optimization procedure. The optimization is carried out by simple comparisons, enabling the procedure to be used easily on a personal computer. Even if a rather coarse grid and as few as three allowable values for control are used, convergence is rapid and the results are reliable.

REFERENCES

When two robots grasp a common object, they form a closed kinematic chain mechanism. This will impose a set of homogenous constraints on the positions of the robots. As a result, degrees of freedom (DOF) of the whole system decrease, and internal forces are generated and needed to be controlled [1]–[6].

When the grasped object comes in contact with rigid surfaces, kinematic constraints are imposed on the motion of the object and contact forces are generated. It is necessary to control both the motion of the object on the constraint surfaces and the generalized constrained force. This problem has been extensively studied in recent years for a single arm [11]–[13] which is referred to nonlinear singular system [11].

The problem of constrained object grasped by multiple robots has been discussed in [7]–[10]. Nonlinear state feedback is used to linearize and decouple the robot system with respect to the object motion, internal force, and constrained force by Yur [7] and Yoshikawa and Zheng [8]. The methods are based on the exact model of the system. To deal with the uncertainties in the dynamic modeling of the system, Hu and Goldenberg [10] derived an adaptive law from Popov hyperstability theory. The controller needs the measurements of acceleration and force derivative. A VSC method [9] is developed for motion and constrained force control of the object, in which the internal force control is not considered.

In this note, we study the robust motion, internal force, and external contact force control problem of two manipulators grasping a common object which is constrained by the environment in the presence of parametric uncertainties and external disturbances both in the robot and in the object. The dynamic equations of the robots combining with the dynamic and kinematic constraints imposed on the manipulators and the object are reformulated in the joint space. Based on a transformed dynamic equation of the robotic system, motion and force control are designed together via a VSC method. The proposed VSC controller can guarantee the system with prescribed qualities both in the sliding mode and during the reaching transient. Simulation results of two-three-DOF robots grasping a common object moving on a circular surface are given to illustrate the proposed method.

II. DYNAMIC EQUATION OF ROBOTIC SYSTEM AND PROBLEM FORMULATION
Consider two n_r-joint serial link manipulators handling a rigid object in an n_o dimensional workspace where $n_o \leq n_r$. It is assumed that both robot end-effectors grasp the object firmly at two specified points. Hence, a closed-loop kinematic chain mechanism is formed. Kinematic constraints are imposed on the relative motion between the end-effectors throughout the entire period during which the task is performed.

Let $OXYZ, O_1X_1Y_1Z_1$ (see Figs. 1 and 2) be the Cartesian reference frame and the base reference frame of the ith robot, respectively. O_1XYZ is the object frame fixed relative to the object and $O_1X_1Y_1Z_1$ is the end-effector frame of the ith robot located at the grasped point. The dynamic equation of the ith robot can be written as

$$M(q_i)\ddot{q}_i + C_i(q_i, \dot{q}_i, \ddot{q}_i) + G(q_i) + J_i^T(q_i)F_{ei} + \tau_i = \tau, \quad i = 1, 2$$

where q_i is the $n_i \times 1$ joint displacement vector, τ_i is the
applied joint torque, $M(q_i)$ is the inertia matrix, $C(q_i, ̇q_i)$ is the coriolis and centrifugal vector, $G(q_i)$ is the gravitational vector, $f(t)$ is the external disturbance, F_0 is the $n_0 \times 1$ vector of forces/moments on the object exerted by the ith robot at the end-effector, $J_i(q_i) = \frac{\partial x_i(q_i)}{\partial q_i}$ is the corresponding manipulator Jacobian matrix which is assumed to be of full rank in the work space and x_i is the $n_0 \times 1$ position and orientation vector of the end-effector frame $O_iX_iY_iZ_i$ in the base reference frame $O_0X_0Y_0Z_0$. The dynamic equation of the grasped object can be written as

$$M_i(\ddot{q}_i) + C_i(q_i, \dot{q}_i) \ddot{q}_i + G_i(q_i) + f_i(t) = K \sum_{i=1}^{2} F_i - F_c \; \quad (2)$$

where p is the $n_0 \times 1$ position and orientation vector of the object frame oxyz in OXYZ, $M_0(p)$, C_0, $G_0(p)$, $f_0(t)$ have the same meaning as in (1), F_c is the contact force vector on the environment exerted by the object, F_c is the equivalent force representation of F_0 given by

$$F_c = L_i^T F_0$$

$$L_i^T F_0 = L_i^T F_i \; \quad (3)$$

where L_i is the nonsingular transformation matrix between the object position and the ith robot end-effector position given by

$$\dot{p} = L_i(x_i) \dot{x}_i \quad L_i(x_i) = \frac{\partial \Phi_i(x_i)}{\partial x_i} \; \quad (4)$$

The kinematic constraints resulted from the closed chain mechanism can be written as

$$p = p(x_i) = p(x_i(q_i)) = \Phi_i(q_i) \quad \dot{p} = A_i(q_i) \dot{q}_i$$

$$\ddot{p} = A_i(q_i) \ddot{q}_i + \dot{A}_i(q_i) \dot{q}_i \quad A_i = L_i(x_i(q_i)) J_i(q_i) \in R^{n_0 \times n_0} \quad i = 1, 2. \quad (5)$$

Equations (1) and (2) have the following properties [13]. (For simplicity, we use q_0 for q).

