc,∀t ∈
[0,T ], the state tracking error with respect to the desired
target (zd = x−xd) converges to Ω in a finite time, and the
constraints (11) are always satisfied. Furthermore, the steady-
state output tracking error ed(∞) (with respect to the desired
setpoint ped) is bounded by

√
min(c2,c3)

√
CP−1CT.

VIII. EXPERIMENTS

A. Experimental Setup

The same single-axe commercial stage by HIWIN set-up in
the Precision Mechatronics Laboratory at Zhejiang University
as in [29] is used. The stage is powered by an epoxy-core

linear motor and has a travel distance of 0.51m. The maximum
allowable traveling speed of the stage is approximately 2m/s.
Linear encoder is used with a position measurement resolution
of 0.5µm. An aluminum-made flexible beam is clamped on
the stage and stretches out in the direction perpendicular to
the direction of motion of the stage. The tip position is mea-
sured by a Renishaw laser interferometer with a measurement
resolution of 0.5µm. The velocity signals of the base and the
tip are obtained by directly differentiating the position signals
in discrete-time domain with a sampling rate of 5kHz. The
entire system, graphically shown in Fig. 3, is used as the
motion system hardware for the study. To implement real-time
control algorithm, the above system is connected to a dSPACE
CLP1103 controller board. The maximum input voltage sent
from controller is 10V .

Figure 3. System setup.

B. System Identification

As in [29], dynamics of the linear motor stage before the
beam is attached to it can be described by a second-order
system given by

Mp̈b = kS(u)−bṗb +∆(t). (32)

The amplifier gain k = 45N/V and M = 15kg is obtained from
the manual of the linear motor driven stage. Then a simple
least-square identification procedure is done to estimate the
normalized inertia friction coefficient b/k, from which the
estimate of b is obtained to be 32N · s/m. Since there is no
cogging force effect for the epoxy core motor, the term ∆(t) is
relatively small. The bound d for the normalized disturbance
∆(t)/(M+m+ρL) is taken as 100N/kg. The input saturation
limit uM = 10V .

The beam used in the experiment has a rectangular cross
section with the width lw = 3.98× 10−2m and the thickness
lt = 2.4×10−3m. Thus, I = 1

12 lwl3
t = 4.585×10−11m4. Other

parameters of the beam are: L = 0.4m, E = 71.7×109N/m2,
ρ = 2.7× 103kg/m3 · lw · lt . Since the tip mass is a piece of
reflection mirror with super light weight, m is taken as 0. And
the values of ξis are chosen to be zero because the damping
of the beam is too low. All the other parameters of the system
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can be calculated from the above values. The deflection of
the beam w is obtained by subtracting the measured base
position from the measured tip position. The Bode magnitude
plot of the transfer function from the base position y to the
tip deflection w is also obtained and shown in Fig. 4. It is
seen that the natural frequencies of the first several vibration
modes of the beam are 72.5rad/s, 490rad/s, 1567rad/s,
which are somewhat different from the values calculated from
the theoretical parameters, showing that the system may have
certain modeling uncertainties and parametric uncertainties.
Nominal values of the natural frequencies are then taken to
be the ones obtained from the Bode magnitude plot.

It is possible to use observers to estimate qis from the
tip position w. However, such a scheme is sensitive to the
modeling error of the beam and may be subject to significant
side effects caused by various types of disturbances of the
system. Thus, we consider only the first vibration mode and
ignore all the higher order modes. With this simplification,
the resulting system is of fourth order, and q1(t) =

w(t)
φ1(L)

,

q̇1(t) =
ẇ(t)

φ1(L)
. It must be kept in mind that the obtained q1

and q̇1 actually contains the higher-order modes effects. Thus,
when designing the feedback controller, the feedback gains on
q1 and q̇1 should be chosen to be sufficiently low so that the
high-order dynamics are not excited to cause adverse effects.

The bounds for X are as follows: x1min = − 0.005
φ1(L)

m,
x1max =

0.005
φ1(L)

m, x2min =− 0.08
φ1(L)

m/s, x2max =
0.08

φ1(L)
m/s, x3min =

−0.05m, x3max = 0.45m, x4min =−2.05m/s, x4max = 2.05m/s.
And the bounds for X ′ are as follows: x′1min = − 0.0048

φ1(L)
m,

x′1max =
0.0048
φ1(L)

m, x′2min =− 0.05
φ1(L)

m/s, x′2max =
0.05

φ1(L)
m/s, x′3min =

−0.01m, x′3max = 0.41m, x′4min =−2m/s, x′4max = 2m/s.
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Figure 4. Bode magnitude plot of the transfer function from y to w.

