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Abstract

One of the issues in the swing motion control of an industrial hydraulic excavator is to determine the

supplied 
ow rate to hydraulic swing motors such that the excavator follows the swing velocity command

given by the human driver with a smooth acceleration/deceleration in spite of various uncertainties. Some

of the diÆculties in the design of such a high performance swing velocity tracking controller are: (i) The

swing inertia is time-varying and unknown due to the movement of the linkage and the unknown payload in

the bucket; (ii) Hydraulic parameters such as bulk modulus exhibits large variations during actual operation;

(iii) The system is subjected to certain types of uncertain nonlinearities (e.g., leakage 
ows of swing motors)

during normal operations on a 
at ground; and (iv) The system may experience severe degree of uncertain

nonlinearities when operating on a slope ground; the swing torque due to gravity forces on a slope surface is

usually very large and changes quite rapidly. In this paper, by treating the supplied 
ow rate as the control

input, a high performance nonlinear adaptive robust control algorithm is presented to address the control

issues associated with the above several types of uncertainties all together at once. The presented scheme

achieves a guaranteed transient as well as a guaranteed �nal tracking accuracy to satisfy the performance

requirements of the application. In addition, asymptotic tracking is achieved in the presence of constant

parametric uncertainties for an improved performance. Simulation results are presented to illustrate the

proposed method.

�Part of the paper has been presented in 1998 American Control Conference. This work is funded by Caterpillar Inc.

and in part by the National Science Foundation under the CAREER grant CMS-9734345
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Nomenclature

_ dot overstrike represents the derivative of a variable

~ tilde overstrike represents the estimation error of a parameter or a term

^ hat overstrike represents the estimate of a parameter or a term

f�gd subscript d represents the desired value of a parameter/term �

f�gi subscript i represents the i-th element of �

f�gmax subscript max represents an upper bound of �

f�gmin subscript min represents a lower bound of �

� slope angle of ground

� 2 R6 lumped unknown physical quantities

�e bulk modulus of hydraulic 
uid

bc coeÆcient of viscous friction force

Cim internal leakage 
ow coeÆcient

Cemj; j = 1; 2 external leakage 
ow coeÆcients

Csj; j = 1; : : : ; 5 some constants in choosing speci�c robust control terms

Dmp;Dm constant coeÆcients of swing motors

e! velocity tracking error

ep load pressure tracking error

"!; "p small positive design parameters

Fc Columb friction force

� = diagf
1; : : : ; 
6g diagonal adaptation rate matrix

I swing inertia

! swing velocity

k! positive velocity feedback gain

kp positive pressure feedback gain

mL inertia load in the bucket

!input swing velocity commanded by the driver

PL load pressure of the swing motor

p1 inlet pressure of the swing motor

p2 outlet pressure of the swing motor

pref tank reference pressure

Ps pump supplied pressure

�P pressure drop across the ori�ce of a controlled valve

QL load 
ow rate of swing motor

Q1 the supplied 
ow rate at the inlet of swing motor

Q2 the 
ow rate at the outlet

Qloss 
ow loss

Qlossi internal or cross-port leakage 
ow

Qlossej external leakage 
ows

q = [q1; q2; q3]
T the vector of joint angles of the excavator arm

xv valve opening

Te torque due to reaction force of environment

Tloss torque losses due to friction of the swing motor and gears

Tg torque due to gravity forces on a slope ground

� swing angle

V0 control volume of the swing motor

wp a positive weighting factor
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1 INTRODUCTION

Hydraulic systems have been used in industry in a wide number of applications by virtue of their small

size-to-power ratios and the ability to apply very large forces and torques. However, hydraulic systems

also have a number of characteristics which complicate the development of high performance closed-

loop controllers; dynamics of hydraulic systems are highly nonlinear [1] and have large extent of model

uncertainties. Advanced control techniques have not been well developed to address these issues. This

leads to the urgent need for advancing hydraulics technologies by combining the high power of hydraulic

actuation with the versatility of advanced electronic control.

In the past, much of the work in the control of hydraulic systems uses linear control theory [2, 3, 4, 5, 6]

and feedback linearization techniques [7, 8]. In [9], Alleyne and Hedrick applied the nonlinear adaptive

control to the force control of an active suspension driven by a double-rod cylinder. They demonstrated

that nonlinear control schemes can achieve a better performance than conventional linear controllers.

They considered the parametric uncertainties of the cylinder only.

In [10], the adaptive robust control (ARC) approach proposed by Yao and Tomizuka in [11, 12, 13]

was generalized to provide a rigorous theoretic framework for the high performance robust control of a

one DOF electro-hydraulic servo-system by taking into account the particular nonlinearities and model

uncertainties of the electro-hydraulic servo-systems. The e�ects of parametric uncertainties coming from

both the inertia load and the cylinder and the uncertain nonlinearities such as friction forces were

considered. The non-smoothness of nonlinearities associated with hydraulic dynamics (e.g., the nonlinear

function describing the relationship between the 
ow rate and the valve opening) was carefully examined.

A physical intuition based modi�cation was provided to overcome the diÆculty in carrying out the

backstepping ARC design [12] caused by the non-smooth nonlinearities of the hydraulic dynamics.

In viewing the above recent developments in the nonlinear adaptive robust control of electro-hydraulic

systems, it is natural to see if we can generalize the idea to the high performance control of future

industrial hydraulic machines. As a stepping stone toward that goal, this paper focuses on some of the

fundamental issues related to the design of high performance swing velocity tracking control algorithms

for an industrial hydraulic excavator, one of the most commonly used earth-moving machines [14, 15, 16].

An industrial hydraulic excavator normally consists of a base supported by tracks, a rotating structure

with a cab to hold the human driver, and a robot-arm-like three-DOF linkage (or boom, stick, and bucket

called in hydraulic industry). The linkage is mounted on the rotating structure and is driven by three

independent hydraulic cylinders to provide the necessary motion for digging and carrying and dumping

the load in the bucket. The rotating structure is driven by hydraulic motors to provide swing motions.

