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Due to task kinematic modelling inaccuracy, constraint functions imposed on robot

manipulators may not be known exactly. In this article, a variable structure control ,
(VSC) method is developed for robust motion and constrained force control of robot ' i
manipulators in the presence of parametric uncertainties, external disturbances, and

constraint function uncertainties. The method is based on a particular structure of the

constrained robot, in which motion control and force control are treated together. The

proposed VSC controller provides the sliding mode and reaching transient response

with prescribed qualities. A sufficient condition to guarantee the robot does not lose

contact with the constraint surface is given. Detailed simulation results illustrate the

proposed method. © 1994 John Wiley & Sons, Inc.
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1. INTRODUCTION

Many tasks of practical interest such as assembly
and manufacturing require mechanical interaction of
a robot with its environment. In these applications,
interaction forces are generated that need to be con-
trolled rather than rejected.! To accomplish such
tasks successfully, several approaches have been
proposed such as hybrid position/force control, 2
constrained motion control,>*® and impedance
control.!%2

Constrained motion control has been extensively
studied in recent years. In constrained motion con-
trol, the robot end-effector is assumed to be in con-
tact with rigid frictionless surfaces.*® As a result,
kinematic constraints are imposed on the manipula-
tor motion, which correspond to some algebraic con-
straints among the manipulator state variables. It is
necessary to control both the motion on the con-
straint surfaces and the generalized constrained
force.

A general theoretical framework of the con-
strained motion control is rigorously developed by
McClamroch and Wang.” The proposed controller
is based on a modification of the computed torque
method. Lyapunov’s direct method is utilized in
Wang and McClamroch® to develop a class of decen-
tralized position and force controllers. Mill and Gold-
enberg’® applied descriptor theory to constrained mo-
tion control. The controller is derived based on a
linearized dynamic model of the manipulator. Re-
cently, adaptive constrained motion control methods
have been proposed in refs. 13-15 to deal with para-
metric uncertainties of the robot. A variable structure
control (VSC) method is developed in refs. 17 and
18 to overcome the problem of parametric uncertain-
ties as well as external disturbances.

The above methods are all based on the assump-
tion that the constraint functions are fully known.
This assumption is the key to obtaining the needed
nonlinear coordinate transformation so that the ro-
bot dynamic equation can be transformed into a re-
duced form that enables position control and force
control to be designed separately.”*13-15

Due to task kinematic modelling inaccuracy, it
is not possible to know the constraint functions ex-
actly. In this article, the robust motion and con-
strained force control problem of robot manipulators
in the presence of constraint function uncertainties
as well as parametric uncertainties and external dis-
turbances will be considered. By exploiting a particu-
lar structure of the constrained robot, motion control
and constrained force control are treated together

and designed via a variable structure control (VSC)
method.?-% The proposed VSC controller can guar-
antee both the sliding mode and reaching transient
response with prescribed qualities. Contact problem
is also considered, and a sufficient condition to keep
the robot in contact with the constraint surfaces is
obtained. Detailed simulation results of the robot
moving on a surface with unknown slope are given
to illustrate the proposed method.

This article is organized as follows. Dynamic
equations of the robot and problem formulation are
given in Section 2. Section 3 presents the proposed
VSC controller. The contact problem is discussed in
Section 4. Simulation results are presented in Section
5, and a conclusion is given in Section 6.

2. DYNAMIC MODEL OF ROBOT
MANIPULATORS

The dynamic equation of a general rigid link manipu-
lator having n degrees of freedom (dof) can be writ-
ten as:

M@+ C@, 9 +g@)+I"@F +ft)y=7 (1)

where q € R" is the joint displacement vector; 7 €
R" is the applied joint torque, M(q) € R"*" is the
inertia matrix, C(q, 4)§ € R" is the vector function
characterizing the Coriolis and centrifugal force, g(q)
€ R" is the gravitational load of the robot, f(f) € R"
is the external disturbance, J(q) = dx(g)/dq € R"" is
the Jacobian matrix, which is assumed to be of full
rank in a finite workspace €}; x € R" is the position
and Euler angles of the end-effector in Cartesian
space; and F € R" is the vector of forces/moments
on the environment exerted by the robot at the end-
effector (corresponding to Euler angles, moments
are decomposed along non-orthogonal rotation axes
defining Euler angles). The following properties exist
for equation (1): .