C. Simulation Comparisons

Before the control algorithms are put into experiments,
simulation comparisons are first done for the following four
control algorithms which may be applied to the control of
flexible beam system. The parameters of the plant used for
the simulation are selected to be the same as actual plant

parameters. The four control algorithms and their parameter
calculations are listed as follows:

• Proposed control approach (C1): The vector of the feed-
back gain of the inner-loop controller is chosen to be
K = [38 38 12000 150]. The term 12000epb + 150ėpb
is the high-gain PD term to regulate the base position
as fast and accurate as possible around the desired
target. The term 38eq + 38ėq is the deflection feedback
term with relatively low gain to dampen the vibration
of the beam while not magnifying the high-frequency
vibration modes. The resulting eigenvalues of A−BK
are −219.87, −133.13, −1.2 − 73.79i, −1.2 + 73.79i.
It is obvious that with the above feedback control law
in the inner loop, the exponential converging rate of
epb and ėpb are much faster than that of eq and ėq.
Thus, when choosing Q, the weights on the 3rd and
4th coordinates need to be much larger than the 1st
and 2nd coordinates to avoid getting an ill-shaped P.
We choose Q = diag{φ1(L)2,0.01φ1(L)2,1011,106}. P
can then be obtained by solving the Lyapunov equa-
tion with the above Q. ε = 1.653, c2 = 0.5, c1 =
0.4. With the above choices of parameters, PB =
106× [−0.0526φ1(L), 0.00001, 4.1667, 0.0155]T , which
means that the term ∆̂ is almost the same as the traditional
integrator term for the control of the base position. The
integration gain γ is taken as 10000/(4.1667×106). The
inner-loop control law is implemented with sampling
rate 5kHz, which is a relatively high sampling rate, and
the trajectory generation algorithm is implemented in
the outer loop with a much larger sampling period of
T = 0.02sec.

• Linear state feedback approach (C2): A traditional linear
state-feedback controller is also designed and imple-
mented for comparison purpose. The linear controller
has the form u =−K(x−xc)−γBTP

´ t
0(x(τ)−xc(τ))dτ ,

where xc = [0,0, pc,0]T and pc is the reference command.
The controller gains K and γ are chosen to be the same as
in C1. In other words, the controller to be compared with
is a pure linear version of the proposed inner-loop control
law without outer-loop trajectory replanning algorithm.

• PID control for the linear motor only without considering
the flexibility of the beam (C3): To see the importance
of dampening the beam deflection, a traditional PID
control law for the linear motor stage only without
beam deflection feedback is also used for comparison.
The PID control law is u = Mp̈br(t)− kp(pb − pbr(t))−
ki
´ t

0(pb(τ) − pbr(τ))dτ − kd(ṗb(t) − ṗbr(t)). The con-
troller gains are selected to be same as those in C1
and C2, i.e., kp = 12000, kd = 150 and ki = 10000. The
reference trajectory of the base pbr(t) is taken to be an S-
curve from 0 to 0.4 with 14m/sec2 maximum acceleration
and 2m/s maximum velocity, which has already been
proved to be the time-optimal trajectory for point-to-
point movement of a 2nd-order linear motor system with
velocity and acceleration constraints [30].

• Asymptotically stable end-point regulation algorithm
proposed in [6] (C4): The control law is
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u = −kp(pb(t) − pbr(t)) − kd(ṗb(t) − ṗbr(t)) − kgg(t) ·
sgn(ṗb(t))

´ t
0 |ṗb(τ)|g(τ)dτ , which consists of a

traditional PD feedback term and an addition vibration
feedback term. In the simulation, g(t) is taken to be
the strain at the base of the beam, just as in [6]. kp,
kd and the reference trajectory pbr(t) are selected to be
the same as in C3. kg = 10000 is used as the gain of
vibration feedback term.

The desired target ped for the output is set to be a square
wave that switches between 0m and 0.4m every 15sec. This
point-to-point movement is widely used in industry. The
reference command for the controller C2 is set to be a chopped
ramp signal between 0m and 0.4m with a slope of 0.5m/s.

The tip positions of the systems with four controllers are
plotted in Fig 5. It is seen that, all controllers can drive
the tip position close to the desired target in a finite time.
C1, C3 and C4 have almost equally fast transient response
speed while C2 has a slower response speed because the use
of a slower chopped ramp signal as the reference trajectory
to track during the transient. The control inputs and beam
deflections during the transient period are plotted in Fig 6
and Fig 7, respectively. From the figures, it is seen that
the beam vibrations are very strong for C2 and C3. The
constraints on beam deflections (within ±0.005m) are already
violated for these two controllers. Though C2 uses a slower
chopped ramp signal as the reference trajectory, it did not help
much to reduce the amplitude of beam vibration during the
transient period. C3 completely ignores the flexibility of the
beam and thus the beam vibration is very severe during the
transient period and persists for a very long time thereafter. By
introducing the base strain feedback, C4 reduces the vibration
of the beam, but the vibration amplitude is still as high as
0.006m. In comparison, the beam deflection of C1 is very
smooth and has almost no visible vibration due to the use of
online trajectory replanning in the overall control scheme.
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Figure 5. Tip positions for C1, C2, C3 and C4 in simulation.
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Figure 6. Control inputs during the transient period for C1, C2, C3 and C4
in simulation.
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Figure 7. A plot of beam deflections during transient period for C1, C2, C3
and C4 in simulation.