Property 1: $M(q_i)$ is a symmetric positive definite matrix.

Moreover, for any finite workspace Ω, there exist $k' > 0$ and $k' > 0$ such that $k'_i L_i \leq M_i(q_i) \leq k'_i L_i \; \forall q_i \in \Omega, \; i = 0, 1, 2$ where L_i is the $n_i \times n_i$ identity matrix.

Property 2: The matrix $N(q_i, ̇q_i) = M(q_i) - 2C(q_i, ̇q_i)$ is a skew-symmetric matrix.

Property 3: A part of the dynamic structure is linear in terms of a suitably selected set of the robot (the object) parameters, i.e.,

$$M_i(q_i) \ddot{q}_i + C_i(q_i, \dot{q}_i) \dot{q}_i + G_i(q_i) + Y_i(q_i, ̇q_i, ̇q_{eq}, ̇q_{eq}) B_i = 0, 1, 2 \quad (6)$$

where Y_i is a $n_i \times k_i$ matrix and B_i is a $k_i \times 1$ vector containing the unknown manipulator (the object) parameters; \ddot{q}_{eq}, \dot{q}_{eq} are reference velocity and acceleration, respectively.

Due to parametric uncertainties, the exact values of β_i are not known and the available values are assumed to be $\hat{\beta}_i$. The modeling errors in (1) and (2) are assumed to be bounded by

$$|\Delta \beta_i| \leq \delta \beta_i, \quad \Delta \beta_i = \beta_i - \hat{\beta}_i$$

$$|\ddot{f}_i(t)| \leq \delta \ddot{f}_i(t) \quad i = 0, 1, 2 \quad (7)$$

where $|A| \leq B$ is true in element, i.e., $|A_{ij}| \leq B_{ij}$ and boundary values $\delta \beta_i$ and $\delta \ddot{f}_i(t)$ are known. (In the following, the operation of matrix is understood in the same meaning.)

When the object comes in contact with an environment which is completely rigid, the object motion is constrained on the contact surfaces. We assume that the environmental constraints can be represented by m mutually independent smooth hypersurfaces:

$$\Phi_0(p) = 0 \quad \Phi_i(p) = [\phi_0(p), \cdots, \phi_m(p)]^T \; \quad (8)$$

Neglecting friction force, the contact force F_c is given by [8], [11]-[13]

$$F_c = J_i^T f_c \quad J_i(p) = \frac{\partial \Phi_i(p)}{\partial p} \; \quad (9)$$

where f_c is a $m \times 1$ vector of Lagrange multipliers associated with the constraints. It is assumed that the object initially lies on the constraint manifold $\Phi_i(p) = 0$, $J_i(p) \dot{p} = 0$ and the control exercised over the object is to maintain motion of the object on it [11], [12]. In this case, it is necessary to control both the motion of the object on the constraint surfaces (8) and the generalized constrained force f_c. However, this will only determine the sum of the forces applied by the two end-effectors. Since there is a redundancy in determining the forces F_c exerted by each robot, we must also ensure the necessary coordination between them. This can be achieved by controlling the internal force in the object [1]-[6]. The internal force is defined as

$$f_{int} = (1 - \alpha) F_1 - \alpha F_2 \quad 0 \leq \alpha \leq 1 \quad (10)$$

where α is a constant weighting factor.

The above dynamic equations and constraints of the robotic system are derived directly from the physical laws. In the following, we will reformulate these equations and constraints to obtain an equivalent set in the joint space in terms of the joint vector $q = [\dot{q}_1, \dot{q}_0] \in R^{n_1 + n_0}$ and the controlled force $f = f_{int} + f'$ in a form which is suitable for designing control algorithms. From (2) and (10), we have

$$F_1 = \alpha \left(M_0 \ddot{q} + C_0 \ddot{q} + G_0 + \dot{f}_0 \right) + f_{int}$$

$$F_2 = (1 - \alpha) \left(M_0 \ddot{q} + C_0 \ddot{q} + G_0 + \dot{f}_c + f_0 \right) - f_{int} \quad (11)$$

