Desired Compensation Adaptive
Robust Control

A desired compensation adaptive robust control (DCARC) framework is presented for
nonlinear systems having both parametric uncertainties and uncertain nonlinearities. The
paper first considers a class of higher order nonlinear systems transformable to a normal
form with matched model uncertainties. For this class of uncertain systems, the desired
values of all states for tracking a known desired trajectory can be predetermined and the
usual desired compensation concept can be used to synthesize DCARC laws. The paper
then focuses on systems with unmatched model uncertainties, in which the desired values
of the intermediate state variables for perfect output tracking of a known desired trajec-
tory cannot be predetermined. A novel way of formulating desired compensation concept
is proposed and a DCARC backstepping design is developed to overcome the design
difficulties associated with unmatched model uncertainties. The proposed DCARC frame-
work has the unique feature that the adaptive model compensation and the regressor
depend on the reference output trajectory and on-line parameter estimates only. Such a
structure has several implementation advantages. First, the adaptive model compensation
is always bounded when projection type adaption law is used, and thus does not affect the
closed-loop system stability. As a result, the interaction between the parameter adapta-
tion and the robust control law is reduced, which may facilitate the controller gain tuning
process considerably. Second, the effect of measurement noise on the adaptive model
compensation and on the parameter adaptation law is minimized. Consequently, a faster
adaptation rate can be chosen in implementation to speed up the transient response and
to improve overall tracking performance. These claims have been verified in the com-
parative experimental studies of several applications. [DOIL: 10.1115/1.3211087]

Bin Yao'
Professor

School of Mechanical Engineering,

Purdue University,

West Lafayette, IN 47907,

Kuang-piu Professor

State Key Laboratory of Fluid Power Transmission
and Control,

Zhejiang University,

Hangzhou, China

e-mail: byao@purdue.edu

Keywords: desired compensation, adaptive control, deterministic robust control, sliding-
mode control, backstepping, nonlinear systems, uncertainties

results for the motion control of robot manipulators [16], the high-
speed/high-accuracy trajectory tracking control of machine tools
[17], linear motor drive systems [18], and electrohydraulic servo
systems [19] have demonstrated the substantially improved per-
formance of the suggested ARC approach. Other applications in-
clude the motion and force control of robot manipulators in vari-
ous contacting environment [20].

The proposed ARC approach was originally motivated by the
conventional RAC [4,21,9]. However, it should be realized that
there are some subtle but fundamental differences between the
proposed ARC and the conventional RACs, even including the
recently presented tuning function based RAC approach [10,11].
First, in terms of fundamental viewpoint, the proposed ARC [15]
puts more emphasis on the robust control law design in achieving
a guaranteed robust performance. In fact, the parameter adaptation
law in ARC can be switched off at any time without affecting
global stability and sacrificing the guaranteed transient perfor-
mance result since the resulting controller becomes a deterministic
robust controller. Second, in terms of the achievable performance,
in the proposed ARC, the upper bound on the absolute value of
the tracking error over entire time-history is given and is related to
certain controller design parameters in a known form, which is
more transparent than in RAC. Finally, in terms of specific ap-
proaches used for the controller design and the proof of achiev-
able performance, the proposed ARC uses two Lyapunov func-
tions; one the same as that in DRC and the other the same as that

1 Introduction

During the past 2 decades, a great deal of effort has been de-
voted to the control of uncertain nonlinear dynamics. The problem
is motivated by the fact that almost every physical system is sub-
jected to certain degrees of model uncertainties. The causes of
model uncertainties can be classified into two distinct categories:
(i) repeatable or constant unknown quantities such as the un-
known physical parameters (e.g., the inertia load of any industrial
drive systems), and (ii) nonrepeatable unknown quantities such as
external disturbances and imprecise modeling of certain physical
terms. Two nonlinear control methods have been popular and well
documented: adaptive control (AC) or robust adaptive control
(RAC) [1-4] for parametric uncertainties and deterministic robust
control (DRC) such as sliding-mode control [5-8] for both para-
metric uncertainties and uncertain nonlinearities. Recently, as in
the RAC of linear systems [4], much of the effort in nonlinear
adaptive control area has been devoted to assuring robust stability
of the adaptive backstepping designs [1] with respect to bounded
disturbances and which significant progress has been made
[9-11].

