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A desired compensation adaptive robust control (DCARC) framework is presented for
nonlinear systems having both parametric uncertainties and uncertain nonlinearities. The
paper first considers a class of higher order nonlinear systems transformable to a normal
form with matched model uncertainties. For this class of uncertain systems, the desired
values of all states for tracking a known desired trajectory can be predetermined and the
usual desired compensation concept can be used to synthesize DCARC laws. The paper
then focuses on systems with unmatched model uncertainties, in which the desired values
of the intermediate state variables for perfect output tracking of a known desired trajec-
tory cannot be predetermined. A novel way of formulating desired compensation concept
is proposed and a DCARC backstepping design is developed to overcome the design
difficulties associated with unmatched model uncertainties. The proposed DCARC frame-
work has the unique feature that the adaptive model compensation and the regressor
depend on the reference output trajectory and on-line parameter estimates only. Such a
structure has several implementation advantages. First, the adaptive model compensation
is always bounded when projection type adaption law is used, and thus does not affect the
closed-loop system stability. As a result, the interaction between the parameter adapta-
tion and the robust control law is reduced, which may facilitate the controller gain tuning
process considerably. Second, the effect of measurement noise on the adaptive model
compensation and on the parameter adaptation law is minimized. Consequently, a faster
adaptation rate can be chosen in implementation to speed up the transient response and
to improve overall tracking performance. These claims have been verified in the com-
parative experimental studies of several applications. �DOI: 10.1115/1.3211087�

Keywords: desired compensation, adaptive control, deterministic robust control, sliding-
mode control, backstepping, nonlinear systems, uncertainties
Introduction
During the past 2 decades, a great deal of effort has been de-

oted to the control of uncertain nonlinear dynamics. The problem
s motivated by the fact that almost every physical system is sub-
ected to certain degrees of model uncertainties. The causes of

odel uncertainties can be classified into two distinct categories:
i� repeatable or constant unknown quantities such as the un-
nown physical parameters �e.g., the inertia load of any industrial
rive systems�, and �ii� nonrepeatable unknown quantities such as
xternal disturbances and imprecise modeling of certain physical
erms. Two nonlinear control methods have been popular and well
ocumented: adaptive control �AC� or robust adaptive control
RAC� �1–4� for parametric uncertainties and deterministic robust
ontrol �DRC� such as sliding-mode control �5–8� for both para-
etric uncertainties and uncertain nonlinearities. Recently, as in

he RAC of linear systems �4�, much of the effort in nonlinear
daptive control area has been devoted to assuring robust stability
f the adaptive backstepping designs �1� with respect to bounded
isturbances and which significant progress has been made
9–11�.

In Refs. �12–15�, an adaptive robust control �ARC� approach
as been proposed for the design of a new class of high-
erformance robust controllers. The approach effectively inte-
rates DRC and AC. The resulting ARC controllers have the the-
retical results of both DRC and AC, while naturally overcoming
heir practical performance limitations. Comparative experimental
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results for the motion control of robot manipulators �16�, the high-
speed/high-accuracy trajectory tracking control of machine tools
�17�, linear motor drive systems �18�, and electrohydraulic servo
systems �19� have demonstrated the substantially improved per-
formance of the suggested ARC approach. Other applications in-
clude the motion and force control of robot manipulators in vari-
ous contacting environment �20�.

The proposed ARC approach was originally motivated by the
conventional RAC �4,21,9�. However, it should be realized that
there are some subtle but fundamental differences between the
proposed ARC and the conventional RACs, even including the
recently presented tuning function based RAC approach �10,11�.
First, in terms of fundamental viewpoint, the proposed ARC �15�
puts more emphasis on the robust control law design in achieving
a guaranteed robust performance. In fact, the parameter adaptation
law in ARC can be switched off at any time without affecting
global stability and sacrificing the guaranteed transient perfor-
mance result since the resulting controller becomes a deterministic
robust controller. Second, in terms of the achievable performance,
in the proposed ARC, the upper bound on the absolute value of
the tracking error over entire time-history is given and is related to
certain controller design parameters in a known form, which is
more transparent than in RAC. Finally, in terms of specific ap-
proaches used for the controller design and the proof of achiev-
able performance, the proposed ARC uses two Lyapunov func-
tions; one the same as that in DRC and the other the same as that
in adaptive control, while RAC uses the same Lyapunov function
as in adaptive control only. Because of these subtle differences,
the terminology of “adaptive robust control” is used for the pro-
posed combined design method to differentiate the approach from
the RAC approach and to reflect the strong emphasis on the robust
control law design for a guaranteed robust performance as op-