Substituting the above and (3), (5), and (9) into (1), the resulting equation can be written in a concise form

$$M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) + \dot{f}(q, t) = \tau - D^T(q) f \quad (12)$$
where

\[
M(q) = \begin{bmatrix}
M_1(q_1) + aA_1^T M_0(p) A_1 \\
M_2(q_2) + (1 - a) A_2^T M_0(p) A_2
\end{bmatrix} \in \mathbb{R}^{(n_1 + n_2) \times (n_1 + n_2)}
\]
\[
C(q, q) = \begin{bmatrix}
C_1(q_1, \dot{q}_1) + aA_1^T C_0 A_1 + aA_1^T M_0 A_1 \\
C_2 + (1 - a) A_2^T C_0 A_2 + (1 - a) A_2^T M_0 A_2
\end{bmatrix}
\]
\[
G(q) = \begin{bmatrix}
G_1(q_1) + aA_1^T G_0(p) \\
G_2(q_2) + (1 - a) A_2^T G_0(p)
\end{bmatrix}
\]
\[
D(q) = -w \begin{bmatrix}
A_1 \\
-aJ_p(p) A_1
\end{bmatrix}
\]
\[
\dot{f}(q, t) = \begin{bmatrix}
\dot{f}_1(t) + aA_1^T \dot{f}_0(t) \\
\dot{f}_2(t) + (1 - a) A_2^T \dot{f}_0(t)
\end{bmatrix}
\]
\[
= \begin{bmatrix}
r_1^T \\
r_2^T
\end{bmatrix} \in \mathbb{R}^{n_1 + n_2}.
\]

By eliminating \(p \), the internal constraints (5) and the external constraints (8) can be written in terms of \(q \) as

\[
\Phi(q) = 0
\]
\[
\Phi(q) = \begin{bmatrix}
\Phi_1(q_1) - \Phi_2(q_2) \\
-a\Phi_1(\Phi_1(q_1)) + (1 - a) \Phi_2(\Phi_2(q_2))
\end{bmatrix} \in \mathbb{R}^{n_1 + m}
\]

with property \(D(q) = \partial \Phi(q)/\partial q \). Noticing Properties 1–3, (12) has the following properties.

Property 4: \(M(q) \) is a symmetric positive definite matrix with \(k_q^T l_{n_1 + n_2} \leq M(q) \leq k_q^T l_{n_1 + n_2} \), where \(k_q = \min\{k_1, k_2\} \) and \(k_q = \max\{k_1, k_2\} \).

Property 5: The matrix \(N(q, \dot{q}) = M(q) - 2C(q, \dot{q}) \) is a skew-symmetric matrix.

Property 6: A part of the dynamic structure (12) is linear in terms of the selected set \(\beta = [\beta_1^T, \beta_2^T]^T \in \mathbb{R}^{n_1 + k_1 + k_2} \) with

\[
M(q)\ddot{q}_{eq} + C(q, \dot{q})\dot{q}_{eq} + G(q) = Y(q, \dot{q}, \dot{q}_{eq}, \ddot{q}_{eq})\beta \]

where

\[
Y(q, \dot{q}, \dot{q}_{eq}, \ddot{q}_{eq}) = \begin{bmatrix}
\alpha A_1^T Y_0(p, \dot{p}, \dot{q}_{eq}, \ddot{q}_{eq}) \\
(1 - a) A_2^T Y_0(p, \dot{p}, \dot{q}_{eq}, \ddot{q}_{eq})
\end{bmatrix}
\]

\[
\beta_{1eq} = A_1 q_{1eq} \quad \beta_{1eq} = A_1 q_{1eq} + A_1 \dot{q}_{1eq}
\]

\[
\beta_{2eq} = A_2 q_{2eq} \quad \beta_{2eq} = A_2 q_{2eq} + A_2 \dot{q}_{2eq}
\]

In the constrained robotic system (12), the imposed constraints (14) result in a loss of degrees of freedom of the system which is reduced to \(k = n_1 + n_2 - (n_0 + m) \). Therefore, we assume that the robotic system configuration can be characterized by \(k \) independent generalized coordinates \(\Psi(q) = \{\psi_1(q), \ldots, \psi_k(q)\}^T \) which are twice continuously differentiable and independent of \(\Phi(q) \). In them, \(n_0 - m \) generalized coordinates are used to parameterize the motion of the object on the constraints surfaces. The others are used to characterize the self-movement of the robot when the robot is redundant. When each robot is nonredundant, that is, \(n_i = n_0, k = n_0 - m \), the motion of the robotic system is completely determined by the motion of the object on the constraint surfaces.

The robust motion, internal force, and constrained force control problem of the robotic system is stated as that of designing a controller so that the robotic system with the constraints (14) follows the desired motion trajectory \(\Psi(q_d(t)) \) while exciting the desired internal force and constrained force \(f_d(t) = [f_{int}(t), f_{con}(t)]^T \) under the modeling errors (7).

III. VSC COORDINATED MOTION AND FORCE CONTROL OF ROBOTIC SYSTEM

Define a nonlinear transformation

\[
r(q) = [r_1^T, r_2^T]^T \quad r_1 = \Phi(q) \quad r_2 = \Psi(q)
\]

\[
\dot{r} = J_q \dot{q} \quad J_q = \begin{bmatrix}
D(q)^T, J_p(q)^T \end{bmatrix}
\]

where \(J_q = \partial \Psi(q)/\partial q \).

