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considered in this paper. A new constrained dynamic model is obtained to account
for the effect of contact surface friction. An adaptive law is suggested with unknown
parameters updated by both the motion and force tracking errors to guarantee asymp-

totic motion and force tracking without any persistent excitation conditions to be
satisfied. The suggested controller has the expected PI type force feedback control
structure with a low proportional ( P) force feedback gain. Detailed simulation results
are given to show the effectiveness of the proposed controller.

1 Introduction

Many practical applications of robot manipulators involve
tasks in which the robot end-effectors are required to make
contact with environment. Typical examples of such tasks are
contour following, grinding, scribing, as well as assembly re-
lated tasks. In these applications, contact forces between the
manipulator end-effectors and the environment are generated.
For successful execution of such tasks, simultaneous control of
motion of the robot as well as contact force is required (Whit-
ney, 1987; Raibert and Craig, 1981; Khatib, 1987; Hogan, 1985;
Kazerooni et al., 1986; Yao et al., 1992b). Therein, many re-
searchers have focused their efforts on the situation where the
end-effector is in contact with rigid frictionless surfaces
(McClamroch and Wang, 1988; Wang and McClamroch, 1989;
Mills and Goldenberg, 1989; Kankaanranta and Koivo, 1988;
Yoshikawa et al., 1988; Yun, 1988; Yao et al., 1992c; Cai and
Goldeberg, 1989; Cole, 1989; Grabbe et al., 1993). In such
cases, kinematic constraints corresponding to some algebraic
constraints among the manipulator state variables are imposed
on the manipulator motion, and motion of such a system is
called constrained motion.

A general theoretical framework of constrained motion con-
trol has been rigorously developed by McClamroch and Wang
(1988). Their controller is based on a modification of the com-
puted torque method. Lyapunov’s direct method is used in
Wang and McClamroch (1989) to develop a class of decentral-
ized position and force controllers. Mills and Goldenberg
(1989) applied the descriptor theory to constrained motion con-
trol. The controller is derived based on a linearized dynamic
model of the manipulator. State feedback control and dynamic
state feedback control are utilized to linearize the robot dynam-
ics with respect to motion and contact force by Yoshikawa et
al. (1988) and Yun (1988), respectively.

The above methods are based on the exact model of con-
strained robot dynamics. From a practical point of view, param-
eters of the system such as gravitational loads vary from a task
to another, and hence, may not be precisely known in advance.
This motivated the use of adaptive controllers, and a number
of schemes have been proposed to deal with the adaptive motion
control of rigid robots (Craig et al., 1987; Slotine and Li, 1987b;
Sadegh and Horowitz, 1990; Johansson, 1990; Ortega and
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Spong, 1989). However, only several adaptive constrained mo-
tion control methods have been proposed (Slotine and Li,
1987a; Carelli and Kelly, 1989; Su et al., 1990; Jean and Fu,
1991). The dynamic model proposed in (McClamroch and
Wang, 1988) and a parameter adaption law similar to the one
in (Slotine and Li, 1987b) were used by (Carelli and Kelly,
1989) to derive conditions to ensure asymptotic position
tracking and bounded force error. The same conclusion was
obtained by (Su et al., 1990) using an adaptive scheme without
force feedback. (Jean and Fu, 1991) further discussed this prob-
lem with the consideration of computational efficiency and the
conditions for velocity tracking and constrained force tracking.
Basically, the above adaptive constrained motion control meth-
ods are all based on the reduced dynamic model proposed in
McClamroch and Wang (1988), which enable motion and force
controllers to be designed separately. It should be noted that
this model is only valid for frictionless contact surfaces, while
most real contact surfaces have friction. Furthermore, the previ-
ous parameter adaption laws proposed are only driven by mo-
tion tracking error. Thus, the force tracking error can be guaran-
teed to be only bounded unless some persistent excitation condi-
tions are satisfied, which is difficult to verify and depends on
specific desired motion trajectories. Although theoretically the
force tracking error can be made small by using a large propor-
tional force feedback gain (Carelli and Kelly, 1989; Jean and
Fu, 1991), the gain for the proportional force feedback is se-
verely limited in applications due to the acausality that arises
since rigid body dynamics is assumed in the modeling of the
robot (Paljug et al., 1992). In fact, recent one-dimensional force
experimental results presented by Volpe and Khosla (1992)
and Paljug et al. (1992) suggest that the best force tracking
performance is achieved by integral (I) force feedback or PI
force feedback control.