As a consequence, one of the fundamental issues in the swing motion control is to determine the supplied


ow rate to the swing motors such that the resulting swing motion follows the swing velocity command

given by the human driver with a smooth acceleration/deceleration in spite of various uncertainties.

However, several diÆculties exist in the development of such a high performance swing motion controller.

First, the swing inertia is time-varying due to the movement of the linkage during swing motion and is

unknown due to the unknown payload in the bucket. This makes the swing motion control theoretical
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challenging; in principle, the approach in [10] can handle constant unknown inertia only and cannot be

directly applied to the swing motion control. Second, the system has other parametric uncertainties (e.g.,

hydraulic parameters such as bulk modulus) and certain types of uncertain nonlinearities (e.g., leakage


ows of swing motors) during normal operations on a 
at ground. Third, the system may experience

severe degree of uncertain nonlinearities when operating on an uneven ground; the swing torque due to

gravity forces on a slope surface is usually very large and changes quite rapidly. Finally, the nominal

swing motor operating pressure should not exceed the swing motor line relief pressure to avoid waste of

energy.

In this paper, by treating the supplied 
ow rate as the control input, a high performance nonlinear

adaptive robust control algorithm is presented to address the control issues caused by the types of un-

certainties mentioned above. Thus the paper serves for two main purposes: one is to advance the design

of high performance adaptive robust controllers (ARC) by addressing unsolved theoretical problems, and

the other is to construct practical nonlinear adaptive robust controllers which are particularly suitable for

the swing motion control of hydraulic excavators. Speci�cally, for the �rst purpose, a new ARC backstep-

ping design will be developed to construct ARC controllers for a class of nonlinear systems whose state

equations cannot be linearly parametrized by a suitably selected set of unknown constant parameters.

In all the previously published work on ARC backstepping designs [12, 13, 10], the transformed state

space equations are assumed to be linearly parametrized in terms of a suitably selected set of physical

parameters; the assumption of linearly parametrizing state equation is also necessary for adopting any

backstepping adaptive control designs presented in [17]. Thus, all existing backstepping ARC designs

are restricted to the applications where only constant unknown inertia is involved as studied in [10].

In the current work, the swing inertia is time-varying and unknown. As a result, the resulting state

equation cannot be linearly parametrized in terms of a suitably selected set of unknown constant pa-

rameters as shown later in the paper. Therefore, new adaptive robust control (ARC) design techniques

have to be developed to overcome this practical and yet challenging theoretical problem. For the second

purpose, several desirable ARC structures such as the ideas of the desired compensation ARC [18] and

the discontinuous projection based ARC [13] will be integrated in the development of the proposed high

performance swing motion tracking controller.

2 DYNAMIC MODEL OF SWING CIRCUIT

For this initial investigation, we consider the two major components of the swing circuit only: (i) Rotating

Structure of the Excavator; and (ii) Swing Motors. Other related components such as valves and the

pump are neglected; their e�ects will be considered in the future work. The analytical model of each

individual element is given below.
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2.1 Dynamic Model of Excavator Swing Motion

The excavator swing motion can be described by

I(t) _! = DmpPL � _I! � Tloss � Te + Tg (1)

where ! = _� represents the swing velocity, � is the swing angle, I is the swing inertia, PL = p1 � p2
is the load pressure built up in the swing motors, Dmp is a constant coeÆcient, _I! is the torque due

to the change of swing inertia, Tloss = bc! + Fcsign(!) is the torque losses due to friction of the swing

motor and gears, in which bc represents the coeÆcient of the viscous friction forces including swing motor

torque losses and Fc is the Columb friction force, Te represents the torque due to the reaction forces of

the contacting environment (e.g., the torque due to the reaction force of a wall when the excavator arm

hits a wall ), and Tg is the torque due to gravity forces on a slope ground.

The detailed expressions of I(t) and Tg are given in [19], from which the following general statements

can be said. The swing inertia I consists of three parts given by

I = I1 + I2(q(t)) + I3(q(t);mL) (2)

where I1 is the swing inertia due to the rotating structure with the cab, which is constant, I2 is the swing

inertia due to the boom, stick, and bucket, which is a function of the link position q = [q1; q2; q3]
T 2 R3

and thus time-varying when the link is actuated during the swing motion, and I3 is the swing inertia due

to the inertia load in the bucket, which is a function of the link position q and the mass of the inertia

load mL ; mL is normally unknown.

The gravitational torque Tg is a function of the ground slope angle �, the swing angle �, the link position

q, and the mass of the inertia load mL, i.e., Tg = Tg(�; �; q;mL). Since the swing angle � and the ground

slope angle � are not measured, Tg is unknown, which increases the controller design diÆculty. Tg is zero

on a level ground, i.e., Tg = 0 when � = 0.

2.2 Dynamic Model of Swing Motors

Assume that the volume ripple of the motor is small compared to the total control volume V0. V0 includes

the volumes due to valves, connecting lines/manifold, motor passage, and the volume swept out by the

swing motor pistons or vanes. The swing motor can be described by [1]

V0
�e

_p1 = Q1 �Dm! �Qlossi(!; p1; p2)�Qlosse1(!; p1)

V0
�e

_p2 = �Q2 +Dm! +Qlossi(!; p1; p2)�Qlosse2(!; p2)

(3)

where p1 and p2 are the inlet and outlet pressures of the swing motor respectively, �e is the bulk modulus

of hydraulic 
uid, Q1 is the supplied 
ow rate at the inlet; positive for the 
ow in and negative for the


ow out, Q2 is the supplied 
ow rate at the outlet; positive for the 
ow out and negative for the 
ow in,
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Dm is a constant eÆcient, Qlossi represents the internal or cross-port leakage 
ow; a simpli�ed model

is given by Qlossi = Cim(p1 � p2), and Qlossej; j = 1; 2; represent the external leakage 
ows; a simpli�ed

model is given by Qlossej = Cemj(pj � pref ) where pref is the tank reference pressure.