posed to the goal of achieving robust stability only in RAC.
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For applications with relatively more transparent dynamics, one
ay have several options on the design of the robust control law

nd the parameter adaptation law under the proposed ARC frame-
ork. It is thus important to identify the desirable ARC controller

tructures so that one can select the most appropriate one for a
articular application. One of them is the desired compensation
RC structure—the regressor in the model compensation and ad-

ptation law depends on the reference trajectory only. The desired
ompensation adaptation law was initially proposed by Sadegh
nd Horowitz �22� for the trajectory tracking control of robot ma-
ipulators. The idea was then incorporated in the ARC design in
ef. �23�, in which the resulting desired compensation ARC con-

roller has the following desirable features: �a� The regressor can
e calculated offline and thus on-line computation time can be
educed, and �b� the effect of measurement noise is minimized
ince the regressor does not depend on actual measurements. Con-
equently, a faster adaptation rate can be chosen in implementa-
ion to speed up the transient response and to improve overall
racking performance. These claims have been verified by the
omparative experiments on the motion control of robot manipu-
ators �16� and the linear motor drive systems �18�.

This paper formalizes the desired compensation ARC
DCARC� designs in Refs. �23,16,18� and develops DCARC con-
rollers for a much larger class of nonlinear systems including
ystems with unmatched model uncertainties. Specifically, the pa-
er first considers a class of higher order nonlinear systems trans-
ormable to a normal form with matched model uncertainties. For
his class of uncertain systems, the desired values of all states for
racking a known desired trajectory can be predetermined and the
sual desired compensation concept �22� can be used to synthe-
ize DCARC laws as in the existing DCARC designs �23,16,18�.
he paper then focuses on systems with unmatched model uncer-

ainties and develops a novel DCARC backstepping design to
vercome the design difficulties associated with unmatched model
ncertainties. As will be shown in the paper, in the presence of
nmatched model uncertainties, the desired values of the interme-
iate state variables for perfect output tracking of a known desired
rajectory cannot be predetermined. As such, the usual desired
ompensation concept cannot be used and a different set of view-
oints and design tools have to be developed. The paper will
resent an alternative way of formulating the desired compensa-
ion concept for systems with unmatched model uncertainties,
amely, the best on-line estimates of the desired values of the
ntermediate state variables will be used for model compensation.
y doing so, the resulting ARC law has the unique feature that the
daptive model compensation and regressor depends on the de-
ired output trajectory and the parameter estimates only. Thus, the
ajor benefits of conventional DCARCs are still preserved. The

eveloped DCARC backstepping design significantly enlarges the
pplicable nonlinear systems �e.g., systems in the semistrict feed-
ack forms studied in Refs. �13,14�� and enables one to synthesize
CARC law for practical applications where actuator dynamics
ave to be explicitly taken into account in the design stage �e.g.,
he control of electrohydraulic systems �19��.

Adaptive Robust Control (ARC)
In this section, as a motivation and building block for the pro-

osed DCARC, tracking control of a simple first-order uncertain
onlinear system will be used to illustrate the conventional ARC
esigns �12,15�. The system is described by

ẋ = f�x,t� + u, f = �T�x�� + ��x,t� �1�

here x, u�R, and f is an unknown nonlinear function. In gen-
ral, f can be approximated by a group of known basis functions
�x��Rp with unknown weights ��Rp, and the approximation
rror is denoted by the unknown nonlinear function ��x , t�. The
bjective is to let x track its desired trajectory xd�t� as closely as

ossible.
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Throughout the paper, the following notations are used: •i rep-
resents the ith component of the vector • and the operation � for
two vectors is performed in terms of the corresponding elements
of the vectors. The following reasonable and practical assump-
tions are made �12,16,17�:

Assumption A1. The extent of parametric uncertainties and un-
certain nonlinearities is known, i.e.,