In this paper, we consider the adaptive motion and force
control of robot manipulators in constrained motion in the pres-
ence of parametric uncertainties both in the robot and surface
coefficient of dry friction. In the presence of surface friction, the
reduced constrained dynamic model (McClamroch and Wang,
1988) cannot be obtained, and a new transformed constrained
dynamic model that is suitable for controller design is proposed.
An adaptation structure similar to those in motion control (Slo-
tine and Li, 1987b; Sadegh and Horowitz, 1990) is adopted,
but with unknown parameters updated by both motion and force
tracking errors. The suggested control law can guarantee asymp-
totical motion and force tracking without persistent excitation
condition, and has the expected PI type force feedback control
structure with a low proportional force feedback gain. Simula-
tion results will illustrate the proposed controller.
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This paper is organized as follows. Dynamic equations for
constrained robots are given in Section 2. Section 3 presents
the proposed adaptive motion and force controller. Simulation
results are shown in Section 4 and conclusions are given in
Section 5.

2 Dynamic Model of Constrained Robot Manipula-
tors

Dynamic equation of a general rigid link manipulator having
n degree of freedom can be written as

M(q)d + C(q,4)4 + g(q) + J(QF = (1)

where g € R" is the joint displacement vector, 7 € R" is the
applied joint torque, M(q) € R™" is the inertia matrix, C(q,
4)4 € R" is the vector function characterizing Coriolis and
Centrifugal forces, g(g) € R" is the gravitational force, J(q)
= dx(q)/dq € R™" is the Jacobian matrix which is assumed
to be nonsingular in finite work space {2, and x € R" is the
position and angles of the end-effector in Cartesian space, F €
R" is the vector of forces/moments on the environment exerted
by the robot at the end-effector. (Corresponding to x, forces
are decomposed along the Cartesian axes, and moments are
decomposed along the rotation axes defining the angles, which
may not be orthogonal.)

Equation (1) has the following properties which will facilitate
the controller design (Slotine and Li, 1987b; Sadegh and Horo-
witz, 1990; Ortega and Spong, 1989).

Property 1. M(q) is a symmetric positive definite (s.p.d.)
matrix, and there exist k* > 0 such that k'l, = M(q). I, repre-
sents an n X n identity matrix. Furthermore, for the robot with
all joint revolute or prismatic, there exist k" > 0 so that M(q)
= k"I,. For a general robot, M(q) =< k"I, is valid for any finite
workspace € = [g: lg — Qoll = Gmax], Where go, Gmax are constant
vector and scalar.

Property 2. 'The matrix N(g, §) = M(q) — 2C(g, §) isa
skew-symmetric matrix.

Property 3. M(q), C(q, §), g(q) are linear in terms of a
suitably selected set of the robot parameters 8 € R*. ;

It is assumed that the robot is nonredundant and the measure-
ments of position, velocity, and constrained force are available.
The robot end-effector in contact with rigid constraint surfaces
will be considered. It is assumed that the end-effector is initially
in contact with the constraint surface, and the control exercised
over the constrained force is such that the force will always
hold the end-effector on the constraint surface.

Suppose that the environment is described by a set of m rigid
hypersurfaces (McClamroch and Wang, 1988; Yoshikawa et
al., 1988)

B(x) =0 Bx)=[d1(x), ..., Pa(x)]" m=n (2)

which are mutually independent, and ¢; (x) is assumed to be
twice differentiable with respect to x. The interaction force F
can be written as

F=F,+ F,=DT(x)\ + A fi( K Venas N)
= [Dr(x) + Lr(ﬂ‘ X, x)]h

D(x) = 92X p L e R (3)
ox
where A € R™ is a vector of Lagrange multipliers associated
with the constraints which usually represent normal contact
force components, F, = D"(x)\ represents constraint force,
i.e., normal contact force in the Cartesian space, F, = A, fi(,
Vena, M) is the vector of friction force, the direction of which is
specified by A,, the unit tangent direction of the surface, and
its magnitude depends on F,, i.e., \, and the friction coefficient

Journal of Dynamic Systems, Measurement, and Control

p € R™ with sign determined by the end-effector velocity Veaa-
L is linear with respect to the friction coefficient p. In general,
L is differentiable except at the point when v, change direction
on the surface. In the assumption of frictionless contact surface
(F, = 0), (3) reduces to the form given by McClamroch and
Wang (1988) and Mills and Goldenberg (1989).