In Refs. [12-15], an adaptive robust control (ARC) approach
has been proposed for the design of a new class of high-
performance robust controllers. The approach effectively inte-
grates DRC and AC. The resulting ARC controllers have the the-
oretical results of both DRC and AC, while naturally overcoming

their practical performance limitations. Comparative experimental
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in adaptive control, while RAC uses the same Lyapunov function
as in adaptive control only. Because of these subtle differences,
the terminology of “adaptive robust control” is used for the pro-
posed combined design method to differentiate the approach from
the RAC approach and to reflect the strong emphasis on the robust
control law design for a guaranteed robust performance as op-
posed to the goal of achieving robust stability only in RAC.
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For applications with relatively more transparent dynamics, one
may have several options on the design of the robust control law
and the parameter adaptation law under the proposed ARC frame-
work. It is thus important to identify the desirable ARC controller
structures so that one can select the most appropriate one for a
particular application. One of them is the desired compensation
ARC structure—the regressor in the model compensation and ad-
aptation law depends on the reference trajectory only. The desired
compensation adaptation law was initially proposed by Sadegh
and Horowitz [22] for the trajectory tracking control of robot ma-
nipulators. The idea was then incorporated in the ARC design in
Ref. [23], in which the resulting desired compensation ARC con-
troller has the following desirable features: (a) The regressor can
be calculated offline and thus on-line computation time can be
reduced, and (b) the effect of measurement noise is minimized
since the regressor does not depend on actual measurements. Con-
sequently, a faster adaptation rate can be chosen in implementa-
tion to speed up the transient response and to improve overall
tracking performance. These claims have been verified by the
comparative experiments on the motion control of robot manipu-
lators [16] and the linear motor drive systems [18].

This paper formalizes the desired compensation ARC
(DCARC) designs in Refs. [23,16,18] and develops DCARC con-
trollers for a much larger class of nonlinear systems including
systems with unmatched model uncertainties. Specifically, the pa-
per first considers a class of higher order nonlinear systems trans-
formable to a normal form with matched model uncertainties. For
this class of uncertain systems, the desired values of all states for
tracking a known desired trajectory can be predetermined and the
usual desired compensation concept [22] can be used to synthe-
size DCARC laws as in the existing DCARC designs [23,16,18].
The paper then focuses on systems with unmatched model uncer-
tainties and develops a novel DCARC backstepping design to
overcome the design difficulties associated with unmatched model
uncertainties. As will be shown in the paper, in the presence of
unmatched model uncertainties, the desired values of the interme-
diate state variables for perfect output tracking of a known desired
trajectory cannot be predetermined. As such, the usual desired
compensation concept cannot be used and a different set of view-
points and design tools have to be developed. The paper will
present an alternative way of formulating the desired compensa-
tion concept for systems with unmatched model uncertainties,
namely, the best on-line estimates of the desired values of the
intermediate state variables will be used for model compensation.
By doing so, the resulting ARC law has the unique feature that the
adaptive model compensation and regressor depends on the de-
sired output trajectory and the parameter estimates only. Thus, the
major benefits of conventional DCARCs are still preserved. The
developed DCARC backstepping design significantly enlarges the
applicable nonlinear systems (e.g., systems in the semistrict feed-
back forms studied in Refs. [13,14]) and enables one to synthesize
DCARC law for practical applications where actuator dynamics
have to be explicitly taken into account in the design stage (e.g.,
the control of electrohydraulic systems [19]).