Substituting (17) into (12), multiplying both side by \(J_q^{-T} \), dynamic equation of the robotic system (12) can be expressed in terms of the variable \(r \) as

\[
\begin{bmatrix}
Y_1(q_1, \dot{q}_1, \dot{q}_{1eq}, \ddot{q}_{1eq}) \\
0
\end{bmatrix}
= \begin{bmatrix}
0 \\
Y_2(q_2, \dot{q}_2, \dot{q}_{2eq}, \ddot{q}_{2eq})
\end{bmatrix}
\]

\[
\beta = [\beta_1^T, \beta_2^T]^T
\]

where

\[
H(r) = J_q^{-T} M(q) J_q^{-1}
\]

\[
C(r, \dot{r}) = J_q^{-T} C(q, \dot{q}) J_q^{-1} - J_q^{-T} M(q) J_q^{-1} J_q^{-1}
\]

\[
G(r) = J_q^{-T} G(q)
\]

\[
\dot{f}(r, t) = J_q^{-T} f(t) - J_q^{-T} f(t)
\]

in which the constraints (14) is simply described by \(r_f = 0 \). The motion of the robotic system is uniquely determined by the coordinates \(r_f \), and the desired motion is given by \(r_p = \Psi(q_d(t)) \).

From Properties 4–6, (18) has the following properties.

Property 7 [9]: For finite workspace \(\Omega \) which \(J_q \) is nonsingular, \(H(r) \) is a symmetric positive definite matrix with \(k_q^T l_{n_1 + n_2} \leq H(r) \leq k_q^T l_{n_1 + n_2} \). Where \(k_q = (k_q^T c_1^2) \quad k_q = (k_q^T c_2^2) \quad c_1 = \)
max \(\sigma_{\text{max}}(I_j(q)) \) \(c_2 = \min \sigma_{\text{min}}(I_j(q)) \) and \(\sigma(I_p) \) means singular value of the matrix \(I_p \).

Property 8 [9]: The matrix \(N(r, \dot{r}) = H(r) - 2C(r, \dot{r}) \) is a skew-symmetric matrix.

Property 9: A part of the dynamic structure (18) is linear in terms of the selected set \(\beta \) in Property 6 with

\[
H(r)\dot{r}_{eq} + C(r, \dot{r})\dot{r}_{eq} + G(r) = Y(r, \dot{r}, \dot{r}_{eq}, \dot{r}_{eq}) \beta
\]
(20)

where

\[
Y(r, \dot{r}, \dot{r}_{eq}, \dot{r}_{eq}) = J_i^{-1} Y(q, \dot{q}, \dot{q}_{eq}, \dot{q}_{eq})
\]

\[
\dot{q}_{eq} = J_i^{-1} \dot{q}_{eq} = J_i^{-1} (\dot{q}_{eq} - J_i \dot{q}_{eq}).
\]
(21)

For VSC, the switching function is selected as

\[
s = \begin{bmatrix} s_1^T, s_2^T \end{bmatrix}^T = s_1 - K_p \int_0^t e_j(\mu) \, d\mu, \quad e_j = f(t) - f_d(t)
\]
(22)

where \(K_p \) is a weighting matrix, \(K_p \) is any positive definite matrix. The resulted sliding mode equation \(s = 0 \) is described by

\[
\int_0^t e_j(\mu) \, d\mu = 0, \quad \dot{e}_j + K_p e_j = 0 \text{ or } e_j \to 0
\]
(23)

and since the integral of \(e_j \) vanishes identically for any time \(t \) after the sliding mode is reached and maintained, we have, \(e_j = 0 \). The robotic system asymptotically follows the desired motion trajectory \(f_d(t) \) while exerting the desired force \(f_d(t) \).

The control torque can be determined so that the system reaches the sliding mode in finite time and has prescribed reaching transient response against the modeling errors.

Theorem 1: For the robotic system with the constraints (14), the system will asymptotically follow the desired motion trajectory \(r_b(t) \) and exert the desired internal force and external contact force \(r_d(t) \) under the modeling errors (7), if the following control torque is applied

\[
T = Y(r, \dot{r}, \dot{r}_{eq}, \dot{r}_{eq}) \beta - R_s - T_d - \epsilon \text{sgn}(s) + B_f
\]
(24)

where

\[
\dot{r}_{eq} = \begin{bmatrix} -K_i \int_0^t e_j(\mu) \, d\mu \end{bmatrix}, \quad \dot{r}_{eq} = \begin{bmatrix} -K_i e_j \end{bmatrix}
\]

\[
T_d = [(\delta T_1) \text{sgn}(s_1), \cdots, (\delta T_{N_1+N_2}) \text{sgn}(s_{N_{1+N_2}})]^T
\]

\[
\delta T = Y(r, \dot{r}, \dot{r}_{eq}, \dot{r}_{eq}) \partial \beta + |\dot{r}| \delta \dot{f}
\]

\[
\delta \dot{f} = \begin{bmatrix} \delta f_1 + a A_1^2 \delta f_0 \\ \delta f_2 + (1 - a) A_2^2 \delta f_0 \end{bmatrix}
\]

\[
\epsilon > 0 \quad \text{sgn}(s) = (\text{sgn}(s_1), \cdots, \text{sgn}(s_{N_1+N_2}))^T
\]