When motion of the robot is constrained to be on the surfaces
(2), only (n — m) coordinates of the position vector can be
specified independently (Yao et al., 1992a). Control of all the
position coordinates of the robot is unnecessary, and only (n —
m) position coordinates need to be controlled in the constrained
motion of the robot. Therefore, motion control is in the (n —
m) mutually independent curvilinear coordinates, ¥(x) =
[P1(%), . . ., Ynom(x)]17. ¥(x) are assumed to be twice continu-
ously differentiable and independent of ®(x) in the finite work-
space ). Thus, once ¥(x) is regulated to the desired value
¥,(t), combining with the constraints (2), the configuration of
robot is uniquely determined. Notice that ¥(x) can be selected
as some joint angles g; or some end-effector coordinates X;
which may be suitable for implementation. For example, since
D(x) is of full rank m, without the loss of generality, we can
assume that the first m columns of D(x) are independent. In
this case, we can choose ¥(x) = [Xn+1s <+ s Xal”-

Define a set of curvilinear coordinates as (Yao et al., 1992b;
Yoshikawa et al., 1988)

r=0rf rD7 = [$i(x), -y Pm(0)]T

ry= [0, - os Yum®]T (&)
Differentiate (4)
F=Jx=Jg (5)
where
L=2D 5 Dy ST g, =T e gome
ox ox
J, = ﬁﬂ%q)) J, = J.(x(g)J(g) J; J: E R™" (6)

Using the transformations (4) and (5) in (1), then multiplying
both sides by J;7, dynamic equation (1) with the constraints
(2) and the interaction force (3) can be expressed in terms of
ras

M(r)F + C(r, P)F+ g(r) + B' (g, r, N =T,

0 I,
r=[ ], B'=[ ]+B(,u,r,r‘) (7)
T 0
or
My(r)fF, + Cu(r, F)r, + gi(r) + (In + BN =T,
Mu(r)fp + Cn(r‘ f‘)fp 4 gg(r) + ng = T,—z (8)
where

My (r) Mlz(r)]
My (r) Mx(r)

C(r, ?) = J;7(9)C(q, 977" (q)
— I7T(@M(9)I; ()T ()5 (9)

o [ Cll CIZ]
C?I. CZ?.

g(r)=J;7g(q) = [

M(r) = J;"(@)M(9)I;' (q) = [

81(")]
82("}
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B,
B(p,r,r)=J;TLT =
‘Al [Bz]

Tr
A J;T(q)"" — [Tl]
r2

in which the constraints are simply described by r; = 0. Motion
of the robot is thus uniquely determined by the coordinates r,,.
Also, the constrained force F, has a simple structure in the new
coordinate system, i.e., J;”F, = [I, 0]"\. In the absence of
surface friction force, B, = 0, B, = 0, and thus constrained
force does not appear in the second equation of (8). Therefore,
motion control can be designed based on the this reduced order
equation without considering force control. This is the basic
strategy adopted by previous researchers in this area (McClam-
roch and Wang, 1988; Wang and McClamroch, 1989; Mills and
Goldenberg, 1989; Kankaanranta and Koivo, 1988; Yoshikawa
et al., 1988; Yun, 1988; Cai and Goldeberg, 1989; Cole, 1989;
Grabbe et al., 1993). Clearly, in the presence of surface friction
force, motion and force equations are coupled and a new strat-
egy should be invented.

Let K; = diag {ku, . . .. krm } and G, = diag {gn, .. .. 8fm}
be constant diagonal matrices with k;; > 0, g, = 0,i=1,...,
m. By adding G\ to both sides of the first equation of (8),
adding and subtracting M5, (r) K\ to the left hand of the second
equation of (8), and noticing A = K; 'K\, Equation (8) can
be rewritten in a concise form as

H(rp)v + Cy(r,, )7 + g(rp) + B (i, 1y, Fp)N
=T,+ G\ (10)

(9)

where

K
]
rp

_ I + Gf)Kf_] My, (r) ]
H(!},) B [ My, (r) M (r)
0 Cpl
Clrps 7p) = [Czl C:

Bn(p, 15y 7p) = B(u, v, 1) + :B;,(rp)

y _ 0
Ba) = =| M (K, |

= Gf
5-|5]
Equation (10), which possesses some nice properties intro-
duced in the following, is the basic equation for our controller
design. The physical meaning of introducing Ky and Gy in (10)
will become apparent later in controller design.
From Properties 1 and 2, the following properties can be
obtained for Eq. (7) (Yao et al., 1990; Yao et al., 1992c).

Property 4. For the finite work space €2 in which J, is
nonsingular, M(r) is a s.p.d. matrix with

k!lI, = M(r) = kI, Vge (12)

where k! = (k'/c}), kI = (k"/c3), ¢ = Supseq
[Omax(J4(g))] ¢z = infieq [Omin(J4(g))]. o(*) denotes singular
values of », and %, (OF *yy,) is the maximum (or minimum)
value of .