� � �� � ��:�min � � � �max�

� � �� � ��:���x,t�� � ��x,t�� �2�

where �min, �max and ��x , t� are known. �

Under Assumption A1, the discontinuous projection based ARC
design �12,15� can be applied to solve the robust tracking control

problem for Eq. �1�. Specifically, the parameter estimate �̂ is up-
dated through a projection type parameter adaptation law given by

�̇̂ = Proj�̂��	� �3�

where � is any diagonal symmetric positive definite �spd� adapta-
tion rate matrix, 	 is an adaptation function to be specified later,
and the projection mapping Proj�̂� • � is defined by

Proj�̂� • � = �0 if 	�̂i = �̂i max and • 
 0

�̂i = �̂i min and • � 0



• otherwise
� �4�

It is shown �12� that the projection mapping has the following
nice properties

�̂ � �̄� = ��̂:�min � �̂ � �max� �P1�

�̃T��−1Proj�̂��•� − •� � 0, ∀ • �P2� �5�

The ARC control law consists of two parts given by

u = uf + us, uf = ẋd�t� − �T�̂

us = us1 + us2, us1 = − kz �6�

where z=x−xd is the tracking error. In Eq. �6�, uf is the adaptive
model compensation needed for perfect output tracking, and us is
the robust control law consisting of two parts: the nominal stabi-
lizing feedback us1, which happens to be a simple proportional
feedback in this case; and the robust feedback us2 to attenuate the
effect of model uncertainties for a guaranteed robust performance.
us2 is synthesized to satisfy the following two conditions:

z�− �T�̃ + ��x,t� + us2� � � �condition i�

zus2 � 0 �condition ii� �7�

where �̃= �̂−� represents the parameter estimation error, and � is
a positive design parameter representing the attenuation level of
the model uncertainties that one would like to achieve. In Eq. �7�,
condition i is used to represent the fact that us2 is synthesized to
dominate the model uncertainties coming from both the paramet-
ric uncertainties and uncertain nonlinearities to achieve a guaran-
teed level of attenuation �, and the passivelike constraint ii is
imposed to make sure that introducing us2 does not interfere with
the nominal identification process of parameter adaptation. The
specific forms of us2 satisfying conditions like Eq. �7� can be
found in ARC designs in Refs. �13–15�.

Theorem 2.1. If the adaptation function in Eq. (3) is chosen as

	 = ��x�z �8�
then, the ARC law (6) with the projection type parameter adapta-
tion law (8) guarantees the following: (a) In general, all signals

are bounded and the tracking error is bounded by
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�z�2 � exp�− 2kt��z�0��2 +
�

k
�1 − exp�− 2kt�� �9�

.e., the tracking error exponentially decays to a ball. The expo-
ential converging rate 2k and the size of the final tracking error
�z�����
� /k� can be freely adjusted by the controller param-
ters � and k in a known form. (b) If after a finite time, there exist
arametric uncertainties only (i.e., ��x , t�=0, ∀t
 t0), then, in
ddition to the results in (a), asymptotic tracking or zero final
racking error is achieved, i.e, z→0 as t→�. �

Desired Compensation ARC
In the ARC design presented in Sec. 2, the regressor ��x� in the
odel compensation uf in Eq. �6� and the parameter adaptation

unction �8� depends on the state x. Such an adaptation structure
ay have several potential implementation problems. First, the

egressor ��x� has to be calculated online based on the actual
easurement of the state x. Thus, the effect of measurement noise
ay be severe, and a slow adaptation rate may have to be used,
hich in turn reduces the effect of parameter adaptation. Second,
espite that the intention of introducing uf is for model compen-
ation, because of ��x�, uf depends on the actual feedback of the
tate also. Although theoretically the effect of this added implicit
eedback loop has been considered in the robust control law de-
ign as seen from condition i of Eq. �7�, practically, there still
xists certain interactions between the model compensation uf and
he robust control us. This may complicate the design of the robust
ontrol law and the controller gain tuning process in implementa-
ion. In the following, the idea of desired compensation adaptation
aw introduced in Ref. �22� will be combined with the proposed
RC design to obtain a DCARC controller structure to solve these
ractical problems.