Property 1. M(g) is a symmetric positive definite
(s.p-d.) matrix, and there exists scalar k' > 0 such
that k'I, = M(q) Vq € ,, in which the ordering is
in the sense of positive definite matrices, i.e.,
M(g) — k', is an s.p.d. matrix. Moreover, for the
robot with all revolute joints, there exists scalar
k" > 0 such that M(q) < k"I, ¥g € (. For a general
robot, because M(qg) is analytic about g, M(g) < k"I,
is valid for any finite workspace Q, = {3:|lg — g,|| =
Gmax} Where gg and g, are some constants.
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Property 2.%% The matrix N(g, §)
is a skew-symmetric matrix.

= M(g) — 2C(3, 9)

It is assumed that measurements of position,
velocity, and the controlled interaction force are
available. Only the case of the robot end-effector in
contact with rigid constraint surfaces will be consid-
ered. If initially the robot end-effector is not in con-
tact with the surfaces, any motion control scheme
or impedance control scheme!’ can be used to bring
the end-effector into contact with the surfaces. Care
must be taken to prevent large impact force during
the transition when the robot comes into contact
with the surfaces such as using a zero or low ap-
proach velocity, large end-effector velocity damping
along the force control direction,? etc. In the follow-
ing, it is assumed that the end-effector is already in
contact with the constraint surfaces, and the control
exercised over the constrained force is such that the
force will always hold the end-effector on the con-
straint surfaces. Hence, the problems due to loss
of contact will not be considered.®” In Section 4,
a sufficient condition to guarantee this assumption
is given.

Suppose that the environment is described by a
set of m rigid hypersurfaces”’:

P(x)=0 P(x)=[$1(2), ..., bu()T m=ny (2)
which are mutually independent, and ¢,(x) is as-
sumed to be twice differentiable with respect to x.
The interaction force F can be written as:

F = DTN + Afi(is Uonas \) 2 L(x, %, )X

D(x) = %"—) L € Roxm 3)

where A € R" is a vector of Lagrange multipliers
associated with the constraints that usually represent
normal contact force components’; DT(x)\ represents
the constraint force, i.e., normal contact force in the
Cartesian space; A, € R"™" represents unit tangent
directions of the surfaces; and f, € R™ is the vector
of tangential friction force, the magnitude of which
depends on unknown friction coefficients u and A and
direction depends on end-effector velocity v,,,. In the
assumption of frictionless contact surface (f, = 0), Eq.
(3) reduces to the form given by refs. 7 and 9.
When the motion of the robot is constrained on
the surfaces (Eq. (2)), only (n — m) coordinates of
the position vector can be specified independently.

In them, (11, — m) coordinates are used to characterize
the motion of the end-effector on the constraint sur-
faces. The others are used to characterize the joint
self movement of the robot due to its redundancy.
As pointed out in refs. 7 and 9, control of all the
position coordinates of the robot is unnecessary, and
only (n — m) generalized position coordinates need
to be controlled in the constrained motion of the
robot. Therefore, (n — m) mutually independent gen-
eralized curvilinear coordinates ¥(q) = [¢,(9). ...,
¥,—m(@)]" will be controlled (independence means

that g%q) has full row rank). ¥(g) are assumed to

be twice continuously differentiable and indepen-
dent of ®(x(g)) in the workspace €, i.e.,

T au
[(a\g;q)) , (atbgz(g))) ] is nonsingular. Thus, once
W¥(q) is regulated to the desired value ¥,(f), combin-
ing with the constraints in Eq. (2), the position of
the robot is uniquely determined. Notice that ¥(g)
can be selected as some joint angle g;. For example,
because D(x(g))](g) is of full rank m, without loss of
generality, we can assume the first m columns of
D(x(g))](q) are independent. In this case, we can
choose ¥(q) = [Gm+1s - -+ Gl

Similarly, only m independent components f of
the interaction force F need to be controlled, which
is supposed to be given by:

f=T@WF fER™ TeER™m @
From Eq. (3), we have
| A=(TL)if  F=L(TL)Yf ©)

where the invertibility of matrix TL is guaranteed by
the assumption of independence of the components
of f. Define a set of curvilinear coordinates as:

r=[rf. ] r=I$(x@), ..
rp = [4‘1(‘7)/ .