Property 5. The matrix N(r, ) = M(r) — 2C(r, ¥) is a
skew-symmetric matrix.

From the above properties and property 3, Eq. (10) has the
following properties.

(11)
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Property 6. H(r,) is a s.p.d. matrix for sufficiently small
Amax (Ky) = max; ky; where A(+) denotes eigenvalues of .

Proof: Rewriting H as

B {I + GI)KI_I — Mn(r) 0
0 0

If A (K;) = 17K, then, Ain { (I + GDK7'} = Auin(K7'} =
1/ Apax (K;) = k. From property 4, M, (r) = k'I,. Thus, (J
+ G;)K;' — M,, is a symmetric positive semidefinite (s.p.sd.)
matrix. From (13), property 6 is established. [

] + M(r) (13)

Property 7. The matrix Ny(r,, 1) = H(r,) — 2Cy(rp, 1)
is a skew-symmetric matrix.

Proof: From (11) and (13)

M, (r) — 2Cy(r, F) 0] (14)

N, = M(r) — 2C(r, F) — [ . 0

From property 5, M,, — 2C}, is a skew-symmetric matrix, which
leads to property 7. [

Property 8. H(x,), Ci(1,, 7,), (1), Bu(r,) are linear in
terms of the robot parameters g defined in property 3, i.e.,

H(r))z, + Cu(rp, Pp)z, + 8(1p) + Bu(rp)\
= Ys(rps Fps 2y 2o B Yp € R™* (15)

where z,, z, are any reference values. B(pu, r, r) is linear in
terms of friction coefficient p, i.e.,

B(u, r, )N = Y (rp, Fpy )b Y, € R™" (16)

Suppose r,4(1) = ¥(x(g4(1))) € R"™ is given as the desired
robot motion trajectory, and As(t) € R™ is the desired con-
strained force trajectory. Let

e, (1) = r,(1) — ra(t)  e(2) = A1) — Na(2)  (17)

be tracking errors of motion and constrained force. Consider
the robot manipulator described by (10) with some or all of
the robot and surface parameters 8 and p unknown. The adap-
tive motion and force controller design problem is to design a
control law for the actuator torque and an estimation law for
the unknown parameters so that ¢, = 0, e,—> 0 as t = .

3 Adaptive Motion and Force Control of Robot
Manipulators

In this section, based on the particular structure of the con-
strained motion equation (10), an adaptive method is developed
for solving the adaptive motion and force control problem. De-
fine a vector s € R" as

T
Kf j ef(u)dy
o

é, + De,

(18)

which is a measure of motion and force tracking accuracy. The
reference velocity and acceleration are defined as

< [2]- 1.7
' Zpr ?"pd_Dep

)L
Zyp ¥pa — Dé,

Note z, # 7. Let the constant parameter set be 8 = [BZ,
BE]7, where B¢ is the unknown parameter set needed to be
estimated on-line and By is the known parameter set. Corre-
spondingly, partition Y as Yy = [Yse, Ysel. Let Og be the
estimate of ﬁg, and ﬁ(rp’ ﬁ)! éﬁ(rpv fps 6)s é(rps ﬂ)‘ E:n(rﬂ"

(19)
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), B(r,, 7,, i) be the matrices obtained from the matrices
H(ry), Ci(7y, 7), 8(rp), Bn(r;), B(p, 1y, 7,) in equation (10)
by substituting the estimated 8 = [BZ, 8517 and A for the
actual B and p respectively. Then from property 8

H(rp, Bz + Ci(ry, 7y, Bz, + §(ry, B) + Blu(rp, HIN
= Y5(Tp, Pps Zes 20 NI
B(r,, Fpy BN = Y(1y, Py Mt (20)
and
A, B)z + Cilryp, #p Bz + §(ry, B) + Blu(r,, HIN
= Ya(rps Fps Zrs 205 N) B
B(1,, Fpy BIN = Y1y, Fpu Mt (21)

where ¥ = ¢ — « represents the estimation error of the matrix
(vector) =. The control torque is suggested to be

T, = H(r,, Bz + Cu(ry, 1y, Bz, + £(1,, B)
+ (Bu(ry, Fpy B, ) = GN — Ki(8)s — Kye,
= Yoy, Fps 2y 20y N)B + Y1y, Fpu N2
- G\ — Koe, — K, (t)s (22)
and adaption law
Be = —Ta¥ 5e(ry, Fpy 201 2, N)s (23)
A= =LY (1, 5, \)s (24)

where K, = [0, K,]”, K, € R*™*(=m T, T, are constant
s.p.d. matrices, K,(#) is a uniformly s.p.d. matrix, and s and z,,
Z, are defined by (18) and (19), respectively. D is chosen as
D = K;'R and R € R"™*=m 5 any s.p.d. matrix.