For simplicity, denote the desired regressor as �d�t�=��xd�t��.
et the regressor error be �̃=��x�−�d. Noting that � is unknown
ut with known bounded, there exists a known function ���x , t�
uch that

��̃T�� = ���x�T� − ��xd�T�� � ���x,t��z� �10�

he proposed desired compensation ARC law and the adaptation
unction have the same forms as Eqs. �6� and �8�, respectively, but
ith the desired regressor �d�t� and a strengthened robust control

s, which are given by

u = uf + us, uf = ẋd�t� − �d
T�t��̂

us = us1 + us2, us1 = − ks1z

	 = �d�t�z �11�

here ks1 can be any nonlinear gain satisfying

ks1 
 k + ���x,t� �12�

nd us2 is required to satisfy conditions similar to Eq. �7� with a
odified condition i as

z�− �d
T�̃ + ��x,t� + us2� � � �i� �13�

heorem 3.1.2 If the DCARC law (11) is applied, the same results
s stated in Theorem 2.1 are achieved. �

Remark 3.1. The DCARC law �11� has the following advan-
ages. �i� Since the regressor �d depends on the reference trajec-
ory only, it is bounded and can be calculated offline to save
n-line computation time if needed. �ii� Due to the use of projec-

ion mapping in Eq. �3�, �̂ is bounded as shown by P1 of Eq. �5�.
hus the model compensation uf in Eq. �11� is bounded no matter
hat type of adaptation law is going to be used. This implies that

2
Proofs of all theorems are given in the Appendix.
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uf does not affect the closed-loop system stability at all and the
robust control function us can be synthesized totally independent
from the design of parameter adaptation law for robust stability.
�iii� Gain tuning process becomes simpler since some of the
bounds like the bound of the first term inside the bracket of the
left hand side of Eq. �13� can be estimated offline. �iv� The effect
of measurement noise is reduced. �

4 DCARC of Systems in Normal Form
In this section, DCARC of high-order SISO nonlinear systems

transformable to the following controllable canonical form with
matched model uncertainties will be solved. The system under
consideration is described by

ẋi = xi+1, i � n − 1

ẋn = �T�x�� + ��x,t� + u

y = x1 �14�

where x= �x1 , . . . ,xn�T�Rn is the state, y is the output, and � and
��x , t� are assumed to satisfy Eq. �2� as in Secs. 2 and 3. The
objective is to design a bounded control law for the input u such
that all signals are bounded and the output y tracks the desired
output trajectory yd�t� as closely as possible. As such, if perfect
output tracking were achieved �i.e., y�t�=yd�t�, ∀t�, from the first
equation of Eq. �14�, the values of the corresponding state vari-
ables would be x1=y=yd�t� , x2= ẋ1= ẏd�t� , . . . , xn=x1

�n−1�=yd
�n−1�.

Therefore, define the desired state trajectory as xd�t�
= �yd�t� , ẏd�t� , . . . ,yd

�n−1��T�Rn, which is known in advance. By
doing so, we can define the desired regressor �d=��xd�t�� and the
regressor error �̃ as in Sec. 3, and define the state tracking error as
e=x−xd�Rn. Similar to Eq. �10�, there exists a known vector
function ���x , t��Rn such that

��̃T�� = ���x�T� − ��xd�T�� � ���x,t�T�e� �15�

The system �14� has a relative degree of n and is in the semistrict
feedback form studied in Ref. �13�. Thus, in principle, the back-
stepping designs may be applied to construct intermediate control
functions for the first n−1 equations �i.e., state equations for
xn−1= �x1 , . . . ,xn−1�T�. However, since the system �14� has
matched model uncertainties only. A simple sliding-modelike
technique can be used to construct a control function for the first
n−1 equations directly, which is adopted in the paper. Further-
more, a dynamic sliding mode can be employed to enhance the
dynamic response of the system as in the control of robot manipu-
lators �12,16,23�. The design proceeds as follows.