2 Adaptive Robust Control (ARC)

In this section, as a motivation and building block for the pro-
posed DCARC, tracking control of a simple first-order uncertain
nonlinear system will be used to illustrate the conventional ARC
designs [12,15]. The system is described by

f=¢'(0)0+Ax,1) (1)
where x, u € R, and f is an unknown nonlinear function. In gen-
eral, f can be approximated by a group of known basis functions
¢(x) € R” with unknown weights 6 e R”, and the approximation
error is denoted by the unknown nonlinear function A(x,#). The
objective is to let x track its desired trajectory x,(z) as closely as
possible.

x=f(x,1) +u,
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Throughout the paper, the following notations are used: °; rep-
resents the ith component of the vector ¢ and the operation < for
two vectors is performed in terms of the corresponding elements
of the vectors. The following reasonable and practical assump-
tions are made [12,16,17]:

Assumption Al. The extent of parametric uncertainties and un-
certain nonlinearities is known, i.e.,

e Qp2{0:6p, <0< b}

A e 0y 2 {AJAG D) = Sx.n)} 2)

where 6in, Onax and Sx,7) are known. |

Under Assumption A1, the discontinuous projection based ARC
design [12,15] can be applied to solve the robust tracking control
problem for Eq. (1). Specifically, the parameter estimate 6 is up-
dated through a projection type parameter adaptation law given by

f=Proj(T'7) (3)

where I' is any diagonal symmetric positive definite (spd) adapta-
tion rate matrix, 7 is an adaptation function to be specified later,
and the projection mapping Projg(*) is defined by

lf i = 0,‘ max and > 0
Projy(+) = A,- = 9,- min and ¢ <0 4)
° otherwise

It is shown [12] that the projection mapping has the following
nice properties

0eQy={0:0pn=0= 6,1 (P1)

(T "Projy(ls)—*) =0, Ve (P2) (5)

The ARC control law consists of two parts given by
u=upt g, up=Xy(1) - o'6

Ug =— kz (6)

where z=x-x, is the tracking error. In Eq. (6), u, is the adaptive
model compensation needed for perfect output tracking, and u; is
the robust control law consisting of two parts: the nominal stabi-
lizing feedback u,;, which happens to be a simple proportional
feedback in this case; and the robust feedback u, to attenuate the
effect of model uncertainties for a guaranteed robust performance.
uy, is synthesized to satisfy the following two conditions:

Ug=Ug + Uy,

d- "0+ A(x,0) +uy,] =& (condition i)

2uy, =0 (condition ii) (7)

where 6=6-6 represents the parameter estimation error, and ¢ is
a positive design parameter representing the attenuation level of
the model uncertainties that one would like to achieve. In Eq. (7),
condition i is used to represent the fact that u,, is synthesized to
dominate the model uncertainties coming from both the paramet-
ric uncertainties and uncertain nonlinearities to achieve a guaran-
teed level of attenuation e, and the passivelike constraint ii is
imposed to make sure that introducing u, does not interfere with
the nominal identification process of parameter adaptation. The
specific forms of ug, satisfying conditions like Eq. (7) can be
found in ARC designs in Refs. [13-15].

Theorem 2.1. If the adaptation function in Eq. (3) is chosen as

7= ¢(x)z (8)

then, the ARC law (6) with the projection type parameter adapta-
tion law (8) guarantees the following: (a) In general, all signals
are bounded and the tracking error is bounded by
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122 = exp(= 2kn)|z(0) + %[1 — exp(- 2k1)] )
i.e., the tracking error exponentially decays to a ball. The expo-
nential conv_erging rate 2k and the size of the final tracking error
(|z()|=Velk) can be freely adjusted by the controller param-
eters € and k in a known form. (b) If after a finite time, there exist
parametric uncertainties only (i.e., A(x,)=0, Vt=1,), then, in
addition to the results in (a), asymptotic tracking or zero final
tracking error is achieved, i.e, z— 0 as t— . O

3 Desired Compensation ARC

In the ARC design presented in Sec. 2, the regressor ¢(x) in the
model compensation u, in Eq. (6) and the parameter adaptation
function (8) depends on the state x. Such an adaptation structure
may have several potential implementation problems. First, the
regressor ¢(x) has to be calculated online based on the actual
measurement of the state x. Thus, the effect of measurement noise
may be severe, and a slow adaptation rate may have to be used,
which in turn reduces the effect of parameter adaptation. Second,
despite that the intention of introducing u; is for model compen-
sation, because of ¢(x), us depends on the actual feedback of the
state also. Although theoretically the effect of this added implicit
feedback loop has been considered in the robust control law de-
sign as seen from condition i of Eq. (7), practically, there still
exists certain interactions between the model compensation u and
the robust control u,. This may complicate the design of the robust
control law and the controller gain tuning process in implementa-
tion. In the following, the idea of desired compensation adaptation
law introduced in Ref. [22] will be combined with the proposed
ARC design to obtain a DCARC controller structure to solve these
practical problems.