\(R \) is any positive definite matrix and \(\text{sgn}(\cdot) \) is the sign function. Moreover, the reaching time \(t_r \) which the system reaches the sliding mode is

\[
t_r \leq t_{\text{max}} = \frac{1}{c_3} \ln \left(\frac{c_3}{c_4} \sqrt{V_0} \right)
\]
(26)

where

\[
c_3 = \frac{2 \lambda_{\text{min}}(R)}{k_e}, \quad c_4 = \epsilon \sqrt{\frac{2}{k_e}}
\]

\[
V_0 = \frac{1}{2} s(0)^T H(r(0)) s(0)
\]

and the reaching transient response is shaped by

\[
\|s\| \leq \frac{\sqrt{2}}{k_e} \left(V_0^{1/2} + \frac{c_4}{c_3} \right) \exp(-c_3 \eta)^{1/2} - \frac{c_4}{c_3}
\]
(27)

where \(\lambda_{\text{min}}(R) \) means minimum eigenvalue of the matrix \(R \).

Proof: For the constrained robotic system (18), we choose a Lyapunov function \(V = 0.5 s^T H(r(s)) \). From Property 7, we have

\[
\frac{1}{2} k_e \|s\|^2 \leq V \leq \frac{1}{2} k_e \|s\|^2.
\]
(29)

Differentiating \(V \) with respect to time yields

\[
\dot{V} = s^T H s - \frac{1}{2} s^T H s
\]

\[
= s^T H \left(\begin{bmatrix} r_{eq}^T \end{bmatrix} - \dot{e}_j \right) + s^T C(r, \dot{r}) \left(\begin{bmatrix} r_{eq}^T \end{bmatrix} - \dot{e}_j \right)
\]

\[
= s^T \left(T - H \dot{r}_{eq} - C(r, \dot{r}) \dot{r}_{eq} - G(r) - \tilde{f}(r, \dot{r}) - B_f \right)
\]

\[
= s^T \left(T - Y(r, \dot{r}, \dot{r}_{eq}, \dot{r}_{eq}) \beta - \tilde{f}(r, \dot{r}) - B_f \right)
\]

(30)

where Property 8 has been used to eliminate the term \(1/2 s^T H s \) due to the time nature of inertia matrix, and Property 9 has been used to simplify the formula. Substituting control torque (24) into it and noticing (29), we have

\[
\dot{V} = -s^T R_s + \epsilon s^T \text{sgn}(s) - s^T T_d
\]

\[
= -s^T \left[Y(r, \dot{r}, \dot{r}_{eq}, \dot{r}_{eq}) A \beta + J_i \dot{f}(t) \right]
\]

\[
\leq -s^T R_s - \epsilon s^T \text{sgn}(s) - s^T T_d + |s|^2 \delta T
\]

\[
\leq -s^T R_s - \epsilon \sum_{i=1}^{N_1+N_2} |s_i| \leq -\lambda_{\text{min}}(R) \|s\|^2 - c_3 \|s\|^2
\]

(31)

So

\[
\sqrt{V} \leq \left(\sqrt{V_0} + \frac{c_4}{c_3} \right) \exp(-c_3 \eta)^{1/2} - \frac{c_4}{c_3}
\]

(32)

which means that in finite time \(V = 0 \), i.e., \(s = 0 \). Moreover, from (29), the reaching transient response is shaped by (28). The upper limit \(t_{\text{max}} \) of the reaching time \(t_r \) is solved by setting the right hand of (32) equal to zero which is given by (26).

Remark 1: In the above theorem, the role of the discontinuous control torque \(T_d \) is to overcome the modeling errors (7) so that the system reaches the sliding mode in finite time. Introducing the discontinuous term \(\epsilon \text{sgn}(s) \) which enhances this effect and enables us to explicitly control the reaching transient. As can be seen from (26), the larger \(\epsilon \) and \(\lambda_{\text{min}}(R) \) are, the smaller \(t_{\text{max}} \) will be, i.e., the reaching transient will be shorter. However, if \(\epsilon \) is large, there would probably appear a strong chattering in practice due to its discontinuity. A better choice is to take small \(\epsilon \) and large \(\lambda_{\text{min}}(R) \), such that the reaching transient is rapid enough and at the same time the chattering is relatively small.