De�ne the load 
ow rate QL to beQL = Q1 if the inlet of the swing motor is the port to be controlled1, and

to be QL = Q2 if the outlet of the swing motor is the port to be controlled. Consequently, PL = p1�pref
if QL = Q1, and PL = pref � p2 if QL = Q2. From (3), the load pressure PL is related to the load 
ow

rate QL by
V0
�e

_PL = QL �Dm! �Qloss(!; p1; p2) (4)

where Qloss is the 
ow loss de�ned to be Qloss = Qlossi+Qlosse1 for QL = Q1 and Qloss = Qlossi�Qlosse2

for QL = Q2.

In practice, the load 
ow rate QL is controlled by a set of valves, and is related to the valve opening xv
and the pressure drop �P across the ori�ce of the controlled valve by certain static nonlinear mappings

[1], i.e., QL(xv;�P ). For the system that is studied in this paper, the pressure drop �P is measured

and is known. Thus, the correct valve opening that is needed to supply a requested desired load 
ow

rate QLd can be backed out by using the inverse of the nonlinear 
ow mapping as xv = Q�1L (QLd;�P ).

Furthermore, if the nonlinear 
ow mapping has large degree of uncertainties and the bandwidth of valve

dynamics are not so high to be neglected, the backstepping ARC design with the consideration of valve

dynamics proposed in [10] and the backstepping ARC design developed later in this paper may be

integrated to solve the problem of robust control of valves for a requested load 
ow rate. Therefore, for

simplicity, in this paper, the load 
ow rate QL will be treated as the control input so that we can focus

on the control issues associated with the swing motion (1) and the swing motor dynamics (4) and the

dynamic interaction between them. The control objective can thus be stated as that of designing a control

law for QL such that the resulting swing velocity ! tracks any feasible desired swing velocity trajectory

!d(t) as closely as possible in spite of various uncertainties in the swing motion equation (1) and the

swing motor equation (4).

3 SWING VELOCITY TRACKING CONTROL STRATEGY

In free space, Te = 0, and a swing velocity control strategy is needed to determine the supplied 
ow

rates to the swing motors such that the resulting excavator swing motion follows the driver's velocity

command. The proposed strategy consists of two parts: (i) On-line desired velocity trajectory generation,

and (ii) Velocity tracking controller. Overall controller structure and the resulting closed-loop system is

shown in Fig.1

III.1 On-line Desired Velocity Trajectory Generation

1In such a case, the outlet port of the motor is not controlled and is left wide open such that p2 = pref
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This block is to provide a feasible desired velocity trajectory !d(t) that the swing circuit can track. The

purpose is to achieve a smooth acceleration/deceleration and pressure limiting. A by-product of this

on-line algorithm is that we can use trajectory initialization to reduce transient response of the velocity

tracking controller as seen later.

If not controlled properly, swing motor pressures normally reach to line-relief pressures during transient

periods when the acceleration/deceleration are large, which are physically intuitive as explained as follows.

In (1), during transient periods when j _!j is large, terms like _I!, Tloss, and Tg are relatively small, and the

load pressure PL mainly depends on the inertia load I _!. So for pressure limiting, it is necessary to limit

the acceleration/deceleration that the system is supposed to track, which can be achieved by choosing a

suitable value for the maximal allowable desired acceleration _!M . For example, a conservative _!M can

be chosen such that

_!M = 1
Imax

h
DmpPLmax � f _I! + Tloss � Tggmax

i
(5)

where Imax is the largest possible swing inertia that the system is expected to encounter, PLmax is the

maximal allowable working pressure, and f�gmax represents the conservative upper bound of � during all

possible working ranges.

For driver's comfort, sometimes, it may be desirable to limit the rate of pressure change. By di�erentiating

(1) and using similar intuitive arguments as in the above for pressure limiting, it can be seen that _PL
mainly depends on I �! during transient periods. Thus, the rate of pressure change can be indirectly

regulated by limiting the jerk of the desired trajectory below a maximal allowable jerk �!M . For example,

a conservative bound can be chosen as

�!M = 1
Imax

h
Dmp

_PLmax � f�I! + 2 _I _! + _Tloss � _Tggmax

i
(6)

where _PLmax is the maximal allowable pressure changing rate.

Let !input(t) be the swing velocity commanded by the driver. The desired swing velocity trajectory !d(t)

is generated through a second-order �lter 2 with an acceleration and jerk limit, i.e.,

�!d(t) = �2�t!t _!d(t)� !2
t (!d(t)� !input(t)) (7)

with the constraints that j _!dj � _!M and j�!dj � �!M ; the detailed trajectory generation algorithm which

achieves this goal can be found in [19]. The initial values !d(0) and _!d(0) will be chosen later to minimize

the transient response.

III.2 Velocity Tracking Controller

III.2.1 Controller Design Models

2!t and �t represent the natural frequency and the damping ration of the second-order �ler
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The closed-loop velocity tracking control law will be synthesized based on the physical models presented

in section II. From (2), the swing inertia can be separated into two parts given by

I = Ic(q(t)) + Ic�(q(t))mL (8)

where Ic(q(t)) and Ic�(q(t)) can be calculated based on the link con�guration q(t); the analytical ex-

pressions for the calculation are given in [19] and in section IV. The physical model (1) and (4) can be

rewritten in the following form for controller design:

I(t) _! = DmpPL � ( _Ic + _Ic��1)! � T̂loss + �2; I = Ic + Ic��1
_PL = �3[QL �Dm! � Q̂loss] + �4

(9)

where T̂loss and Q̂loss are any estimates of torque losses and 
ow losses respectively, which can be chosen

to be zero to reduce the complexity of the resulting controller as done in the simulation. The lumped

unknown physical quantities �1, �2, �3, and �4 are de�ned as

�1 = mL

�2 = ~Tloss + Tg; ~Tloss = T̂loss � Tloss
�3 =

�e
V0

�4 =
�e
V0

~Qloss
~Qloss = Q̂loss �Qloss

(10)

For controller design purpose, we also de�ne �5 and �6 as

�5 = �1�3 = mL
�e
V0

�6 = �1�4 = mL
�e
V0

~Qloss

(11)

which represent the coupling e�ect between the unknown inertia load and the unknown swing motor

parameters.