Substituting the control law (22) into (10) and noticing (20)
and (21), the error dynamics is obtained as

Hs + Cys = H(rp, Bz, + Ci(ry, Py Bz, + (1, B)
+ B, (r,, Fpy B, D)X — K€, — K5
= Yae(ry, Fps Zos 20 VB + Yu(1p, Py Nt
- Re, — K,s (25)
Since X\ = K;'s; + A4, Eq. (25) can be rewritten as
A(ry, p, B, 1)$ = —Cis + H(ry, B)z, + Co(1, 7y, Bz,
+ &(r,, B) + Bu(r, 7, B, BN — Kye, — Ko (26)
where
P [(f‘”r G — B)K;' Mu(r)]
My (r) — BK;' My(r)

2 [ M,,Mgl][g(r,,f,.ﬁ.ﬁ)ff;‘ 0 ]
0 I ﬁzl(-") b B'ZK!_] Mz

Q=1+ G;— B, — M;M3'B, - MM MoK, (27)

Theorem I. For the constrained robot manipulator de-
scribed by Eq. (10), in the finite workspace Q studied, with a
sufficiently small K, the following holds if the control law (22)
with update law (23) and (24) is used:

(@) B=(B-PB)eLt, p=(p-peL:
(b) e, eLr"NLy™ seLinL?

Further, if (1), 7u(t), Fu(t), Ni(t) are bounded functions
and @ in (27) is nonsingular, then,
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(¢) €—0, s—0 whent— o

(d) eeLm

i.e., the robot follows the desired motion trajectories and force
tracking error is bounded with integral asymptotically converg-
ing to zero.

Additionally, if r$¥(¢), A, are also bounded functions, i.e.,
the desired motion and force trajectories are sufficient smooth,
then,

(e) &—0,

é,~ 0,

€& —0 whent— o

ie., force tracking and motion acceleration tracking error as-
ymptotically converge to zero.

Moreover, if the desired motion and force trajectory are cho-
sen in such a way that the following persistent excitation condi-
tions are satisfied

t+T
I YIYu(v)dy = eglyens V=1, (28)
r

where Yi(2) & [Ype(rpa(t), Foa(t), za(1), zua(2), N(t)),
Y,;(rgd(r), Tpa(£), Na(1))], 2t £ [0, #2a()]7, zua 2 [(Kha(2))7,
Fpal', and T, 1y, €, are some positive scalars, then,

f) B~-0,

i.e., estimated parameters converge to their true values. A

L—=0 whent— o

Proof: Noticing property 6, a positive definite function is
chosen as

V =3sTH(r,)s + 3elK,e, + 3BET5' Be + s5'T'5 (29)

Differentiating V with respect to time yields
V = sTH(r,)s + 3sTH(r,)s + elK,é,
+ BT Be + T i
= sTH(r,)$ + s'Cy(r,, 1,)s + elK,(s, — De,)
+ BEC5' Be + BT
= s"[H(r,)$ + Cy(r,, ',)s + Re,] — elK,De,
+ BECG'Be + A'T'h (30)

where Property 7 has been used to eliminate the term (1/
2)s"H(r,)s. Noticing error dynamics (25), B = Bz, fi = A
and updating law (23) and (24), we obtain

V = s7¥peBe + sV, i — sTK,(£)s — ¢;Re,
+ BT Be + B7T5'
= —s"K,s — el Re, + ﬁ;[l"g‘ﬁg + Ypgs]
+ ;‘T[F;lﬁ + Yys)
= —s"K,s — elRe, (31)
Equations (29) and (31) imply (a) and (b) of Theorem 1. The
following is to prove (c) and (d).
From (b), e,, €, € LY™. SiNCE Iy, Fyuy Frg € L% ™ and Ny

€ L2, then, r,, ¥, € LL™ and z,, z, € L%. Thus A(r,, §),
Cu(1y, Ty B), &(ry, B), Bu(ry, By, B, ), Q(ry, Ty, B, o) are
bounded matrices. Furthermore, from (27), nonsingularity and
boundedness of Q imply the nonsingularity and boundedness
of A(r,, 7y, B, ). From (26), we conclude § € L2, which
implies (d). Since s € L% N L3, simply applying Barbalat’s
lemma (Slotine and Li, 1991), we obtain (c).