The corresponding control torque in the joint space is given
\begin{align}
\tau &= Y(q, \dot{q}, \ddot{q}, \dot{q}_r, \ddot{q}_r) \hat{\beta} - I_g^2 \left[R_s + \epsilon \operatorname{sgn}(s) + T_g - Bf \right]
\end{align}

where \(\dot{q}_r, \ddot{q}_r \) is defined in (21). In practice the implementation of the control torque (33) results in control chattering since the control law is discontinuous across a sliding surface. Chattering is undesirable because it involves high control activity and may excite the neglected high-frequency dynamics. Moreover, in the case studied, control chattering also cause force response discontinuous since the applied control force can directly influence the resulted constrained force and internal force, which severely degrades the system performance. For overcoming this problem, the concept of the boundary layer [14] is used, that is, \(\operatorname{sgn}(s) \) is replaced by the saturation function sat \((s/d) \), where \(d \) is the boundary layer thickness. This leads to the system response within a guaranteed precision as demonstrated in the simulation.

IV. SIMULATION

Fig. 1 shows two three-DOF planar robots grasping a common object moving on a circular surface. For simplicity, the object is assumed to be point contact with the surface with physical size neglected. The configuration of each robot is shown in Fig. 2. Elements of the matrices in the dynamic equation (1) are given by

\begin{align}
M_{11} &= \beta_1 + 2\beta_3 L_1 C_1 + 2\beta_6 (L_1 C_1^2 + L_2 C_2)
M_{22} &= \beta_2 + 2\beta_4 L_2 C_2
M_{33} &= \beta_3
M_{13} &= \beta_3 + \beta_6 (L_1 C_1^2 + L_2 C_1)
M_{23} &= \beta_3 + \beta_6 L_2 C_2
C_{11} &= -\beta_3 L_2 \dot{q}_1 \dot{q}_3 S_3^2 - \beta_6 (L_1 S_1 q_1 S_2 + L_2 \dot{q}_3 S_3)
C_{12} &= -\beta_3 L_2 \dot{q}_1 \dot{q}_3 S_3^2 - \beta_6 (L_1 S_1 q_1 S_2 + L_2 \dot{q}_3 S_3)
C_{13} &= -\beta_6 (L_1 S_1 q_1 S_2 + L_2 \dot{q}_3 S_3)
C_{21} &= \beta_3 L_2 \dot{q}_1 \dot{q}_3 S_3^2 + \beta_6 (L_1 S_1 q_1 S_2 + L_2 \dot{q}_3 S_3)
C_{22} &= -\beta_3 L_2 \dot{q}_1 \dot{q}_3 S_3^2
C_{23} &= -\beta_3 L_2 \dot{q}_1 \dot{q}_3 S_3^2 + \beta_6 (L_1 S_1 q_1 S_2 + L_2 \dot{q}_3 S_3)
C_{31} &= \beta_6 (L_1 S_1 q_1 S_2 + L_2 \dot{q}_3 S_3)
C_{32} &= \beta_6 \dot{q}_1 \dot{q}_3 S_3^2
C_{33} &= 0
G_{11} &= (\beta_3 C_1 + \beta_5 C_1 \dot{q}_1 + \beta_6 C_1 \dot{q}_1)
G_{12} &= (\beta_3 C_1 + \beta_6 C_1 \dot{q}_1)
G_{13} &= \beta_6 C_1 \dot{q}_1
G_{21} &= \beta_3 C_1 + \beta_6 C_1 \dot{q}_1
G_{22} &= \beta_3 C_1 + \beta_6 C_1 \dot{q}_1
G_{23} &= \beta_6 C_1 \dot{q}_1
G_{31} &= (\beta_3 C_1 + \beta_5 C_1 \dot{q}_1 + \beta_6 C_1 \dot{q}_1)
G_{32} &= (\beta_3 C_1 + \beta_6 C_1 \dot{q}_1)
G_{33} &= \beta_6 C_1 \dot{q}_1
\end{align}

The matrix \(Y(q, \dot{q}, \ddot{q}, \dot{q}_r, \ddot{q}_r) \) in Property 3 can be directly obtained by substituting (34) into the left hand of (6). Parameter values of the \(i \)th robot under study are \(m_{i1} = 10 \) kg, \(m_{i2} = 10 \) kg, \(m_{i3} = 2 \) kg, \(I_{i1} = 1 \) kgm\(^2\), \(I_{i2} = 2 \) kgm\(^2\), \(I_{i3} = 0.5 \) kgm\(^2\), \(L_{i1} = 0.5 \) m, \(L_{i2} = 0.5 \) m, \(L_{i3} = 0.1 \) m, \(L_{11} = 1 \) m, \(L_{12} = 1 \) m, \(L_{13} = 0.2 \) m. Therefore, \(\beta_i = [23.5, 7.0, 0.5, 17, 7, 0.2] \). The forward kinematic relationship of the \(i \)th robot is \(x^i = x_{ei} + Y_{ei} \), \(\theta_i^i = L_{i1} C_1 + L_{i2} C_{12} + L_{i3} C_{13} + L_{i11} S_1 + L_{i12} S_{12} + L_{i13} S_{13} + \theta_i \). The dynamic equation of the object is given by