Assumptions:

The following reasonable assumptions are made:

A1 Valves and pumps can provide the synthesized control 
ow rate QL;

A2 Swing velocity and swing motor pressures are measured, i.e., !; p1, and p2 are measured;

A3 Physical quantities �(t) are bounded with known bounds, i.e., �min � �(t) � �max, where �min =

[�1min; : : : ; �6min]
T and �max = [�1max; : : : ; �6max]

T are known;

A4 Positions, velocities, and acceleration of boom, stick, and bucket (i.e., q(t), _q(t), and �q(t)) are

available for the calculation of known parts of the swing inertia and their derivatives, i.e., Ic and

Ic� in (8) and their derivatives _Ic , _Ic�, �Ic, and �Ic� can be calculated.

Justi�cation of Assumptions:
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i As explained in section II.B, for simplicity, the load 
ow rate QL is treated as the control input in

this paper. Thus, Assumption A1 is necessary for one to start a control design.

ii Assumption A2 is satis�ed by the current hardware setting of an excavator that we are working on.

iii Assumption A3 is practically reasonable since physically all terms involved in � are bounded and

we know the extent of model uncertainties the system is going to handle; for example, the lower

bound of the inertia load �1 will be zero and the upper bound will be the maximal load that the

bucket can hold.

iv Assumption A4 is reasonable since the arm con�guration q(t) can be obtained by either using joint

angle sensors mounted at each joint of the excavator arm or using the cylinder displacement sensors

mounted at the boom, stick, and bucket hydraulic cylinders respectively. Joint velocity _q(t) and

acceleration �q(t) can then be obtained by di�erentiating q(t) with �lters. Since _q(t) and �q(t) are

only used to calculate the known parts of the swing inertia and their derivatives for a better model

compensation, the small amount of phase delay introduced by the �lters in obtaining _q(t) and �q(t)

may not a�ect the stability of the resulting system much, and thus will not be a serious issue. In

addition, Assumption A4 can be removed at the expense of a degraded performance where no swing

inertia compensation will be used.

III.2.2 Control Design DiÆculties

At this stage, it is ready to see that some of the diÆculties in designing a stable and high performance

controller for (9) and (10) are:

D1 . The system may experience large variations of inertia load and hydraulic parameters such as bulk

modulus, which are represented by �1 and �3 in (10).

D2 . The system is subjected to certain degree of uncertain nonlinearities such as the leakage 
ows

and the friction torque losses during normal operations when Tg = 0; these e�ects are represented

by �2 and �4 in (10).

D3 . On a slope ground, the system may experience large rapid changing swing torque Tg(�; �; q;mL),

which is represented by �2(t) in (10).

D4 . From (9), the state equation for _! is

_! = 1
Ic(t)+Ic�(t)�1

h
DmpPL � ( _Ic(t) + _Ic�(t)�1)! � T̂loss + �2

i
(12)

which cannot be linearly parametrized in term of a suitably selected set of unknown physical

quantities since Ic(t) and Ic�(t) in (12) are time-varying when the link is actuated during swing

motion. This prohibits the direct applications of the existing nonlinear adaptive robust control

(ARC) schemes [13, 10] since all those schemes need the state equation to be linearly parametrized

by a set of unknown constant quantities; linearly parametrizing state equations is also necessary
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for adopting any backstepping adaptive control designs presented in [17]. Thus, novel backstepping

ARC designs have to be developed to address this unsolved theoretical problem. In the following,

this problem is solved by using a Lyapunov function V containing the unknown swing inertia I(t) as

a weighting factor and certain re-parametrization techniques to linearly parametrize the derivative

of the Lyapunov function V instead of the state-equation (12). The proposed re-parametrization

technique needs the introduction of the coupling quantities �5 and �6 given by (11).

III.2.3 Novel Adaptive Robust Control Designs

In this subsubsection, a novel backstepping ARC design procedure is developed to obtain a velocity

tracking control algorithm to address the control diÆculties stated in III.2.2. The design consists of two

steps as follows, which re
ects the fact that the control 
ow rate QL a�ects the actual swing velocity

through two �rst-order di�erential equations shown in (9) and in Fig.1.

Step 1:

The swing motion is produced by the motor pressure PL as described by the �rst equation of (9), which

is also graphically shown in Fig.1. So the �rst step is to design a desired load pressure PLd for PL so that

any feasible desired velocity trajectory !d(t) can be tracked when PL = PLd. This can be accomplished

by applying the adaptive robust control strategy in [13] and dissipating an energy-like positive function

given by

V1 =
1
2I(t)e

2
! (13)

where e! = ! � !d is the velocity tracking error. For simplicity, in the following, �̂ is used to represent

the estimate of � by substituting the parameter estimate �̂ for � in the expression of �, ~� = �̂ � � for the

estimation error, �max (or �min) for the maximum (or minimum) value of �, and �j for the j-th element

of the vector �. The absolute operation j � j for a vector is performed elementally.

Lemma 1 Let the desired control function for the load pressure PL be

PLd = PLda(!; �̂; !d; _!d; q(t)) + PLds(!; �̂; !d; _!d; q(t))

PLda = 1
Dmp

�
_̂I!d + Î _!d + T̂loss � �̂2 � k!Ic(t)e!

�
(14)

where k! > 0 is a feedback gain, and PLds is any robust control term satisfying the following two condi-

tions:
i. e!

h
DmpPLds � �!1 ~�1 � ~�2

i
� "!

ii. e!DmpPLds � 0
(15)

in which "! > 0 is a design parameter, and �!1 is de�ned by

�!1(t)
�
= �( _Ic�!d + Ic� _!d) (16)

If the feedback gain k! is large enough such that 2k!Ic + _I > 0, then,
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a) . In general,
_V1 jep=0 � ��V 1V1 + "! (17)

where the short-hand notation _V1 jep=0 represents the derivative of V1 when the load pressure tracking

error ep = PL � PLd is zero, and �V 1 is the largest positive scalar satisfying �V 1 �
2k!Ic+ _I

I
.

b) . In addition,
_V1 jep=0 � ��V 1V1 + e!

h
��!1 ~�1 � ~�2

i
(18)

2

Proof of Lemma 1 is given in Appendix P1.