To prove (e), noticing that A and all the terms in the right
hand of (26) are differentiable, differentiate (26)

Af = -A(rp' r'p» Fp’ 5» )B'! f&, ﬁ)s T Cfl(rps "pv Fpu ﬁ’ ﬁ).ﬁ'
= Ci$ + H(ry, 1y B, B)z + B,
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+ éﬁ(rpy fp| fpu ﬁs B)Zr + ckz-r + é(rpv f;,, 6! 5)
.6 .39 )&’ f‘i)hd + gmxd o Epép
- Kss—Ks (32)

+ B (1, Fpy Fpy

Since ry € L™ and A; € LZ, we have, 7, € L%. Noticing s
— 0, from (23) and (24), B — 0 and & — 0. Thus all the terms
in the right hand side of (32) are bounded, which imply § €
L2 and § is uniformly continuous. From Barbalat’s lemma, we
have § — 0, which imply (e). Rigorous proof of (f) is omitted
since it is quite tedious and standard in adaptive control litera-
ture. Roughly, since § = 0 and (¢) and (e), from (25),
Y.()[BE, i"]T = 0. Then, PE condition (28) will guarantee
(f). QED. A

Remark 1. Theorem 1 requires that Q is nonsingular, which
may be guaranteed in several ways. We classify them in the
following three cases:

Case 1. In the case of known friction coefficient, instead
of adaptation law (24), we set i = p. Thus, B = 0. Since 8
€ L%, B € Qp where Q is a finite set. In the finite workspace
Q, = r(§) studied, by choosing a small weighing matrix K;
such that

Amax (Kr)
< 1
Sup,ca,gen, { IMn(r,)Mz (r,) Mo (7, All}

(33)

where ||+|| denotes a norm of « which is a vector or a matrix
(without loss of generality, in this paper, ||*|, is used, i.e., | Al
= omx(A) = M2 (ATA)), Vy € R™™, y # 0, we have
IOyl = II(I + G — MM % MoKy

= (1 + A GO — IM12M 55 Moy A uax (KP) 1y |

Thus, 0 min(Q) > Amin(Gy) > 0 and Q is nonsingular.

(34)

Case 2. In the above development, only the normal contact
force F, or A is assumed to be measurable. If the total interaction
force F between the end-effector and the contact surface can
also be measured by the force sensor, F, can be calculated from
(3). Thus, BA = J;TF, can be directly obtained. The control
law (22) can be simplified as
Tr = Yﬁ(rpv fp; Zry Loy R)B ¥ J;TF.' - G_,I"h

- K,e, — K;s  (35)
with only 4 updated by (23). This case is then identical to the
Case 1, in which nonsingularity of Q can be guaranteed by
choosing a sufficient small weighing matrix K.

Case 3. In the general case that only A can be measured

and u have to be estimated by (24), since 1 € LZ, i € Q,
where €, is a finite set. By choosing

h?Iu.\:l((;f) > -1+ SuprEﬂ,ﬁEQ" {llgl(rps fps .ﬁ‘)
+ My (r, )M (r,) Ba(ry, 7y, )|}
+ Amax(Kr) SUPreq, den, {IMy2(r,) M3 (r,) My, (1, A},

(36)
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we have, Vy € R™,y # 0,
oyl = (X + Gyl — (B + MMz By)yll
— MMz Moy K|
= |YI[1 + Nuin(Gy) — 1By + MM % By
= Nax (K |Mi2M % Myill] > 0 (37)

which implies the nonsingularity of Q. Thus, the nonsingularity
of Q can be guaranteed by choosing a relatively large propor-
tional (P) force feedback gain G;. Normally, since p and fi are
small, | B, + M;M3;B,|| < 1. By choosing a sufficiently small
K, the right-hand side of (36) can be made less than zero so
that no minimum limit is imposed on Gy and a small or zero
force feedback P gain control is possible. [J

Remark 2. Previous adaptive constrained motion control re-
sults can be considered as the special cases of the proposed
controller. For example, in the absence of surface friction, let-
ting K; = 0, which can be considered as the limit case of K, —
0 in our controller, control law (22) is reduced to (term H(rp,
B)z, is combined first to eliminate the appearance of K;'in H,
and then letting K, — 0)

I_ In + G Mt s
T"[ 0 ]“*[Mzz(rp,ﬁ)](f"‘* D)

I:clz(rp» ’:p’ 6)

C‘Q_z(rp, ’.-p‘ ﬁ)](fpd - Dep) + g(r;n 6)