Let a dynamic compensator be

ẋc = Acxc + Bce1, xc � Rnc, Bc � Rnc�1

yc = Ccxc, yc � R �16�

where �Ac ,Bc ,Cc� is controllable and observable and e1 is the first
element of e or the actual output tracking error. For simplicity,
denote ēn−1 as the first n−1 elements of e. Noting Eq. �14�, ė̄n−1
= �e2 , . . . ,en�T, which is known. Define a switching-functionlike
term as

� = L�
Te + yc = L̄�n−1

T ēn−1 + en + yc = l�1e1 + ¯ + l�n−1e1
�n−2� + e1

�n−1�

+ yc �17�

where L�= �L̄�n−1
T ,1�T, L̄�n−1= �l�1 , . . . , l�n−1�T is a constant vector

to be chosen later. In frequency domain, from Eqs. �17� and �16�,

e1�s� is related to ��s� by
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e1�s� = G��s���s�, G��s� =
1

sn−1 + l�n−1sn−2 + ¯ + l�1 + Gc�s�
�18�

here Gc�s�=Cc�sInc
−Ac�−1Bc. It is thus clear that poles of G��s�

an be arbitrarily assigned by suitably choosing dynamic compen-
ator transfer function Gc�s� and the constant vector L�; G��s�
hould be chosen such that the resulting dynamic sliding mode
�=0� �i.e., free response of the transfer function G��s�� possesses
ast enough exponentially converging rate and the effect of non-
ero � on e1 can be attenuated to a certain degree. In addition, the
nitial value xc�0� of the dynamic compensator �16� can be chosen
o satisfy

Ccxc�0� = − L�
Te�0� �19�

hen ��0�=0 and transient tracking error may be reduced.
Noting Eqs. �17� and �16�, the state space representation of Eq.

18� is obtained as

ẋ� = A�x� + B��, y� = C�x� �20�

here x�= �xc
T , ēn−1

T �T�Rnc+n−1 and

A� = � Ac

0�n−2��nc

Bc 0nc��n−2�

0�n−2��1 In−2

− Cc − L̄�n−1
T �

B� = � 0nc�1

0�n−2��1

1
�

C� = �01�nc
,1,01��n−2�� �21�

ince G��s� is chosen to be stable, there exists a spd solution P�

or any spd matrix Q� for the following Lyapunov equation:

A�
TP� + P�A� = − Q� �22�

urthermore, the exponentially converging rate �min�Q�� /�max�P��
an be any desired value by assigning the poles of A� to the far
eft plane and suitably choosing Q�.

Define the transformed state error vector as xe= �x�
T ,��T

�xc
T , ēn−1

T ,��T�Rnc+n. The original state error vector e is related
o xe by

e = Cexe, Ce = � 0 In−1 0

− Cc − L̄�n−1
T 1

� �23�

oting Eq. �15�, there exists known nonlinear functions �x�
�xe , t�

nd ���xe , t� such that

��̃T�� � �x�
�xe,t��x�� + ���xe,t���� �24�

The proposed DCARC law ��xe , �̂ , t� for Eq. �14� and the as-
ociated adaptation function 	��xe , t� have similar forms as Eq.
11� and are given by

� = � f��̂,t� + �s�xe,t�, �s = �s1 + �s2

� f = yd
�n��t� − �d

T�t��̂

�s1 = − kxe
�xe,t�xe = − ks1� − Cc�Acxc + Bce1� − L̄�n−1

T ė̄n−1 − B�
TP�x�

	� = �d�t�� �25�
n Eq. �25�, ks1�xe , t� is any nonlinear gain satisfying

61001-4 / Vol. 131, NOVEMBER 2009
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ks1 
 k + �� +
1

2kQ
�x�

2 �26�

where kQ is any gain less than �min�Q��, and �s2 is required to
satisfy constraints similar to Eq. �7�

��− �d
T�̃ + � + �s2� � � �i�

��s2 � 0 �ii� �27�

Theorem 4.1. If the DCARC law (25) is applied, i.e., u=� with �̂
updated by Eq. (3) and 	=	�, then, (a) in general, all signals are
bounded. Furthermore, the non-negative function Vs defined by

Vs = 1
2x�

TP�x� + 1
2�2 �28�

is bounded above by

Vs � exp�− �Vt�Vs�0� +
�

�V
�1 − exp�− �Vt�� �29�

where �V=min� �min�Q��−kQ

�max�P��
, 2k�.