Remark 1 Result a) of Lemma 1 implies that, if ep = 0, i.e., the desired load pressure PLd can be

delivered, then,

V1 � exp(��V 1t)V1(0) +
"!
�V 1

[1� exp(��V 1t)] (19)

which means that V1 exponentially converges to a small ball: fV1 : V1 �
"!
�V 1

g, whose size can be freely

adjusted by decreasing the design parameter "! and/or increasing k! (which increases �V 1) in a known

form. In other words, transient performance and �nal tracking accuracy is guaranteed in general since

V1 is a positive de�nite function of the velocity tracking error e!. As seen later, Result b) of Lemma

1 implies that adding proper parameter adaptation will enable us to reduce parametric uncertainties to

further improve tracking accuracy [13]. }

Remark 2 In Lemma 1, the robust control term PLds is required to satisfy the two constraints in (15); the

�rst constraint re
ects the fact that the robust control term PLds should be chosen in a way that the e�ect

of all related model uncertainties is attenuated to a controllable degree measured by the design parameter

"!, and the second constraint is to make sure that the robust control term is passive. In general, robust

control terms satisfying constraints like (15) are not unique. General ways to choose the needed robust

control term can be referred to [12, 13]. One speci�c PLds which is suitable for this particular application

is given by

PLds = � 1
Dmp

Cs1e
3
! (20)

where Cs1 > 0 is a positive scalar. It is proven in Appendix P2 that PLds given by (20) satis�es the

constraints (15) with the property that a larger Cs1 results in a smaller "!. }

Remark 3 In (14), PLd consists of model compensation (the �rst four terms of PLda), a simple pro-

portional feedback control law with a time-varying gain k!Ic(t), and a nonlinear robust feedback term

PLds, which is graphically illustrated in Fig.2. The purpose of using a time-varying linear gain k!Ic(t)

is to achieve a constant bandwidth over a large operating range since the swing inertia I changes with

the link con�guration. It is also seen that the model compensation part is of the desired compensation
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structure [18] (i.e., the model compensation can be calculated based on the desired trajectory !d(t) and

the parameter estimates only). Desired model compensation structure reduces the e�ect of measurement

noise [20, 21] and improves tracking accuracy in general, which has been experimentally veri�ed for other

applications such as the motion control of robot manipulators [18]. }

Step 2:

As seen from Lemma 1, if the load pressure tracks the desired load pressure PLd given by (14), then, the

resulting swing velocity will track its desired trajectory and we would achieve our goal. Thus, the second

step is to design a desired 
ow rate QLd for QL so that the actual load pressure PL tracks the desired

load pressure PLd; this step is based on the swing motor equation (the second equation of (9)) and the

design is accomplished by dissipating a total-energy-like positive function given by

V = V1 +
1
2wpIe

2
p (21)

where wp is a positive weighting factor. For simplicity, we subsequently de�ne the following terms,

d
I _PLd

�
= @PLd

@!
(DmpPL � _̂I! � T̂loss + �̂2) + Î @PLd

@t

�2c
�
= � 1

wp
Dmpe! � Ic�̂4 � Ic��̂6 +

d
I _PLd

�2cq
�
= 1

Ic�̂3+Ic��̂5
(�2c � kpIc(t)ep)

�p
�
=

2
666666664

@PLd
@!

_Ic�! � Ic�
@PLd
@t

�@PLd
@!

Ic�2cq
Ic
Ic��2cq
Ic�

3
777777775

��
�
=

2
666666664

e!�!1
e!
0

0

0

0

3
777777775
+ wpep�p

(22)

in which kp in the expression of �2cq is a positive feedback gain.

Theorem 1 Let the adaptation law be

_̂
� = Proj

�
���(!; PL; �̂; !d; _!d; �!d; q; _q; �q

�
(23)

where � = diagf
1; : : : ; 
6g > 0 is any diagonal adaptation rate matrix, Proj represents the widely used

projection mapping [22, 11, 13], and the adaptation function �� is de�ned in (22). Choose the control

law as
QL = QLda(!; PL; �̂; !d; _!d; �!d; q; _q; �q) +QLds(!; PL; �̂; !d; _!d; �!d; q; _q; �q)

QLda = Dm! + Q̂loss + �2cq
(24)
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where �2cq is de�ned in (22), and QLds is any robust control term satisfying the following two conditions

i. wpep

�
I�3QLds � �Tp

~� � I @PLd
@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2

�
� "p + Ic(

1
2k!e

2
! +

1
2kpwpe

2
p)

ii. wpep

�
I�3QLds � I @PLd

@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2

�
� Ic(

1
2k!e

2
! +

1
2kpwpe

2
p)

(25)

where "p is a positive design parameter. If feedback gains k! and kp are large enough such that k!Ic+ _I > 0

and kpIc � _I > 0, then,

a) . In general, the closed-loop system is globally stable with V bounded above by

V � exp(��V t)V (0) +
"V
�V

[1� exp(��V t)] (26)

where �V is the largest positive scalar satisfying �V � minfk!Ic+
_I

I
; kpIc� _I

I
g, and "V = "! + "p.

b) . In addition, in the presence of constant parametric uncertainties only, i.e., � being unknown but

constant, asymptotic output tracking (or zero �nal tracking error) is achieved.

c) . Furthermore, if the initial values, !d(0) and _!d(0), for the desired trajectory generation algorithm

in section III.1 are chosen as

!d(0) = !(0)

_!d(0) =
1
Î

�
DmpPL � _̂I! � T̂loss + �̂2

�
jt=0

(27)

where all terms in the right hand sides of (27) are evaluated at t = 0, then, V (0) = 0, and thus

transient response is minimized as seen from (26). 2

Proof of Theorem 1 is given in Appendix P3.