< Pmlx (@
- (6

with inverse transformation q = ¢(r) for the finite

workspace g € Q,, r € Q,. In general, for anr, there

can exist several joint positions g for which r = r(g).

By restricting q to some finite workspace (1, this

inverse transformation is unique. Thereafter, all the

results are developed for these finite workspaces.
Differentiate Eq. (6)

=14 @)
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where:
=52 L= (O@a 5T
qu = M € R(n—m)xn Iq € Rxn (8)

aq

Using the transformations from Egs. (6) and (7) in
Eq. (1), then multiplying both sides by J;7, dynamic
equation (1) with the constraints from Eq. (2) and
interaction force of Eq. (3) can be expressed in terms
of variable r as:

M@)i + C(r, )i + g(r) + E(r, ) + B()f = ;™7

™

where:

M(r) = J;T@IM@()];'G0)
C(r, 1) = J;Tq@)C @), 40)]7'4)
= 1 T@M@ON]; @GN GN]; 6)
80) =1;"84)
F(r.t) = J;T @)

B(r) = I @)L Tx@)LxENI ™ (10)
in which the constraints are simply described by
7= 0. Motion of the robot on the constraint surfaces
is uniquely determined by the coordinates r,. This
particular structure will be utilized later in problem

formulation and controller design. From Properties
1 and 2, the following properties can be obtained for

Eq. (9)."

Property 3. For any finite work space () in which ],
is nonsingular, M(r) is a symmetric positive definite
matrix with:

K Lpen = M() <KLy V4EQ, 11)

K K ~
where ki =5, K = 5,61 = supealom@)l, ¢ =

infqe(lq [Umin (l q(q))] .

Property 4. The matrix N(r, #) = M(r) — 2C(r, #) is
a skew-symmetric matrix.

o AM@)] = 8u(n)

We are now in a position to formulate the robust
motion and constrained force control problem of ro-
bot manipulators in the presence of constraint func-
tion uncertainties. Due to task kinematic modelling
inaccuracy or for computation efficiency, only esti-
mates of the constraint functions from Eq. (2) are
assumed to be known:

a

b =0 (12)

Because the only requirement in choosing the gener-
alized coordinates ¥ (x) is to guarantee the indepen-
dency of ¥(x) and ®(x), i.e., ], being nonsingular,
it is possible to do so if Eq. (12) is a reasonably good
estimate of ®(x). The extent of allowable estimation
error will be made clear in Section 3. Correspond-
ingly, estimated values of the transformation Jacob-
ian matrices from Eq. (8) are given by:

J{@) = (D@ @) I @1 (13)

The terms in Eq. (9) cannot be known exactly, which
may be due to parametric uncertainties of the robot
and the contact surfaces. It is assumed that only the
estimated values M(), C(r, ), §(r), B(n), ] (r) of M(r),
C(r, 7), g(r), B(r), ] (r) in Eq. (9) are available. Their
modelling errors and the external disturbances are
bounded by:

AM(r) = M(r) — M(r)

lAC(r, I = 8c(r. 7) AC(r, #) =C(r, #) — C(r, 7)

lAg (Il =< 8,(r) Ag(r) =g() =3
IAB(r)|| = 84(r) AB(r) = B(r) - B(r)
IE(r, )l = 8¢(r, t) (14)

where || - || denotes a norm of -, which is a vector or
a matrix. Without loss of generality, in this article
[l |l is used for vector - and ||- || of a matrix - is the
correspondingly induced norm, i.e., |A| = 0. (A)
= A2 (ATA) where o (-) denotes the singular value
of -, A(-) means the eigenvalue of -, and -,,,.(or - ,,;;,) is
the maximum (or minimum) value of -. The positive
scalar bounds 8y(r), 8.(r, 7), 8,(r), 85(r) and 8¢(r, t)
are assumed known.