(b) If after a finite time, the system is subjected to parametric
uncertainties only (i.e., ��x , t�=0, ∀t
 t0), then, in addition to the
results in (a), asymptotic tracking of all states and zero final out-
put tracking error are achieved, i.e, xe→0 and e→0 as t→�. �

Remark 4.1. The DCARC law �25� has the structure that the
model compensation � f depend on the reference output trajectory
and parameter estimate only, and the robust control term �s does
not depend on the parameter estimate. It thus has all the nice
properties stated in Remark 3.1. In addition, from Eq. �25�, ��s�
�k�s�xe , t��xe� for some function k�s. Thus, �s→0 as �xe�→0,
which indicates that � f is indeed the desired control action that
one needs for perfect output tracking in viewing the result �b� of
the theorem. �

5 DCARC Backstepping Design
In this section, a DCARC backstepping design will be pre-

sented to overcome the design difficulties associated with higher
“relative degrees” �13� and unmatched model uncertainties �1,7�.
To keep the development concise, the system under consideration
is obtained by augmenting the system �14� through a general first-
order nonlinear input dynamics, which is described by

ẋi = xi+1, i � n − 1

ẋn = �T�x�� + ��x,t� + u

u̇ = �u
T�x,u�� + �u�x,u,t� + v

y = x1 �30�

where v is the new input of the system and u becomes a measur-
able state variable. Similar to Eq. �2�, the unknown nonlinear
function �u is assumed to be bounded by

��u� � �u�x,u,t� �31�

The goal is the same as in Sec. 4, i.e., we would like to have y
−yd�t� as small as possible all the time.

The same as in the system �14� in Sec. 4, the desired values for
the first n state variables for perfect output tracking is known in
advance and given by xd�t�= �yd , . . . ,yd

�n−1��T. However, if we use
the same idea to obtain the desired trajectory for the added state
variable u, in the absence of uncertain nonlinearities �i.e., ��x , t�
=0�, the resulting desired value would be u= ẋn−�T�x��=yd

�n�

−�T�xd��, which is unknown due to the appearance of the un-
known parameters �. It is thus clear that, in the presence of un-
matched model uncertainties, the desired actions cannot be ob-
tained in the same way as in the conventional desired

compensation ARC presented before. A new way of defining the
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esired control actions has to be sought and new design tools have
o be developed to deal with this added difficulty. The details are
iven below.

Noting that the best estimate of the desired action for u is given

y � f��̂ , t� defined in Eq. �25�, we define the desired trajectory

d�t� for u to be ud=� f��̂ , t�. Though this definition of ud pre-
ludes it being calculated offline based on the desired trajectory
nly, ud still has the desirable feature that it depends on the ref-
rence trajectory and on-line parameter estimates only to mini-
ize the effect of measurement noises. The desired value of the

unction �u�x ,u� can thus be calculated as �ud

�u�xd�t� ,ud��̂ , t��. Similar to Eqs. �15� and �24�, there exist
nown functions ��u1 and ��u2 such that

��̃u
T�� = ��u�x,u�T� − �ud�xd,ud�T�� � ��u1�xe� + ��u2�u − ud�

�32�
Denote the input discrepancy for the first two equations of Eq.

30� as zu=u−�, in which � is defined by Eq. �25�. As shown in
heorem 4.1, if zu=0, output tracking would be achieved. Thus,

he backstepping design in this section is essentially to synthesize
DCARC law for the actual input v such that zu converges to a

mall value with a guaranteed transient performance as follows.
From Eq. �25�, ��s��k�s�xe , t��xe� for some known function k�s.

oting that �u−ud�= �zu+�s�� �zu�+ ��s�, from Eq. �32�, there exist
nown functions ��u3 and ��u4 such that

��̃u
T�� � ��u3�xe� + ��u4�zu� �33�

The proposed DCARC backstepping law has the following
tructural form

v = v f��̂,t� + vs�xe,zu, �̂,t�, vs = vs1 + vs2 + vs3

v f =
�� f��̂,t�

�t
− �ud

T ��̂,t��̂

vs1 = − ksuzu − � +
��s

�t
+

��s

�x�

�A�x� + B��� +
��s

��
�zu − ks1� − B�

TP�x�

+ �s2� �34�

here v f is the model compensation depending on the reference
rajectory and the parameter estimate only, vs1 is a robust feed-
ack term having the same functionality as that in Eq. �25�, vs2 is
ynthesized in the following to attenuate the effect of model un-
ertainties, and vs3 is an additional robust control action term
ynthesized in the following to handle the effect of time-varying
arameter estimate.