For simplicity, denote the desired regressor as ¢4(1)=@(x,(1)).
Let the regressor error be = ¢(x)—¢,. Noting that 6 is unknown
but with known bounded, there exists a known function 5¢(x,t)
such that

1876 = |e()T0~ (x,)" 6] = 8y(x,1)|2] (10)

The proposed desired compensation ARC law and the adaptation
function have the same forms as Egs. (6) and (8), respectively, but
with the desired regressor ¢,(7) and a strengthened robust control
u,, which are given by

u=up+ug, up=xiyt) - @Z(t)é

Ug=Ug) + U, U =_ks]Z

(11)

7= @4(t)z
where k;; can be any nonlinear gain satisfying
ksl =k+ 5¢(X,t) (12)

and uy, is required to satisfy conditions similar to Eq. (7) with a
modified condition i as

z[- <p§5+ Ax,p) +upyl=e (i) (13)

Theorem 3.1. If the DCARC law (11) is applied, the same results
as stated in Theorem 2.1 are achieved. O

Remark 3.1. The DCARC law (11) has the following advan-
tages. (i) Since the regressor ¢, depends on the reference trajec-
tory only, it is bounded and can be calculated offline to save
on-line computation time if needed. (ii) Due to the use of projec-
tion mapping in Eq. (3), 6 is bounded as shown by P1 of Eq. (5).
Thus the model compensation u, in Eq. (11) is bounded no matter
what type of adaptation law is going to be used. This implies that

%Proofis of all theorems are given in the Appendix.
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uy does not affect the closed-loop system stability at all and the
robust control function u, can be synthesized totally independent
from the design of parameter adaptation law for robust stability.
(iii) Gain tuning process becomes simpler since some of the
bounds like the bound of the first term inside the bracket of the
left hand side of Eq. (13) can be estimated offline. (iv) The effect
of measurement noise is reduced. O

4 DCARC of Systems in Normal Form

In this section, DCARC of high-order SISO nonlinear systems
transformable to the following controllable canonical form with
matched model uncertainties will be solved. The system under
consideration is described by

X=Xy, i=n-1

i, =@ (x) 0+ A(x,0) + u

y=X (14)
where x=[x,,...,x,]7 € R" is the state, y is the output, and # and
A(x,r) are assumed to satisfy Eq. (2) as in Secs. 2 and 3. The
objective is to design a bounded control law for the input u such
that all signals are bounded and the output y tracks the desired
output trajectory y,(7) as closely as possible. As such, if perfect

output tracking were achieved (i.e., y(r)=y (1), V1), from the first
equation of Eq. (14), the values of the corresponding state vari-

ables would be x;=y=y (1), x,=x;=y4(1),..., xnzx(l"_])=yfi"_l).
Therefore, define the desired state trajectory as x,(7)

:[yd(t),yd(t),...,yi,"_l)]TeR”, which is known in advance. By

doing so, we can define the desired regressor ¢;=¢(x,(f)) and the
regressor error ¢ as in Sec. 3, and define the state tracking error as
e=x-xy € R". Similar to Eq. (10), there exists a known vector
function 8,(x,t) € R" such that

1376] = @(x)"0— @(x,)" 6] = S(x,1)"|e] (15)

The system (14) has a relative degree of n and is in the semistrict
feedback form studied in Ref. [13]. Thus, in principle, the back-
stepping designs may be applied to construct intermediate control
functions for the first n—1 equations (i.e., state equations for
T,o1=[x1,....x,.1]"). However, since the system (14) has
matched model uncertainties only. A simple sliding-modelike
technique can be used to construct a control function for the first
n—1 equations directly, which is adopted in the paper. Further-
more, a dynamic sliding mode can be employed to enhance the
dynamic response of the system as in the control of robot manipu-
lators [12,16,23]. The design proceeds as follows.
Let a dynamic compensator be
Bc c Rn(.><1