Remark 1. A way to determine boundary values is
to use matrix property27,pp367—370:

lAI<IEl i oyl =e; Vij (15)

(Strictly, the above property is valid for a matrix
norm induced by an absolute vector norm. Generally
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used vector norms |- [l,, |- [l |- [}, Il - |l are all abso-
lute vector norms). For example, we can easily de-
termine:

Ymin

m; =mgr)=m; Vi (16)

where the components -, (Or -,,;,) are the maximum
(or minimum) value of the corresponding compo-
nents of -. Let riny(r) = H{m;__+ m; ], then |AM(r)|
=4i(m; —m; ) anddy(r) = H(Mpax — M, || where
L — (mi;_,)r Myin = (mijm)'

Remark 2. Suppose that the estimated values
M), €@, 4). 8@ of M@g), C@, §), g(g) in the joint
space equation (1), and J, of J, in (10) are available.
Let 8(9), 8¢(9, 9), 8,(q), 8,;1(q), 8,(9), and 8{t) denote
the bounds of the modelling errors AM(g), AC(g, §),

Ag(@). AJ;(9), Af,(9) and the external disturbance f(t)
in the joint space, respectively, which are defined in
the same way as in Eq. (14) and are assumed known.
From Eq. (10), the estimated values in Eq. (9) can be
calculated by:
M) =] @M@)];' @)
¢t »=1;"@C4 )i @ - MO, @] @)
8 =1;"3) (17)
Noticing matrix properties ||A]| — |EJ|| = |A — E| =
lAl + [EN and |IAE| = |A|IE|, and |AM()| =
II;7@AM@)] @) + ALT@M@'@) + J;7
(@M(g)A]; (@), etc, the bounds in Eq. (14) can be
determined by:
Bu(r) = Bu(@),;1 + 112
+ W@l 31 + 20
8c(r, 1) = 8cq, )@y + 1 1)

+IC(q, 418,181 + 27

+8(1)®), + D@1 + 11,

HIRE O,z ;1D + 85117

8(1) = @1+ 1, 8,0) + 8,13
8¢(r, 1) = &y + 1, Dsy(t) (18)
Suppose 7,4(t) = ¥ (t) € R"™ is given as the

desired robot motion trajectory, and f,(t) € R™ is the
desired force trajectory. Let:

&, = 1) = 1a(t) &= f(t) — fdt) (19)

be the tracking errors of motion and interaction
force. Consider the robot manipulator described by
Eq. (9), the end-effector of which is in contact with
the environment from Eq. (2) with interaction force
given by Eq. (5). The robot is under the modelling
errors of Eq. (14), which account for parametric un-
certainties, external disturbances, and constraints
uncertainties. The robust motion and force controller
design problem can be stated as that of designing a
control law so that e, — 0, ¢ — 0 as t — .

Remark 3. In the presence of constraint function
uncertainties, the desired motion and constrained
force cannot be specified in terms of all components,
for example, x(t) and Fft) € R", for consistency
with all physical constraints that are not known in
advance. But a subset of the independent compo-
nents of motion and constrained force, for example,
r(t) € R"™™ and f(t) € R", can be specified indepen-
dently of the uncertainties of the constraints actually
imposed on the robot, and can be controlled to track
the desired values. The other components are deter-
mined by the actual imposed constraints so that the
whole robot motion complies to the constraints.
Therefore, the actual position and constrained force
of the controlled robot will vary with the imposed
constraints, which cannot be determined exactly be-

-forehand. By using the nonlinear transformation

from Eq. (6), the problem of constraint function un-
certainties is reduced to the problem of transforma-
tion Jacobian matrix uncertainty in the constrained
motion equation (9), which is suitable for problem
formulation and controller design.

3. VSC MOTION AND FORCE CONTROL OF
ROBOT MANIPULATORS

In this section, based on the particular structure of
the constrained motion equation (9), a VSC method
is developed for solving the above robust control
problem. We make the assumption that the uncer-
tainty of the transformation Jacobian matrix satisfies:

@A M@l =¥ and y<1 (20)

A sufficient condition to guarantee Eq. (20) is that

81 < -:1—
1A

5 —

e e
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For VSC, the switching function is selected as:
s=[sf, 55" 5= K fol g)dv s,=¢é,+ Ke, (21)

where K, € Rt"=mX(=m) jg any positive definite ma-
trix, K, € R™™, is a weighting matrix. The resulted
sliding mode equation {s = 0, 5 = 0} is described by:

Lg@dv=0 and f)-f,)=0
ép + erp =0 ep'—> 0 (22)

in which position and force responses are decoupled,
and the robot asymptotically follows the desired mo-
tion trajectory r,(t) while exerting the desired con-
strained force components f,(t) on the environment.
Moreover, by suitable choice of K., prescribed quality
can be guaranteed in the sliding mode.