Noting the particular form of Eq. �25�, from Eqs. �30� and �34�,
t can be checked out that

żu = u̇ − �̇ = �u
T� + �u + v − � �� f

� �̂
�̇̂ +

�� f

�t
+

��s

�x�

ẋ� +
��s

��
�̇ +

��s

�t �
= − ksuzu − � + �̃u

T� −
��s

��
�̃T� + vs2 − �u

T�̃ + �u −
��s

��
� + vs3

−
�� f

� �̂
�̇̂ �35�

here

�u = �ud��̂,t� −
��s

��
�d�t� �36�
efine an augmented non-negative function as
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Vst = Vs + 1
2zu

2 �37�

where Vs is defined by Eq. �28�. Noting Eqs. �24� and �33�, from
Eqs. �35�, it is straightforward to show that

V̇st � −
1

2
��min�Q�� − kQ��x��2 − k�2 + ��− �d

T�̃ + � + �s2� − �ksu

− ��u4�zu
2 + ���u3�xe� + � ��s

��
���x�

�x�� + ��������zu� + zu�vs2

− �u
T�̃ + �u −

��s

��
�� + zu�vs3 −

�� f

� �̂
�̇̂� �38�

vs2 is now chosen to satisfy conditions similar to Eq. �27�

zu�vs2 − �u
T�̃ + �u −

��s

��
�� � �u �i�

zuvs2 � 0 �ii� �39�

Specific form of vs2 can be obtained using the techniques in Refs.
�13,15�. For example,

vs2 = −
1

4�u
hu

2zu �40�

where hu is any function satisfying hu
 ��u���M�+�u+ ���s /����.
Let the adaptation function be

	 = 	a + �uzu = �d� + �uzu �41�

vs3 can now be chosen as

vs3 =
�� f

� �̂
�̇̂ =

�� f

� �̂
Proj�̂��	� �42�

to cancel the effect of the time-varying parameter estimate as seen
from Eq. �38�. Note that vs3, given by Eq. �42�, may experience
possible finite jumps since the projection mapping is discontinu-
ous at certain boundary points. If this poses a problem �e.g., if
further backstepping design is needed as in Refs. �13–15��, then,
instead of the perfect cancellation by Eq. �42�, the technique in
Ref. �15� can be used to construct a smooth vs3 to dominate the
effect of the time-varying parameter estimate. The details are quite
tedious and omitted here.

Theorem 5.1. Consider the DCARC law (34) and the adapta-
tion function (41) for the system (30). When the controller gain ksu
in Eq. (34) is chosen large enough such that

ksu 
 d1 + ��u4 +
1

2d2
���u3 + � ��s

��
��x�

�2

+
1

4d3
���u3 + � ��s

��
����2

�43�

where d1 is any positive scalar, d2 and d3 are any positive nonlin-
ear gains satisfying d2��min�Q��−kQ and d3�k, respectively,
then,

(a) In general, all signals are bounded. Furthermore, the non-
negative function Vst defined by (37) is bounded above by

Vst � exp�− �Vt�Vst�0� +
�V

�V
�1 − exp�− �Vt�� �44�

where �V=min��min�Q��−kQ−d2 /�max�P�� , 2�k−d3� , 2d1�, and
�V=�+�u.

(b) If after a finite time, the system is subjected to parametric
uncertainties only (i.e., �=0 and �u=0). Then, in addition to the
results in (a), asymptotic tracking of states and zero final output
tracking error are achieved, i.e, xe→0, zu→0, and e→0 as t
→�. �

Remark 5.1. It is easy to verify that the DCARC law �34� has
the unique structure that the model compensation v f depends on
the reference output trajectory and parameter estimate only. In

addition, the robust control term vs vanishes whenever the state
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racking errors xe and zu converge to zero, i.e., vs→0 when xe
0 and zu→0, which implies that the proposed DCARC control

aw is rather smooth. In the presence of parametric uncertainties
nly, in viewing the result �b� of the theorem, vs→0 as t→0,
hich indicates that v f is indeed the desired control action needed

or perfect output tracking. �

Conclusions
A general framework on the DCARC has been presented for a

lass of nonlinear systems having both parametric uncertainties
nd uncertain nonlinearities. For systems with matched model un-
ertainties, the resulting DCARC controllers have the desirable
eature that the regressor used in the adaptive model compensa-
ion and the adaptation law depends on the desired output refer-
nce trajectory only and can be precomputed to save on-line com-
utation time. For systems with unmatched model uncertainties,
he resulting DCARC controllers has the unique feature that the
daptive model compensation and essential part of the regressor in
ramework depend on the desired output trajectory and the on-line
arameter estimates only. These features make the resulting
CARC controller significantly less sensitive to measurement
oises. Consequently, a faster adaptation rate can be used in
mplementation to significantly improve the tracking performance.
hough not presented in this paper, the proposed DCARC frame-
ork has also been applied to the precision motion control of