X.=Ax.+ B, x.eR",

y(.'= C(‘x(." yl' € R (16)

where (A.,B,,C.) is controllable and observable and e is the first
element of e or the actual output tracking error. For simplicity,

denote &,_, as the first n—1 elements of e. Noting Eq. (14), ¢,,_,

=[e,,...,e,]’, which is known. Define a switching-functionlike
term as
&= Lge +y.= Ijgn_lén_l te,+y.=lge + o+ lgn_le(l"_z) + e(l”_l)
+Ye (17)
where L§=[Z§”_1,1]T, Lg1=[lg1. ... 1g1]" is a constant vector

to be chosen later. In frequency domain, from Egs. (17) and (16),
e,(s) is related to &(s) by
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1
S b D"+ Ly + G(s)
(18)

where Gc(s)zcv(sl,,C—Ac)‘ch. It is thus clear that poles of G(s)
can be arbitrarily assigned by suitably choosing dynamic compen-
sator transfer function G.(s) and the constant vector Ly Ge(s)
should be chosen such that the resulting dynamic sliding mode
{é=0} (i.e., free response of the transfer function G(s)) possesses
fast enough exponentially converging rate and the effect of non-
zero £ on e can be attenuated to a certain degree. In addition, the
initial value x,.(0) of the dynamic compensator (16) can be chosen
to satisfy

e1(s) = Gls)&(s),  Gls) =

Cx.(0) = = L{e(0) (19)

Then £0)=0 and transient tracking error may be reduced.
Noting Egs. (17) and (16), the state space representation of Eq.
(18) is obtained as

X§=A§x§+B§§, y§:ch§ (20)
where xéz[ch’EZ_JT e R"1 and
A, B, Oy x-2)
Af = O(n—2)><nc O(n—2)><1 1”_2
- CC - Zg‘n—]
0nC><1
B§= 0(n—2)><1
1
C§= [OIX”(;’l’OIX(n—Z)] (21)

Since Gg(s) is chosen to be stable, there exists a spd solution Py
for any spd matrix Q; for the following Lyapunov equation:

AgPe+ PAg=- 0,

Furthermore, the exponentially converging rate Nyin(Qg)/Nyax(P)

can be any desired value by assigning the poles of A; to the far
left plane and suitably choosing Q.

Define the transformed state error vector as xez[xg,g]T

=[xLT,,EZ_1 €] e R**". The original state error vector e is related

to x, by
0 I, O
e= Cexev Ce =

7T
CC _L§n—1 1

Noting Eq. (15), there exists known nonlinear functions 5x§(xg,t)
and J¢(x,,1) such that

(22)

(23)

bedl + Se(x,.0)| €l (24)

The proposed DCARC law a(x,, 8,7) for Eq. (14) and the as-
sociated adaptation function 7,(x,,t) have similar forms as Eq.
(11) and are given by

1861 = 5, x.)

a=al é,t) + ay(x,,1), a,=a,+a,
=y (1) - @y(1)6
A5 =~ kxg(xevt)xe == ksl g_ Cr(A(‘xc + Bcel) - Z?g:n—le;n—l - nggxg

Ta= QDd(l)g (25)

In Eq. (25), kg (x,,) is any nonlinear gain satisfying

061001-4 / Vol. 131, NOVEMBER 2009

1
kg Zk+ 8+ —8 26
s1 3 2kQ X ( )
where ky is any gain less than )\min(Q.f)’ and «, is required to

satisfy constraints similar to Eq. (7)

5

d-opf+A+ayl=e (i)

fap =0 (i) (27)

Theorem 4.1. If the DCARC law (25) is applied, i.e., u=a with 6
updated by Eq. (3) and t=1,, then, (a) in general, all signals are
bounded. Furthermore, the non-negative function V defined by

V= %ngg§+ %52 (28)

is bounded above by

V, = exp(= \yt) V,(0) + f[l — exp(=Ayi)] (29)
\%4
Amin(Qe)—ko

e 4
(b) If after a finite time, the system is subjected to parametric

uncertainties only (i.e., A(x,1)=0, Vt=1,), then, in addition to the
results in (a), asymptotic tracking of all states and zero final out-
put tracking error are achieved, i.e, x,—0 and e—0 as t—». []