The control torque can be determined so that
the system reaches the sliding mode in finite time
and has prescribed reaching transient response
against the modelling errors.

Theorem 1.  For the robot manipulator described by Eq.
(9) with the modelling errors of Eq. (14), the system follows
the desired motion trajectory 7pa(t) while exerting the de-
sired force trajectory f,(t) if the following control torque
is applied:

T= E(")['Tl +T,]
T, = M(n7, + C(r, )i+ 8(r) + B(f — K.

=—g 5
P *)

where:

. —Sf — —Kes
Teg = [fw(t) - erp] T = l:?,,d(t) - Kpép:I 4)

K, is any positive definite matrix. ¢ is any positive sca-
lar satisfying:

e = 72 BuO)liyl + 5ctr, Al
T3y(r) + 3¢(r, 1) + Bllf + YITull + &1 (25)

Where &, is any positive scalar. Furthermore, the reaching
time t, when the system reaches the sliding mode satisfies:

1 1 2V0 1/2)
() o

where:
_ Amin(Ks) — €1 (E)I/Z
S R W SRV
Vo=35 OMO0)s(0) @)

and the reaching transient response is shaped by:

V.\12
W=() " +e)erv-c,  on

Proof: For the robot manipulator of Eq. (9), we
choose a positive definite function V = 1sTM(r)s.
From Property 3, we have:

SklsP=v <L 29)
Differentiating V with respect to time yields:
V=s"M(r); + %STM(r)s

= sT{M(r) [:)J = M(n)ig}+s"C(r, s (30)

14

where Property 4 has been used to eliminate the
term §s"M()s, i.e., sSTM(r)s = sTC(r, #)s. Noticing from
Eq. (9):
V=5[] Tr - M)ty = C(r, 7,
—g(r) = F(r, t) = B(r)f]
= s"[1+ AITID] T = M(r)f, — C(r, P)eg
—8(r) = F(r, t) — B(r)f] (31)

Substituting control torque from Eq. (23) into it,
we have:

V= sT[—AM(r)n,, = AC(r, #)?,, — Ag(r) — E(r, 1)

—AB(f—Ks—¢ @] + sT(A]q“TiqT)(T1 + T,

= =5'Ks — el + sl l[AM(r)7,, + AC(r, P)ie
+Ag(r) + F(r, 1) + AB(r)f]|
+ sl 1A TN ATl + (1T
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= —s"Ks — ells| + [sllIA MOl 7eq

+{laC(r M.

+ag@l + IE, Ol + IABIIAL + sy LTl + ]
= = Muin( K1 = erlsll = sl = v)e

=8l = 8c(r, D

= 8y(r) = 8¢ — &llfl — VIl = &)

= = Ain(KsIP = &1lls (32
From Eq. (29):
V= —-26,V — (2k))ccs VY2 (33)
Thus:

k' 1/2 k' 1/2
V2= (Vo"2 + (7’) Q) exp™ @ — (-ii) o (39

and this means in finite time V = 0, i.e., s = 0.
Moreover, from Eq. (29), the reaching transient re-
sponse is shaped by Eq. (28). The upper limit of the
reaching time ¢, is solved by setting the right hand
of Eq. (34) equal to zero, which is given by Eq. (26).

.

Remark 4. Because there are no requirements on
the estimated matrices M(r), C(r, #), §(r), they can
be chosen in a simple structure that will facilitate
on-line computation. For example, they can be calcu-
lated off-line by choosing M(r) = M(rp, C(r, 1) =
C(ry, 1), §(r) = §(r;) where r,(t) is the nominal trajec-
tory. Similarly, L can be calculated off-line by choos-
ing J,(r) = J,(rs) as long as its modelling error satisfies
Eq. (20). Therefore, the control law given in Eq. (23)
does not require much on-line computation time be-
cause the scalar bounds 8y(r), 8¢c(r, 7), 8,(r), 8¢, g,
v can be determined off-line. However, better esti-
mates of M(r), C(r, #), §(r), etc, will reduce the bound
in Eq. (25) imposed on ¢, which represents the mag-
nitude of the discontinuous control T, in Eq. (23).