\begin{align}
\begin{bmatrix}
m_0 & m_0 \\
0 & 0 \\
0 & 0 \\
F_0 & F_0(t)
\end{bmatrix}
\begin{bmatrix}
\dot{p} \\
\dot{q}
\end{bmatrix}
+ & F_0 = \sum_{i=1}^{3} F_i,
\end{align}

\begin{align}
\begin{bmatrix}
0 \\
0 \\
0 \\
10 \\
10 \\
0.5
\end{bmatrix}
\sin \left(\frac{\pi}{2} \right)
\end{align}

where \(F_i = [f_{x1}, f_{y1}, f_{z1}, \dot{q}_r, \ddot{q}_r] \) are given by (33), and the actual values of \(m_0, I_0 \) are \(m_0 = 20 \) kg, \(I_0 = 4 \) kgm\(^2\). Defining \(\beta_0 = [m_0, I_0] \), from (36), we can obtain the matrix \(Y(q, \dot{q}, \ddot{q}, \dot{q}_r, \ddot{q}_r) \).

The exact values of the robot parameter \(\beta_i \) and the object parameter \(\beta_0 \) are assumed to be unknown with their estimated values \(\hat{\beta}_i = [14, 4, 0.3, 10, 4, 0.1] \), \(\hat{\beta}_0 = [10, 2] \). So we choose the boundaries of the modeling errors (7) as \(\delta \beta_i = [10, 4, 0.3, 7, 3, 0.1] \), \(\delta \beta_0 = [10, 2] \), \(\delta f_i = [5, 5, 0.1] \), \(\delta f_0 = [10, 10, 0.5] \). The kinematic relationships (4) among the object and the robots are given by \(p = [x_{ei}, \dot{q}_1, \dot{q}_2, \dot{q}_3] \), \(\theta_i = [d_1 - x_{ei}, x_{ei}, y_{ei}, \theta_i] \), where \(d_1 = 0.5 \) m, \(d_2 = 1 \) m. The internal constraints (5) are then calculated, and the internal force is defined by (10) where \(\alpha \) is chosen as \(\alpha = 0.5 \). The environmental constraint (8) and the constrained force (9) are given by

\begin{align}
\sqrt{x^2 + y^2} - d_3 = 0 \\
d_3 = 0.7 \text{ m} \\
F_e = [\cos \varphi \sin \varphi \varphi] T \varphi \end{align}

As each robot is nonredundant, the motion of the robotic system is determined by the motion of the object on the circular surface. Therefore, we choose generalized coordinates \(q_r \) as \(r_p = [x, y] \). The nonlinear transformation (17) are then formed. The switching function is defined in (22) where \(K_r = \text{diag}(0.02, 0.02, 2, 0.02, 0.02) \) and \(K_s = \text{diag}(15, 15) \). The control torque is calculated by (33) where \(\operatorname{sgn}(s) \) is replaced by sat \((s/d) \). The controller parameters are chosen as \(R = \text{diag}(2000, 2000, 2000, 2000, 1000, 1000) \), \(E = 1 \), \(\Delta = \text{diag}(0.03, 0.03, 0.03, 0.05, 0.05, 0.03) \), \(g = 9.8 \text{ m} \text{s}^{-2} \). The desired position, internal force and contact force trajectories are

\begin{align}
\begin{bmatrix}
x_d \ &= -0.5 \cos (0.25 \pi t) \\
\theta_d \ &= \tan \left[2 \left(\sqrt{d_3^2 - x_d(t)^2} \right) \right] - 0.5 \pi \\
f_{int} &= [0 \ 0 \ 0]^T \\
f_n &= -50 - 25 \sin (0.5 \pi t).
\end{bmatrix}
\end{align}

Figs. 3–5 show the time responses of position, internal force,
Fig. 3. Tracking error of position of the object.

Fig. 4. Time response of internal force f_{int}.

Fig. 5. Time response of contact force f_c.

Fig. 6. Time response of switching function.

Fig. 7. Joint torque of the robot 1.

Fig. 8. Joint torque of the robot 2.

and contact force of the object which verify the robust motion and force tracking control of the suggested method. The time response of the switching function is shown in Fig. 6. Robot joint torques of Figs. 7 and 8 demonstrate the elimination of chattering by using the boundary layer technique.

V. CONCLUSION

In this note, the robust motion, internal force, and contact force control problem of two manipulators grasping a common object which interacts with the environment has been considered. Kinematic and dynamic constraints imposed on the manipulators and the object are first determined to obtain a dynamic model of the entire system in the joint space. Based on a transformed dynamic equation, motion and force tracking control are designed via a VSC method with robustness to both parametric uncertainties and external disturbances. Prescribed qualities are also guaranteed during the reaching transient. Detailed simulation results illustrate the proposed method.