inear motor drive systems having matched model uncertainties
18� and electrohydraulic systems having unmatched model uncer-
ainties �19�. Extensive comparative experimental results obtained
n both applications �18,24,25� have verified the above claims on
he significantly improved control performance in implementa-
ion.
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ppendix

1 Proof of Theorem 3.1. Substituting Eq. �11� into Eq. �1�,
he error equation is

ż + ks1z = �̃T� − �d
T�̃ + ��x,t� + us2 �A1�

oting Eqs. �10� and �12�, the derivative of a non-negative func-
ion Vs= 1

2z2 is given by

V̇s � − ks1z2 + �z���̃T�� + z�− �d
T�̃ + � + us2� � − kz2 + z�− �d

T�̃ + �

+ us2� �A2�
hus, from Eq. �13�,

V̇s � − kz2 + � � − 2kVs + � �A3�
hich leads to Eq. �9� and proves results in �a� of the theorem.
Now consider the situation in �b� of the theorem, i.e., �=0, t
t0. Choose a non-negative function Va as

Va = Vs + 1
2 �̃T�−1�̃ �A4�

oticing Eqs. �A2� and �11�, condition ii of Eq. �7�, and P2 of Eq.
5�,

V̇a = V̇s + �̃T�−1�̇̂ � − kz2 + �̃T�−1��̇̂ − �	� � − kz2

+ �̃T��−1Proj�̂��	� − 	� � − kz2 �A5�

herefore, z�L2. It is easy to check that ż is bounded. So, z is
niformly continuous. By Barbalat’s lemma, z→0 as t→�, which

roves �b� of the theorem. �
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2 Proof of Theorem 4.1. In order for the results in this sec-
tion to be conveniently used in the DCARC backstepping design
in the Sec. 5, formulas are derived for the general case that u
might be different from the control function � first. Denote the
input discrepancy as zu=u−�, from Eqs. �14�, �17�, and �25�, it
can be checked out that

�̇ = zu − ks1� − B�
TP�x� + �̃T� − �d

T�̃ + � + �s2 �A6�

Noting Eqs. �20�, �22�, �A6�, and �24�, the derivative of Vs given
by Eq. �28� is

V̇s = − 1
2x�

TQ�x� − ks1�2 + ��̃T� + ��− �d
T�̃ + � + �s2� + �zu �

− 1
2 ��min�Q�� − kQ��x��2 − k�2 + ��− �d

T�̃ + � + �s2� + �zu

�A7�

in which ��̃T���x�
�x�����+���

2�1 /2kQ�x��2+ �1 /2kQ�x�

2 +����2

has been used. Thus, if u=� or zu=0, noting �i� of Eq. �27�,

V̇s � − �VVs + � �A8�
which leads to Eq. �29� and proves the results in �a� of the theo-
rem. Noting �ii� of Eq. �27� and �b� of the theorem can be proved
by using a positive definite function Va of the form Eq. �A4� and
the same techniques as in Eq. �A5�. �

3 Proof of Theorem 5.1. If Eq. �43� is satisfied, by using the
completion of square and noting Eq. �42�, from Eq. �38�, it is easy
to show that

V̇st � − 1
2 ��min�Q�� − kQ − d2��x��2 − �k − d3��2 − d1zu

2 + ��− �d
T�̃

+ � + �s2� + zu�vs2 − �u
T�̃ + �u −

��s

��
�� �A9�

Noting �i�of Eqs. �27� and �39�,

V̇st � − �VVst + �V �A10�
which leads to �a� of the theorem.

When �=0 and �u=0, noting Eq. �41� and �ii� of Eqs. �27� and
�39�,

V̇st � − �VVst − 	T�̃ �A11�
Thus, �b� of the theorem can be proved by using a positive definite

function Vat=Vst+1 /2�̃T�−1�̃ and the same techniques as in Eq.
�A5�. �
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