Remark 5. From Eq. (28), s exponentially reaches
zero at a rate determined by the controller parameter
K.. From Eq. (26), the reaching time {, is inversely
dependent on \,;,(K;) and &;. By suitable choices of
K, and &,, the reaching transient can be guaranteed
with prescribed quality.

Remark 6. The control law from Eq. (23) is discon-
tinuous across the sliding surface. Possibly due to

neglected dynamics such as sampling time, the con-
trol law leads to control of chattering in practice. In
constrained motion, control torque chattering can
cause force response chattering that will degrade the
system performance. To overcome this.phenome-
non, smooth implementation of VSC law will be
used. For example, with the concept of the boundary
layer,? in the small neighbourhood {llsll = A} of the

sliding surface {s = 0}, the discontinuous term ﬁ is

replaced by a smooth function -Z— where A is the

boundary layer thickness. Generally, a smaller A
gives a more accurate approximation but is less ro-
bust to the neglected dynamics. The control law from
Eq. (23) is the limited case when A — 0. Therefore,
a trade-off exists between the accuracy that can be
achieved and robustness of the neglected dynamics.

4, CONTACT CONDITION

Theorem 1 is based on the assumption that during
constrained motion the robot does not lose contact
with its environment. If the environment is a bilateral
constraint surface, this assumption is satisfied auto-
matically. However, in practice, the environment
may be a unilateral constraint surface. The robot can
only push the environment, which is supposed to

_correspond to f; = 0, i = 1,..., m, but cannot pull

the environment, which corresponds to f; < 0, i =
1, ..., m. In this case, the assumption is satisfied if
the constrained force f is kept positive all the time
by applying the control torque from Eq. (23). We
now examine the system transient performance. For
simplicity, in the control law from Eq. (23), let K; =
k{’mel Kp = kpl(n——m)X(n—m)/ Ks = ksInxnl and let & be
equal to the right-hand side of Eq. (25).
In the Appendix, it will be shown that:

ue,nsc5=é[c7+csue,,u+c9||sm if >0 (35)

where:

2
1-v

co= [10 = 12 Gt D = 725 918D

= 7 G + VDIl

+ (8¢ + YICH# .l + 3 + I3
+ 8+ (85 t+ 'Y“B“)Hfd“ + &) — g
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2 A ~ " - —c :
= _7[5C+ YICIDk, + @y + YIMIDE2] Is " <k, ||s(0 lexp™ — ¢ [1 —exp™] if t<t¢,
t=t
= 8c + YICll) + vk
G _,y[( c + YICDH + vk, (37)
+ @y + YIMDK,] + [ICll + K, (36) K
where k;" = =, and [e,| is (suppose k, # c3):
|Is|| satisfies: k
1 +
exp e, (Ol + l_c_"s%_i( exp ™% — exp™¥) — ——(1 — exp~) ift<t,
lle, = - (38)
" +
exp e, (0)]| + exp~* [’—"—"ESQH——& (exprte—1) - “ (exp~tr— 1)] ift=t,
p ky
Theorem 2. If ¢, > 0 and the desired force trajecto Remark 8. If k; > 2 (4 + yIM|), Theorem 2
jectory =
f(t) satisfy: Y

fizes Vt=0i=1,...,m (39)

where csis defined in Eq. (35), in which the system tracking
error |is|| and |le,| satisfy Eqs. (37) and (38), respectively,
the system will not lose contact with its environment when
the control law from Eq. (23) is applied, i.e., f; = 0.

Proof:

fi=eitfiz=—llel+fa=0 (40)
in which Egs. (35) and (39) have been used. ]
Remark 7. In Theorem 2, larger initial tracking er-

rors e,(0), s(0) and the modelling errors from Eq. (14),

mean that y will require a larger ¢, i.e, a stronger
restriction on the system given by Eq. (39). There-
fore, they should be chosen as small as possible. For
example, ¢,(0) and s(0) can always be made equal to
zero by suitably choosing the desired motion trajec-
tories. In the ideal case of known dynamics without
modelling errors and initial tracking errors, ¢, =

kfk,’, > 0, Cs =

can be chosen as small as possible, Theorem 2 is
satisfied for any practical desired force trajectories,
i.e., f > 0. Generally, c; and ¢4 are continuous func-
tions of the modelling errors and initial tracking er-
rors. Theorem 2 will be satisfied, at least for small
modelling errors and initial tracking errors. Notice
that Theorem 2 is only a sufficient condition; in prac-
tice less restriction on f,(t) is expected.