Remark 4 From (21), V � 1
2Ie

2
!. Result a) of Theorem 1 thus implies that je!(1)j � 1

I

q
2"V
�V

. Further-

more, the bound of the �nal output tracking error, 1
I

q
2"V
�V

, can be made arbitrarily small by decreasing

"! and "p, which will result in a smaller "V , and/or increasing feedback gains k! and kp, which will

result in a larger �V . (26) also indicates that the proposed controller has an exponentially converging

transient performance with the exponentially converging rate �V being able to be adjusted via certain

controller parameters freely; such a guaranteed transient performance is especially important for practical

applications (e.g., swing control) since execute time is normally short. Theoretically, this result is what

a well-designed robust controller can achieve.

Theoretically, Result b) of Theorem 1 is what a well-designed adaptive controller can achieve. Practically,

this result implies that even a low bandwidth controller (feedback gains are not so large) may have a very

small tracking error due to the reduced parametric uncertainties. This is a nice feature for the swing

velocity control since actual valve's bandwidth may be low and sampling rate may not be so fast, which

limit the bandwidth that the nominal closed-loop system can be placed without running into stability

problem in the presence of those neglected dynamics in practice. }
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Remark 5 Similar to Remark 2, in Theorem 1, the choice of robust control term QLds satisfying (25)

is not unique. A speci�c form of QLds, which may be suitable for this particular application, is given by

QLds = �

�
Cs2

�

1j

@PLd
@�̂1

jj�!1j+ 
2j
@PLd
@�̂2

j
�2

+ Cs3

�

1j

@PLd
@�̂1

jj�p1j

+
2j
@PLd
@�̂2

jj�p2j)
�
� Cs4Ic +Cs5

�
j�pj

T�M
�2�

ep
(28)

where �p1 and �p2 are the �rst and second element of the vector �p de�ned in (22) respectively, and Csj

are constants given by Cs2 = wpImax=(2k!Imin�3min), Cs3 = wp=�3min, Cs4 = kp=(2Imax�3max), and

Cs5 = wp=(4Imin�3min"p). It is shown in Appendix P4 that (25) is satis�ed by (28). }

4 Simulation Results

A simulation program has been developed to simulate the performance of the proposed swing control

strategy. The units shown in Table 1 are used to normalize di�erent quantities to minimize the e�ect of

numerical calculation error.

Physical parameters used in the swing motion (1) and the swing motor (3) are obtained from the speci�-

cation of an industrial hydraulic excavator manufactured by Caterpillar Inc., which are tabulated in Table

2, in which the following short hand notations are used: Cq1 = cos(q1); Sq1 = sin(q1); Cq12 = cos(q1+q2);

Sq12 = sin(q1 + q2); Cq123 = cos(q1 + q2 + q3); and Sq123 = sin(q1 + q2 + q3).

Quantity Unit

Pressure bar

Flow Rate L=min

Swing Velocity rad=s

Torque kN

Mass 1000kg

Length m

Table 1: Units of Various Physical Quantities

As mentioned in section II.B, in implementation, the control 
ow rates are supplied by a set of valves.

Thus, in the simulation, the e�ect of valve dynamics is also considered. Experimental tests showed that

the valve dynamics (from the commanded input current to the valve to the actual valve opening xv) can

be described by a second-order transfer function with a break frequency of !v and a damping ratio of

�v. A relative high break frequency of !v = 50Hz and a damping ratio of �v = 0:71 are used in the

simulation so that the e�ect of valve dynamics can be safely neglected in the controller design stage as

done in the paper. If the actual valve's bandwidth is not high enough, linear control techniques may be

used to raise the bandwidth of the valve �rst since the actual valve dynamics are normally quite linear

and invariant. A sampling rate of 200Hz is used in the simulation.
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Quantity Actual Value or Expression

I Ic + Ic�mL

Ic 123 + 15:7Cq1 � Sq1 + 206:2C2
q1 � 15:1Cq1Sq1 + 1:5S2

q1 + 3:66Cq12 � 0:17Sq12
+115Cq1Cq12 � 5:4Cq1Sq12 + 25C2

q12 � 0:75Cq12Sq12 + 0:2S2
q12 + 0:69Cq123

�0:01Sq123 + 21:6Cq1Cq123 � 0:34Cq1Sq123 + 10:8Cq12Cq123

�0:17Cq12Sq123 + 1:23C2
q123 � 0:04Cq123Sq123 + 0:0003S2

q123

Ic� 0:053 + 3:3Cq1 + 1:65Cq12 + 0:38Cq123 � 0:006Sq123 + 51:8C2
q1 + 51:8Cq1Cq12

+11:85Cq1Cq123 � 0:19Cq1Sq123 + 12:96C2
q12 + 5:93Cq12Cq123

�0:09Cq12Sq123 + 0:68C2
q123 � 0:02Cq123Sq123 + 0:00017S2

q123

mL 3

Dmp 0.8185

bc 28.4

Fc 8.652

Tg f[(35:2 + 34:3Cq1 � 2:2Sq1 + 8Cq12 � 0:37Sq12 + 1:5Cq123 � 0:024Sq123)

+mL(0:23 + 7:2Cq1 + 3:6Cq12 + 0:82Cq123 � 0:01Sq123)] sin(�)

+(0:2 + 0:03mL)cos(�)g gsin(�)

V0 95.008

�e 2625

Dm 491.1

Cim 0.0584

Cem1 = Cem2 0.05572

Ps 255

pref 1

Table 2: Physical Parameters of Swing Motion and Motors

Purpose Parameter Values

Inertia estimate m̂L = 0

Torque loss estimate b̂c = 0, F̂c = 0

Flow loss estimate Ĉim = 0 , Ĉem1 = Ĉem2 = 0

Bulk modulus estimate �̂e = 4�e
Physical bounds �min = [0;�100; 27:6;�4421; 0;�15030]T

�max = [3:4; 100; 110:5; 4421; 375:8; 15030]T

Imax = 752, Imin = 130

Velocity trajectory planning !t = 18:85; �t = 1, _!M = 0:2177, �!M = 5:44

Velocity tracking controller k! = 62:8; kp = 62:8; wp = 4� 10�5 , Cs1 = 1:63 � 107, "p = 100

� = diagf442; 2 � 104; 1:1� 104;2:7� 108;4:26 � 104;109g

Table 3: Controller Parameter Values
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Although simulation has been carried out for various operating conditions, due to space limit, only the

following typical operation is shown here. During the �rst 5 seconds of the simulation, the driver's

commanded velocity is assumed to be !input = 0:5rad=s, which is near the full speed of the excavator.