D. Experimental Results

Next, to see the practicality of the proposed controller and
its effect to reduce beam vibration in actual implementation,
the proposed algorithm (C1) and PID control for the linear
motor only without considering the flexibility of the beam
(C3) are experimentally tested and the results are compared.
The desired trajectory is the same as that in the simulation
case. The plots of tip positions of the systems with two
controllers are similar to those in the simulation. The control
inputs and the beam deflections during the transient period
are plotted in Fig 8 and Fig 9, respectively. It is seen that
the experimental results correspond to the simulation results
very well. With the proposed algorithm, the vibration of the
beam in actual experiment is significantly reduced (almost
invisible) compared to the case when a simple PID control
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law with no active damping of beam vibration is used. The
beam deflections, the velocities of deflections, base positions
and base velocities for C1 during the transient period are
also plotted in Fig 10. From the figures, it is seen that all
the state constraints are indeed satisfied during the actual
experiment, clearly validating the proposed theoretical results
on the constraints satisfaction.
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Figure 8. Control inputs during the transient period for C1 and C3 in actual
experiments.
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Figure 9. A plot of beam deflections during transient period for C1 and C3
in actual experiments.

IX. CONCLUSION

In this paper, a new approach for the constrained tip tracking
control of a linear motor driven flexible beam system is
proposed. The proposed control strategy has a hybrid structure
with two loops. In the inner loop, a nonlinear feedback control
law is designed and implemented in continuous-time domain
to keep the tracking error with respect to the replanned trajec-
tory within certain small positive invariant set while achieving
good disturbance rejection capability at steady state. In the
outer loop, a trajectory regeneration algorithm is implemented
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Figure 10. Beam deflections, the velocity of deflections, base positions and
base velocities during the transient period for C1 in actual experiments.

in discrete-time domain to produce a replanned trajectory
that converges to the desired target as fast as possible while
satisfying all the constraints. With this two-loop approach,
fast transient converging rate of the tracking error and good
steady-state tracking accuracy can be achieved simultaneously,
as shown in the theoretical results. A HIWIN linear motor
stage with a flexible beam clamped to the base is then
used as the hardware to test practicality of the proposed
algorithm in actual implementation. Comparative simulation
and experimental results obtained all show that the closed-
loop system can indeed achieve the theoretically predicted
performances.
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Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

[11] H. Geniele, R. V. Patel, and K. Khorasani. End-point control of a
flexible-link manipulator: theory and experiments. IEEE Transactions
on Control Systems Technology, 5(6):556–569, 1997.

[12] Bo Xie and Bin Yao. Multi-objective optimization of tip tracking
control using lmi. In Proceeding of ASME International Mechanical
Engineering Congress and Exposition, pages 1533–1542, 2005.

[13] S. E. Talole, J. P. Kolhe, and S. B. Phadke. Extended-state-observer-
based control of flexible-joint system with experimental validation. IEEE
Transactions on Industrial Electronics, 57(4):1411–1419, 2010.

[14] E. Polak and T. H. Yang. Moving horizon control of linear systems
with input saturation and plant uncertainty. ii: disturbance rejection and
tracking. International Journal of Control, 58(3):639–663, 1993.

[15] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Con-
strained model predictive control: stability and optimality. Automatica,
36(6):789–814, 2000.

[16] Francesco Borrelli. Constrained optimal control of linear and hybrid
systems. Springer, 2003.

[17] U. Maeder, F. Borrelli, and M. Morari. Linear offset free model
predictive control. Automatica, 45(10):2214–2222, 2009.

[18] Bin Yao, C. Hu, L. Lu, and Q. Wang. Adaptive robust precision
motion control of a high-speed industrial gantry with cogging force
compensations. IEEE Transaction on Control System Technology,
19(5):1149–1159, September 2011.

[19] L. Lu and Bin Yao. Globally stable fast tracking control of a chain of
integrators with input saturation and disturbances: a holistic approach.
In Proceedings of American Control Conference, pages 4434–4439, San
Francisco, CA, 2011. (the revised full version is submitted to ASME
Journal of Dynamic Systems, Measurement and Control).

[20] Y. F. Li and X. B. Chen. End-point sensing and state observation
of a flexible-link robot. IEEE/ASME Transactions on Mechatronics,
6(3):351–356, 2001.