P k, &;. As the controller parameter &,

always can be satisfied for any practical desired force
trajectory by choosing a large enough controller pa-
rameter k because ¢ is inversely proportional to

A large k; represents a “high gain” force feedback

Thus, “high gain” in the force feedback loop results
inimproved system performance, which agrees with
the general discussion in ref. 7. Practically, due to
the noise in force measurement and time delay, high
gain in the force feedback loop can cause unstable
phenomenon. Therefore, a compromise should be
made in choosing k;.

5. SIMULATION

For a two-link Cartesian space type robot (UMS-2
Robot), as shown in Figure 1, the matrices in the
dynamic equation (1) are given by:

2
M(@q) = C(q,9) =
@ [ /31] @9
1
g(q)=['8 gg] I(q)=[1 ] @

where 8 = [B,, B]" = [my, m; + m,]".

External disturbance is assumed as f(f) =
[10, 10]7 sin(wrt). Actual parameter values of the
robot are m; = 10 kg. m, = 10 kg, g = 9.8 m/s?,
d = 0.5 m. The exact values of m, are assumed to be
unknown with its estimated values 1, = 8 kg. Then,
B = [10, 20]” with estimated values 3 = [8, 18]T and
bound 85 = [3,, 537] 2, 21%.
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figure 1. Configuration of the robot.
The robot is assumed to be in contact with a
surface S shown in Figure 1, which is described by:
x—ay=0 a=<8,=03 (42)
where the actual « used is 0.3. The surface S has an
unknown slope with an unknown coefficient of dry

friction u = 0.2 (estimates & = 0). The constrained
force is:

fa=D'(0)A Dx)=[1 -q (43)

The interaction force is given by Eq. (3):

[ 1 1+ )
F=|_ || | ldsene) = Lr
- 1+ o?
—1 + ausgn(y
L= apsg (y? (44)
L—a+u~sgn@/)

Suppose that the interaction force component F, €

m = R and position coordinate y € R"™" = R should
be controlled as long as « is finite. (F, and y can be
directly measured no matter what the actual con-
straints will be imposed). Then, f = F, = T(x)F,
T(x) = [1 0]in Eq. (4) and ¥ (9) = y(9). The transfor-
mation from Eq. (6) and its Jacobian matrices from
Eq. (8) are given by:

= =l T e @)
7, y 1= lo 1 'Y

and the matrices in constrained dynamics from Eq.
(9) are given by:

| B ap, o 10
o= [aﬁl bt a%] crn=0sn= [Bzg]

L 0
B(r) = [(1 + az),u.sgn(y):l F= [10 1+ ] sin (t)
1+ ausgn() A+ | (4

Since the actual slope of surface S is unknown,
constraint function is approximated by:

d()=0 d(x)=x-ay a=0 @7)

Therefore, estimates of M(r), C(r, 7), 8(r), B(r), ],(r)
in Eq. (9) are:

M(r) LR e=0 30=| .
r)= R = n=\.
0 & 897 g

- Nl. 1o
B - 0} 1.,=[0 1} @ 8)
L

The bounds of the modelling errors from Eq. (18)
can be chosen as:

5 5,8
8M(r)=ll[ . o ]n=5.49 8c=0

8,05, O, + 8285
8,(r) = 84,8 = 19.6

_(1+8)u

& =
P18

=0.232 8:(r,)=19.6  (49)

and:
. 0 &,
.@a% @l =| [0 0] =03 (50)

where Remark 1 has been used. By choosing y =
0.3 < 1, the assumption from Eq. (20) is satisfied.
The switching function is given by Eq. (21) where
K = 0.1, K, = 20. The control torque is calculated

from Eq. (23) where ﬂz—u is replaced by % when [|s| =

A = 0.1 to eliminate chattering problem. Parameter
values of the controller used are K; = diag{10, 10},
&, = 1, and ¢ is calculated by Eq. (25). The desired
motion and force trajectories are 7,, = 0.3(1 — cos
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Figure 2. Tracking error of position coordinate y.