After that, the driver's commanded velocity is zero. To see the e�ect of fast changing link con�guration,

the movement of boom, stick, and bucket is assumed to be described by q = [30o+15o(1�cos(�4 t)); 120
o�

30o(1� cos(�4 t)); 90
o � 45o(1� cos(�4 t))]

T .

The controller parameters used in the simulation are summarized in Table 3. As seen, the estimated

torque loss and 
ow loss are assumed to be zero to simplify the resulting controller and to test the

robustness of the algorithm. Large parameter estimation errors for physical parameters like mL and �e
are also assumed as shown in Table 3 to test the e�ectiveness of using parameter adaptation.

The desired velocity trajectory pro�le and the actual velocity are shown in Fig.3. As shown, the desired

velocity trajectory approaches to the driver's command smoothly and the actual velocity follows the

desired velocity very closely to achieve a smooth acceleration and deceleration. This veri�es the velocity

tracking capability of the proposed ARC strategy in spite of various model uncertainties. Furthermore,

the working pressures shown in Fig.4 verify that the working pressures did not exceed the line relief

pressure. All these show that the proposed strategy achieves the objectives set forth under the assumed

conditions.

To see the e�ect of parameter adaptation, we re-run the simulation but without using parameter adap-

tation. In such a case, the control law is equivalent to a deterministic robust control (DRC) law [11, 12].

The tracking errors e! are shown in Fig. 5 for both ARC and DRC. It can be seen that ARC achieves a

better tracking performance than DRC due to the use of parameter adaptation.

To see the e�ect of slope ground, the above simulations are re-run with a ground slope of � = 7o. Due

to the large swing velocity between 1 to 6 seconds, the gravity torque Tg changes quite rapidly. Also, its

magnitude is so large that it dominates model uncertainties{a perfect example where model uncertainties

are mainly due to uncertain nonlinearities. Traditionally, in such a case, adaptive control will normally

perform poorly and even become unstable sometimes. However, the tracking errors shown in Fig. 6

reveal that the proposed ARC still has an excellent velocity tracking capability and achieves a better

performance than DRC in spite of the unavoidable appearance of large uncertain nonlinearities. Overall,

the proposed strategy can handle the variation of changing gravity load well.

5 Conclusions

The control issues associated with the swing motion, swing motors, and the dynamic interactions between

the swing motion and swing motors of hydraulic excavators are considered in the paper. By treating the

load 
ow rate as the control input, a novel ARC control strategy has been proposed to handle model

uncertainties due to the unknown and time-varying swing inertia, large variations of hydraulic parame-
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ters, the unknown leakage 
ows of the swing motors, and the fast changing and unknown swing gravity

torque on a slope ground altogether at once. The unique contributions of the proposed work are thus as

follows: (i) A novel backstepping ARC design has been presented for a class of nonlinear systems whose

state equations cannot be linearly parametrized by a set of unknown parameters to address the control

issues due to the unknown and time-varying inertia; (ii) Some of the particular control problems in the

high performance swing motion control of hydraulic machines are identi�ed and rigorous mathematical

formulation is presented; (iii) A particular ARC controller suitable for the studied application is pre-

sented, which integrates several desirable ARC structures such as the desired compensation ARC and

the discontinuous projection based ARC. Simple yet theoretically rigorous speci�c robust control terms

suitable for the application are constructed; and (iv) On-line desired velocity trajectory generation with

acceleration limit is proposed for achieving a smooth acceleration/deceleration and pressure limiting.

Trajectory initialization is also introduced to reduce transient response. Simulation results showed that

the proposed strategy can deliver the expected swing velocity tracking with a smooth acceleration and

deceleration while keeping working pressures of swing motors below the line relief pressure. The paper

thus serves as a stepping stone in the development of high performance control algorithms for future

hydraulic machines.
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Appendix

P1: Proof of Lemma 1

Noting the �rst equation of (9), the derivative of (13) is

_V1 = e!(I _e! +
1
2
_Ie!) = e!(DmpPL � _I! � T̂loss + �2 � I _!d +

1
2
_Ie!)

= e!(Dmpep +DmpPLd � _I!d � T̂loss + �2 � I _!d �
1
2
_Ie!)

= e!Dmpep + _V1 jep=0

(29)

where _V1 jep=0 represents _V1 when ep = 0 and is given by

_V1 jep=0= e!(DmpPLd � _I!d � T̂loss + �2 � I _!d �
1
2
_Ie!) (30)
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Substituting (14) into (30) and noting (16), we have

_V1 jep=0 = �(k!Ic +
1
2
_I)e2! + e!

h
DmpPLds � �!1 ~�1 � ~�2

i
(31)

which leads to (17) by noting condition i of (15), and (18) by noting condition ii of (15). 2

P2: Proof of Remark 2

Due to the use of projection mapping in the parameter adaptation law (23), �̂ is bounded by �min � �̂ �

�max [11, 13]. Thus, ~� is bounded by j~�j � �M where �M = �max � �min. Then,

e!
h
DmpPLds � �!1 ~�1 � ~�2

i
� �Cs1e

4
! + je!j(j�!1j�M1 + �M2)

� 3

4(4Cs1)
1

3

(j�!1j�M1 + �M2)
4

3

(32)

in which the inequality jxyj � 1
p
jxjp + 1

q
jyjq; 8x; y 2 R; p > 0; q > 0 with 1

p
+ 1

q
= 1 has been used.