[21] Bin Yao. Integrated direct/indirect adaptive robust control of SISO
nonlinear systems transformable to semi-strict feedback forms. In
American Control Conference, pages 3020–3025, 2003. The O. Hugo
Schuck Best Paper (Theory) Award from the American Automatic
Control Council in 2004.

[22] C. Hu, B. Yao, and Q. Wang. Integrated direct/indirect adaptive
robust contouring control of a biaxial gantry with accurate parameter
estimations. Automatica, 46(4):701–707, April 2010.

[23] Chuxiong Hu, Bin Yao, and Qingfeng Wang. Adaptive robust precision
motion control of systems with unknown input dead-zones: a case
study with comparative experiments. IEEE Transactions on Industrial
Electronics, 58(6):2454–2464, June 2011.

[24] Lu Lu, Zheng Chen, Bin Yao, and Qingfeng Wang. Desired compensa-
tion adaptive robust control of a linear-motor-driven precision industrial
gantry with improved cogging force compensation. IEEE/ASME Trans-
actions on Mechatronics, 13(6):617–624, 2008.

[25] Lu Lu, Bin Yao, Qingfeng Wang, and Zheng Chen. Adaptive robust
control of linear motors with dynamic friction compensation using
modified lugre model. Automatica, 45(12):2890–2896, 2009.

[26] J. Bontsema and Ruth F. Curtain. A note on spillover and robustness for
flexible systems. IEEE Transactions on Automatic Control, 33(6):567–
569, 1988.

[27] M. Kvasnica, P. Grieder, and M. Baotic. Multi-Parametric Toolbox
(MPT), available at http://control.ee.ethz.ch/mpt/. 2004.

[28] E. Kerrigan. Matlab Invariant Set Toolbox, available at http://www-
control.eng.cam.ac.uk/eck21/matlab/invsetbox/index.html. 2005.

[29] C. Hu, Bin Yao, and Q. Wang. Performance oriented adaptive robust
control of a class of nonlinear systems preceded by unknown dead-
zone with comparative experimental results. IEEE/ASME Transactions
on Mechatronics, 2013. (in press and available on line with DOI
10.1109/TMECH.2011.2162633).

[30] Keun-Ho Rew and Kyung-Soo Kim. A closed-form solution to
asymmetric motion profile allowing acceleration manipulation. IEEE
Transactions on industrial electronics, 57(7):2499–2506, July 2010.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lu Lu received his B.Eng degree in Mechatronic
Control Engineering from Zhejiang University in
China in 2008. He is currently a direct PhD student
in the School of Mechanical Engineering at Purdue
University.

 

 

 

Zheng Chen is currently a direct PhD student
in Mechatronic Control Engineering at Zhejiang
University in China, from which he received his
B.Eng degree in 2007. He was a visiting scholar
in the School of Mechanical Engineering at Purdue
University from 2008 to 2010.

Bin Yao received his PhD degree in Mechanical
Engineering from the University of California at
Berkeley in 1996 after obtaining M.Eng. degree in
Electrical Engineering from Nanyang Technologi-
cal University of Singapore in 1992 and B.Eng.
in Applied Mechanics from Beijing University of
Aeronautics and Astronautics of China in 1987. He
has been with the School of Mechanical Engineering
at Purdue University since 1996 and was promoted
to the rank of Professor in 2007. He was honored
as a Kuang-piu Professor in 2005 and a Changjiang

Chair Professor at Zhejiang University by the Ministry of Education of China
in 2010 as well.

Dr. Yao is the recipient of a NSF CAREER Award in 1998, a NSFC Joint
Research Fund for Outstanding Overseas Chinese Young Scholars in 2005, the
O. Hugo Schuck Best Paper (Theory) Award from the American Automatic
Control Council in 2004, and the Outstanding Young Investigator Award of
ASME Dynamic Systems and Control Division (DSCD) in 2007. He has
chaired numerous sessions and served in a number of International Program
Committee of various IEEE, ASME, and IFAC conferences including the
General Chair of the 2010 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. He was a Technical Editor of the IEEE/ASME
Transactions on Mechatronics and an Associate Editor of the ASME Journal
of Dynamic Systems, Measurement, and Control. More detailed information
can be found at https://engineering.purdue.edu/˜byao

Qingfeng Wang received his Ph.D. and M.Eng.
degrees in Mechanical Engineering from Zhejiang
University, China, in 1994 and 1988 respectively. He
then became a faculty at the same institution where
he was promoted to the rank of Professor in 1999.
He was the Director of the State Key Laboratory of
Fluid Power Transmission and Control at Zhejiang
University from 2001 to 2005 and currently serves
as the Head of the Institute of Mechatronic Con-
trol Engineering. His research interests include the
electro-hydraulic control components and systems,

hybrid power system and energy saving technique for construction machinery,
and system synthesis for mechatronic equipment.