REFERENCES

Discrete-Time Point Process Filter for Mode Estimation

Chun Yang, Yaakov Bar-Shalom, and Ching-Fang Lin

Abstract—The performance of a tracking and prediction system of maneuvering targets can be improved by using additional (and unconventional) measurements of target features or attitude (target modes), typically provided by an image sensor processor. A model for the image-based observation channel for target-mode estimation in discrete time is presented in this note. A multidimensional point-process filter is then obtained by using the discrete-time point process theory. The characteristics of the filter are finally illustrated through simulation examples.

I. INTRODUCTION

Maneuver estimation is a major problem in advanced target tracking. The difficulty lies in the uncertainty of the maneuver. Maneuvers can be modeled as acceleration changes in the kinematic equations, and a survey of recent results in the literature can be found in [1]. However, those approaches suffer, as pointed out in [2], from a fundamental limitation when only position (range and angles) and, occasionally, Doppler rate are available. There is a significant delay between the time of an acceleration change and the time when the trajectory deviation permits us to determine that change unambiguously. Consequently, it is difficult to obtain a satisfactory maneuver detection and acceleration estimation only from those measurements.

Introducing a new source of information was proposed in [2], to exploit the significant correlation between the aircraft orientation and the direction of the acceleration. A relationship between aircraft attitude angles (yaw, pitch, and roll) and the magnitude and direction of acceleration was analytically derived in [3]. The use of an imaging sensor, in conjunction with an image processor, provides the practical means to obtain attitude measurements. Most parameters characterizing the target attitude are inherently continuous valued, like orientation angles. However, the precision limitation of processing algorithms and the time constraint involved necessitate attitude variable discretization. The mechanism of optical-matched filters or correlators [4] as well as neural network technology [5] only considers a finite set of reference patterns. These image-processing algorithms express a continuous-valued attitude in terms of a finite set of values or modes, and their output (image-based mode measurement) can be considered as a sequence of statements from a finite vocabulary describing the image content.

Due to clutter and processing error, the statement from the image sensor processor may not correspond to the actual mode of the target. Temporal filtering is necessary to yield more reliable assessments. A continuous-time probabilistic framework has been established [6] and a mode filter developed to account for the imperfection of image-based mode measurements.

In this note, the discrete-time counterpart is defined, and the discrete nature of image processing is accounted for fully: not only the discrete-valued outputs but also the fact that the output is available only at discrete times. The dependence of image sensing and processing upon the target mode is also taken into account.

II. DISCRETE-TIME IMAGING CHANNEL AND MODE FILTER

Target maneuvering is often slowly reflected in position measurements; whereas the maneuver-induced target orientation change can be quickly detected through the sudden variation of the target image [2, 3], and [6]. The imaging sensor and image processor constitute an image-based observation channel. Assume that the image sensor processor is designed to look from cluttered and noisy images for a set of modes (discretized attitude) of the target of interest, denoted by

$$m(t) \in M = \{1, \cdots, M\}. \quad (2.1)$$

Introduce an indicator vector $\phi(t)$ for $m(t)$ such that the ith element of $\phi(t)$ is

$$\phi_i(t) = \begin{cases} 1 & m(t) = i \\ 0 & \text{otherwise.} \end{cases} \quad (2.2)$$

The output of the image sensor processor is one of the M possible statements denoted by

$$n(t) \in M = \{1, \cdots, M\} \quad (2.3)$$

and a similar indicator vector $\rho(t)$ for $n(t)$. Then, $\rho(t)$ is a vector with binary elements or a point-process vector [7].

Two parameters are introduced to describe the image-sensing and image-processing procedure. The first, observation rate, characterizes the dependence of the image frame and mode statement generation upon the complexity of information, sensitivity of the detector, sophistication of processing, availability of CPU, etc. Denote the appearance of a frame of image by a binary variable such that

$$t_i = \begin{cases} 1 & \text{a statement is generated} \\ 0 & \text{no statement is available.} \end{cases} \quad (2.4)$$

Note that $t_i = 0$ implies $\rho_i(t) = 0$ for all i. This is different from the continuous-time definition, where the waiting time between two observations is assumed to be exponentially distributed [6]. Consequently, a mode-dependent rate is introduced

$$\lambda_i = P(t) = \begin{bmatrix} \lambda_1 & \cdots & \lambda_M \end{bmatrix} \quad (2.5)$$

with

$$\lambda_i = P(t) = 1|\phi_i(t) = 1) = E(t_i|\phi_i(t) = 1). \quad (2.6)$$

Manuscript received February 27, 1990; revised March 20, 1991. The work of C. Yang and Y. Bar-Shalom was supported by The Office of Naval Research under Grant N00014-91-J-1950.

C. Yang and C.-F. Lin are with the American GNC Corporation, Chatsworth, CA 91311-6110. C. Yang completed this work while at the University of Connecticut, Storrs, CT, 06369-3157.

Y. Bar-Shalom is with the Department of Electrical and Systems Engineering, University of Connecticut, Storrs, CT 06369-3157.

IEEE Log Number 920368.