Since �!1 de�ned by (16) depends on the desired trajectory only and is bounded, it is thus clear that

condition i of (15) is satis�ed with a larger Cs1 corresponding to a smaller "!. Condition ii of (15) is

obviously satis�ed. 2

P3: Proof of Theorem 1

Noting (29), (9), and (11), the derivative of V given by (21) is

_V = _V1 jep=0 +e!Dmpep + wpep[I _ep +
1
2
_Iep]

= _V1 jep=0 +wpep
n

1
wp
Dmpe! + I

h
�3(QL �Dm! � Q̂loss) + �4 � _PLd

i
+ 1

2
_Iep
o

= _V1 jep=0 +wpep
n

1
wp
Dmpe! + (Ic�3 + Ic��5)(QL �Dm! � Q̂loss) + Ic�4 + Ic��6 � I _PLd +

1
2
_Iep
o

(33)

From (14) and (9),

I _PLd = I

�
@PLd
@!

_! + @PLd
@t

+ @PLd
@�̂1

_̂
�1 +

@PLd
@�̂2

_̂
�2

�
= @PLd

@!
(DmpPL � _I! � T̂loss + �2) + I @PLd

@t
+ I @PLd

@�̂1

_̂
�1 + I @PLd

@�̂2

_̂
�2

=
d
I _PLd +

@PLd
@!

(~_I! � ~�2)� ~I @PLd
@t

+ I @PLd
@�̂1

_̂
�1 + I @PLd

@�̂2

_̂
�2

(34)

where
d
I _PLd represents the calculable part of I _PLd and is de�ned in (22), and the rest terms represent

the incalculable part due to parametric uncertainties.
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Note that ~_I = _Ic� ~�1 and ~I = Ic� ~�1. By substituting (24) and (34) into (33) and grouping terms according

to the terms de�ned in (22), we have

_V = _V1 jep=0 +wpep
n
(Ic�3 + Ic��5)QLds + (Ic�̂3 + Ic��̂5)(QLda �Dm! � Q̂loss)

�(Ic ~�3 + Ic� ~�5)(QLda �Dm! � Q̂loss)� �2c � Ic ~�4 � Ic� ~�6

�@PLd
@!

(~_I! � ~�2) + ~I @PLd
@t

� I @PLd
@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2 +

1
2
_Iep

�
= _V1 jep=0 �(kpIc �

1
2
_I)wpe

2
p + wpep

�
I�3QLds � �Tp

~� � I @PLd
@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2

� (35)

Noting conditions i of (15) and (25) respectively, from (31) and (35), we have

_V � _V1 jep=0 +
1
2k!Ice

2
! �

1
2(kpIc �

_I)wpe
2
p + "p

� �1
2(k!Ic +

_I)e2! + "! �
1
2(kpIc �

_I)wpe
2
p + "p

� ��V V + "V

(36)

which leads to (26). Thus Result a) of Theorem 1 is proved.

To prove result b) of Theorem 1, substitute (31) into (35):

_V = �(k!Ic +
1
2
_I)e2! + e!DmpPLds � e!�!1 ~�1 � e! ~�2

�(kpIc �
1
2
_I)wpe

2
p + wpep

�
I�3QLds � I @PLd

@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2

�
� wpep�

T
p
~�

= �(k!Ic +
1
2
_I)e2! � �T�

~� + e!DmpPLds � (kpIc �
1
2
_I)wpe

2
p +wpep

�
I�3QLds � I @PLd

@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2

�
(37)

where �� is de�ned in (22). Noting conditions ii of (15) and (25) respectively, (37) leads to

_V � �1
2(k!Ic +

_I)e2! �
1
2(kpIc �

_I)wpe
2
p � �T�

~� (38)

Following the same proof as in [11, 13], it can be shown that (38) and the adaptation law (23) lead to

asymptotic output tracking in the presence of constant parametric uncertainties, i.e., e! �! 0 as t �!1

when � is constant. This proves Result b) of Theorem 1.

The following is to prove c) of Theorem 1. If (27) is true, then, e!(0) = 0, and

PL(0) =
1

Dmp

�
Î _!d(0) + _̂I! + T̂loss � �̂2

�
jt=0 (39)

Thus, from (14) and (20), it is evident that PLda(0) = PL(0) and PLds(0) = 0. Therefore, ep(0) =

PL(0) � PLd(0) = 0, and thus V (0) = 0. 2

P4: Proof of Remark 5
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From (23) and the property of projection mapping [11, 13], j
_̂
�1j � j
1��1j and j

_̂
�2j � j
2��2j. Thus,

noting (22), we have

ep

�
�I @PLd

@�̂1

_̂
�1 � I @PLd

@�̂2

_̂
�2

�
� Ijep

@PLd
@�̂1

jj
1��1j+ Ijep
@PLd
@�̂2

jj
2��2j

� 
1Ij
@PLd
@�̂1

j(j�!1jjepjje! j+ j�p1jwpe
2
p) + 
2Ij

@PLd
@�̂2

j(jepjje!j+ j�p2jwpe
2
p)

� I(
1j
@PLd
@�̂1

jj�!1j+ 
2j
@PLd
@�̂2

j)jepjje!j+ I(
1j
@PLd
@�̂1

jj�p1j+ 
2j
@PLd
@�̂2

jj�p2j)wpe
2
p

� 1
2wp

k!Ice
2
! +

h
1

2k!Ic
I2(
1j

@PLd
@�̂1

jj�!1j+ 
2j
@PLd
@�̂2

j)2 + I(
1j
@PLd
@�̂1

jj�p1j+ 
2j
@PLd
@�̂2

jj�p2j)
i
wpe

2
p

(40)

Since j~�j � �M ,

wpep�
T
p
~� � wpj�pj

T�M jepj � "p +
w2
p

4"p
(j�pj

T�M )2e2p (41)

Based on (40) and (41), by simple comparisons, it can be easily checked out that the two conditions of

(25) are satis�ed by QLds given by (28). 2
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Figure 1: Overall Controller Structure

Figure 2: Desired Load Pressure for Velocity Tracking Control
20
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Figure 3: Swing Velocity Tracking On A Flat Ground

0 1 2 3 4 5 6 7 8
−150

−100

−50

0

50

100

150

200

Time (s)

P
re

ss
ur

e

Solid:  Load Pressure

Dotted:  p2

Dashed:  p1

Figure 4: Working Pressures of Swing Motors
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Figure 5: Velocity Tracking Error On An Even Ground
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Figure 6: Velocity Tracking Error On A Slope Ground (� = 7o)
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