G =
- [ O"]x - Ks—K,e, (38)
which includes a proportional force feedback term only. Corre-
spondingly, adaption law (23) is reduced to

ﬁE = _r\ﬂYEE(rps ’:p, Zry Tuy 0)5

in which z,, z,, s are functions of motion tracking error only.
In this case, since s = [0, 5,]7, by following the same steps in
the proof for Theorem 1, we still have the conclusions (a),
(b), (c), and (d) where i = u = 0. However, we cannot have
e;,— 0 ((e) in Theorem 1) since s includes the motion tracking
error only. Intuitively, since the adaptation law is driven by
motion tracking error only, nothing can be said about force
tracking unless certain persistent excitation conditions are satis-
fied such that the estimated parameters converge to their true
values and exact feedforward compensation is achieved. Nor-
mally, this condition cannot be satisfied. Although a larger pro-
portional force feedback gain Gy leads to a small force tracking
error, its value will be severely limited in applications which
will be demonstrated later in simulation. Further analysis on
this point will be considered in a future paper. This result is
equivalent to the result obtained in Carelli and Kelly (1989)
and Jean and Fu (1991). Furthermore, by setting G, = 0 in
(38), the resulting control law consists of position control terms
and force feedforward term only. No force feedback control is
needed, which is equivalent to the result in Su et al. (1990).
Note that all these results are based on the assumption that
frictionless contact surfaces, which have the property that force
does not affect the motion in position subspace, and, thus, mo-
tion control can be done separately and force can be regulated
indirectly by pure motion control. [J

(39)

Remark 3. From the discussions in Remark 2, we can see
that by introducing the weighting matrix K;in s, we can directly
control the force tracking accuracy. This is especially important
when friction surfaces appear, in which constrained force does
affect the motion in position subspace. A larger K;in the control-
ler may provide better force tracking transient. However, it has
a stability limit as required in Theorem 1. Also, a larger K, may
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Fig. 1 Configuration of the robot moving on a semi-circle surface

result in a relatively larger proportional force feedback gain as
B, in (22) contains K;. As analyzed in Yao and Tomizuka
(1993), in digital implementation, the combined proportional
force feedback gain B,, — G, in (22) will be severely limited.
This also imposes a limit on the allowable size of K;. [

4 Simulation

A two degree of freedom (DOF) direct drive planer SCARA
robot in Fig. 1 is used in simulation. The matrices in dynamic
equation (1) and forward kinematics are given by

B+ 26/Cpa B2 + ﬂquz]
M =
@ [ B2 + BiCq2 B2
[ =B1d:Se: =BG + 42)Se2
C(q,9) = [ BudrSea 0
_ [x] e [I]Cq} o Ichn = d:|
y xlsql 4 fquu
_Ilsql - lilZSJ;JIZZ _Izsqlljl
J = 40
) [ LCp + bCr  hCona e

where C,; = cos (¢1), Cp2 = €05 (g2), Cyia = cos (g1 + q2),
S,1 = sin (g1), Sz = sin (q2), and S, = sin (¢1 + 2). B =
[Bi, B2, Ba]" is the robot physical parameters given by § =
[malealy, mal?, + Ly, mi2 + I + mpl} + mylZ, + L]". Actual
parameter values of the robot are [, = 0.36m, I, = 0.24m, § =
[0.363, 0.353, 3.694]7, and d = 0.5m. The exact value of 3 is
assumed to be unknown and its initial estimate is § = [0.18,
0.18, 1.8]".

The robot is in contact with a rigid semi-circle surface § as
shown in Fig. 1. The surface S, with an unknown dry friction
coefficient p = 0.2, is described by

é(x)=Vx*+y’~R=0 R=02m
The task space is defined as
ri=lr:nlt rf=m-—R r, = RO
§ = tan"' (x/y)

(41)

(42)
Notice that 7, is orthogonal to the curvilinear coordinate of ;.
The interaction force on the surface is given by (3)

_ _ | sin (&)
F=F,+F F,= [cos(ﬂ):lf"

|

where A = f, € R represents the normal contact force compo-
nent. Task space equations (7) can be obtained and transformed
equations (10) are thus derived. The form of ¥, and Y, are
obtained from (15) and (16).

cos ()

—sin (0) (43)

:Iﬂ sgn ("p)ﬁi
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Fig. 2 Time response of position coordinate r,

Fig. 3 Time response of position tracking error e,

The tracking error s is given by (18) where K; = 0.02, and
D = 50. The control torque can then be calculated from (22)
with adaptation law (23) and (24). Parameter values of the
controller are G; = 0, K, = [0, 5000]", K, = diag { 500, 500},
I = diag {150, 150, 150}, and I', = 5. The desired motion
and force trajectories are r,; = —(Rw/6)(1 + cos (0.57¢)) and
foa = —15 + 5 cos (wt). Sampling time is 0.005 s.