(0.57t)) and f; = 30 + 10 cos (wt). Sampling time is
0.00125 s.

In the first simulation, zero initial tracking errors
are used. The time response of the position tracking
error is shown in Figure 2, from which we can see
that the suggested VSC controller has good position
tracking ability. Figures 3 and 4 present the time
response of the contact force component F, and its
tracking error, respectively. The system also exhibits
good force-tracking ability. The time response of the
switching function is shown in Figure 5, and the
applied joint torque is presented in Figure 6. The

sudden changes occurring at about ¢t = 2 s in these *

figures are caused by a change of surface friction
force because of the direction change of the robot
end-effector velocity. From these figures, we also
see that by using the boundary layer technique, the
robot does not exhibit chattering phenomenon.

In the second simulation, non-zero initial
tracking errors are used to test the reaching transient

60

S0

Force (N)

o Actual f — Desired f

0 I L 1 L I ' I

o 0.5 1 1.5 2 25 3 35 4

Time (sec)

Figure 3. Time response of force components F,.
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2
1+
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o 0s 1 15 2 PY 3 35
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Figure 4. Tracking error of force component F,.
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Figure 5. Time response of switching function.
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Figure 6. Joint torque of the robot.
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Figure 7. Tracking error of position coordinate y.
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Figure 8. Time response of force component F,.
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Figure 9. Time response of switching function.

Figure 10. Joint torque of the robot.

of the system. The time response of position tracking
error is shown in Figure 7. Figure 8 presents the time
response of contact force component F,. The time
response of the switching function is shown in Fig-
ure 9, from which we can see that the suggested
VSC controller has the prescribed reaching transient.
The applied joint torque is presented in Figure 10.
Again, the system exhibits good position and force-
tracking ability except in the reaching transient. Note
that in the reaching transient the system has a large
force-tracking error, which could cause the system
to lose contact with its environment. Therefore, zero
initial tracking error is recommended, which can be

- -achieved by suitably choosing the desired motion

and force trajectory.

6. CONCLUSION

The design of a robust motion and force-tracking
controller in the presence of parametric uncertain-
ties, external disturbances, and constraint function
uncertainties is presented in this article. In the pres-
ence of constraint uncertainties, some components
of motion and constrained force can be specified
freely and controlled to track the desired values.
Actual position and constrained force of the con-
trolled robot will vary with the physically imposed
constraints so that the robot complies to the imposed
constraints. By exploiting a particular structure of
constrained motion dynamics, motion and force con-
trol are designed together with prescribed qualities
guaranteed both in the sliding mode and in the
reaching transient. The contact problem is consid-
ered and a sufficient condition to ensure contact is
given. The simulation results verify the performance
of the proposed method.
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APPENDIX
From Eq. (23), we have:

Il =< W74l + IEC, Pl
+ IOl + 1Bl + Ks]
T Bl + 3, Mgl + 5,0
+ 8500, 1)+ Syl + NT + &1]
= 7 B+ I

+ @B + YICDIFLl + 8,(r) + i3]
+8¢(r, 1) + (35 + YIBDIfI + vk sl + &1 (51)

Substituting the control torque of Eq. (23) into Eq.
(9) and noticing $ = # — #,, we have:

e:

IMs]| = || - AM#,, — AC#,, — Cs — Ag(r)

. s
~E - AB(r)f— ks dF

—T4% S
+AJ; T::[n - ﬁ] I

= BllFell + Sclliall + ICHlsl + &,
+ 8¢+ 8yllfll + klsl| + & + [Tyl + &]

= 26— &, + (IC] + k)] (52)

From Property 3:
IMs] = kZIsll = k;llsll = k; kel (53)
Because:

A= fall + llefl
el =< lisfl + 17l + K lle,ll = llsl + Il + Kl |
lEeall = Kelledl + l7ll + Kl
= kflledl + Il + Klls,ll + K3le, | (54)
from Egs. (51)-(53) one obtains Eq. (35). Eq. (37)

follows from Egs. (28) and (29). Because é, + kye, =
s, and |ls | < [is|, we have:

llegl = exp™le,O)]] + J exp ™55, w)ldo (55

which leads to Eq. (38).
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