Simulation results are shown in Figs. 2—8. The time response
of position r, and its tracking error e, are shown in Fig. 2 and
Fig. 3, respectively. The suggested adaptive controller has a
good position tracking ability. Fig. 4 and Fig. 5 present the time
response of contact force and normal force tracking error ey,
respectively. The system also exhibits good force tracking abil-
ity. Estimated robot parameter vector § and surface friction

Fig. 4 Time response of interaction forces
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=

Tracking eror (N)

(7]

‘Time (sec)

Fig. 5 Time response of force tracking error e,

force p are shown in Fig. 6 and Fig. 7, respectively. The esti-
mated parameters do not converge to their true values with j
approaching its true value 0.2 since normally persistent excita-
tion condition (28) is difficult to be satisfied. The time response
of tracking error s is shown in Fig. 8, and the applied joint
torque in Fig. 9. The sudden changes occurring at about ¢ = 25
in these figures are caused by a sudden change of surface friction
force because of the direction change of the robot end-effector
movement on the surface.

For comparison, the simulation is also run with the same
controller parameters but without using the adaptation law (23)

Time (sec)

Fig. 6 Estimated robot parameter g8

015} /
01
0.05 /

() 1 2 3 4 5 6 7 3
Time (sec)

=]

Fig. 7 Estimated surface friction coefficient u
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=

Dotted: 31 (non-adaptive)
1 2 3 4
Time (sec)

-10
0

Fig. 8 Time response of tracking error s

and (24). The tracing errors e,, ¢, and s are shown in Figs. 3,
5, and 8, respectively. The system exhibits larger tracking errors
comparing to the adaptive case.

The simulation is then run with the same controller parame-
ters as the first simulation except for K;. Tracking error e, and
e for the three cases, (i). K; = 0, which is equivalent to the
case of no force feedback control with the adaptation law driven
by only the position tracking error, (ii). K; = 0.02, and (iii).
K; = 0.04, are shown in Fig. 10 and Fig. 11, respectively. The
results agree with Remark 3 that larger K, will have a better
force tracking ability.

-

Joint torque (Nm)
o
_——

e

-...:\

\/ \] \
Solid: joint]  Doued: joint2
2 i 2 3 4 5 6 7 3
Time (sec)

Fig. 9 Joint torque of the robot

=10

Tracking error (m)

Dotted: Kif=0.04
3 4 5 6 7 g
Time (se<)

Fig. 10 Time response of position tracking error e,
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Fig. 12 Time response of position tracking error e,

In the last simulation, the system is run with the same
controller parameters as the first simulation except for Gy.
Three cases, (i). G, = 0, (ii). Gy = 0.5, and (iii) G, = 1, are,
examined. Tracking error ¢, and e, for the three cases are
presented in Fig. 12 and Fig. 13, respectively. A large G has
little effect on position tracking error but provides a better
force tracking transient. This is desirable especially in the
initial stage where the force tracking error is large. However,
with G, = 1, the system suddenly goes to unstable around ¢
= (.85 as seen from Fig. 13. This illustrates that the allowable
gain Gy will be severely limited in applications. The control
system should not rely on G, to guarantee the force tracking

w

Tracking ermor (N)

JT)| -

Soid: G0  Dopmd: Gf={  Dasbot: G=0S
(] 1 2 3 4 5 6 7 8
Time (sec)

Figure 13: Time response of force tracking error ey

Fig. 13 Time response of force tracking error e,
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accuracy. This particular phenomenon will be further studied
in a future paper.

5 Conclusions

Adaptive constrained motion control of robot manipulators
in the presence of parametric uncertainties both in the robot
and contact surface was considered. Instead of the reduced con-
strained dynamic model obtained for frictionless contact sur-
faces, a new transformed constrained dynamic model, which is
suitable for the controller design, has been proposed for the
contact surfaces with or without friction. An adaptive control
law with unknown parameters updated by both the motion and
force tracking errors has been suggested to guarantee asymptotic
motion and force tracking without any persistent excitation con-
dition to be satisfied. The suggested control law has the expected
PI type force feedback control structure with a low P-gain to
avoid the acausality problem (Yao and Tomizuka, 1993). Ex-
tensive simulation results were given to show the effectiveness
of the proposed method.
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