Remark 4.1. The DCARC law (25) has the structure that the
model compensation a; depend on the reference output trajectory
and parameter estimate only, and the robust control term «, does
not depend on the parameter estimate. It thus has all the nice
properties stated in Remark 3.1. In addition, from Eq. (25), |a;
=kuy(x,,0|x,| for some function kg, Thus, a;—0 as [x|—0,
which indicates that ay is indeed the desired control action that
one needs for perfect output tracking in viewing the result (b) of
the theorem. O

where \y=min

5 DCARC Backstepping Design

In this section, a DCARC backstepping design will be pre-
sented to overcome the design difficulties associated with higher
“relative degrees” [13] and unmatched model uncertainties [1,7].
To keep the development concise, the system under consideration
is obtained by augmenting the system (14) through a general first-
order nonlinear input dynamics, which is described by

X,-=x,-+1, i=n-1

K= @ (x) 0+ Alx,1) + u
e (pz(x,u)t9+ A, (x,u,t) +v

Yy =X (30)

where v is the new input of the system and u becomes a measur-
able state variable. Similar to Eq. (2), the unknown nonlinear
function A, is assumed to be bounded by

A, = 8,(x,u,1) (31)

The goal is the same as in Sec. 4, i.e., we would like to have y
—y4() as small as possible all the time.

The same as in the system (14) in Sec. 4, the desired values for
the first n state variables for perfect output tracking is known in
advance and given by x,(1)=[y,, ... ,yg’_l)]T. However, if we use
the same idea to obtain the desired trajectory for the added state
variable u, in the absence of uncertain nonlinearities (i.e., A(x,?)
=0), the resulting desired value would be uzx,,—ng(x)szfi”)
—¢T(x,;)0, which is unknown due to the appearance of the un-
known parameters 6. It is thus clear that, in the presence of un-
matched model uncertainties, the desired actions cannot be ob-
tained in the same way as in the conventional desired
compensation ARC presented before. A new way of defining the

Transactions of the ASME

Downloaded 12 Jan 2010 to 128.46.184.154. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



desired control actions has to be sought and new design tools have
to be developed to deal with this added difficulty. The details are
given below.

Noting that the best estimate of the desired action for u is given

by af(@,t) defined in Eq. (25), we define the desired trajectory

uy(t) for u to be uyz= af(@?,t). Though this definition of u, pre-
cludes it being calculated offline based on the desired trajectory
only, u, still has the desirable feature that it depends on the ref-
erence trajectory and on-line parameter estimates only to mini-
mize the effect of measurement noises. The desired value of the
function  ¢,(x,u) can thus be calculated as @,y

=<pu(xd(t),ud(é,t)). Similar to Egs. (15) and (24), there exist
known functions 5%1 and 6%2 such that

186l =@ (x.0)T 0= @) 61 = 8, [l + 8 ol ~ 1
(32)

Denote the input discrepancy for the first two equations of Eq.
(30) as z,=u—a, in which « is defined by Eq. (25). As shown in
Theorem 4.1, if z,=0, output tracking would be achieved. Thus,
the backstepping design in this section is essentially to synthesize
a DCARC law for the actual input v such that z, converges to a
small value with a guaranteed transient performance as follows.

From Eq. (25), |a,| = kg(x,.1)|x,| for some known function k..
Noting that |u—u,|=|z,+ a,| <|z,|+|a,|, from Eq. (32), there exist
known functions 5%3 and 5%4 such that

188l = 8, allxcll+ 8, alz.] (33)

The proposed DCARC backstepping law has the following
structural form

v=0A0.1) +0,(x,.2,,0.1), V=V +V+ U

dal6,1) .
vp= # — ol (6,16

da, day day T
Vg =— ksuzu - §+ ? + (9__X§(A§x§+ Bfg) + a_g(zu - kslg_BtfP{xf

+ay) (34)

where vy is the model compensation depending on the reference
trajectory and the parameter estimate only, v, is a robust feed-
back term having the same functionality as that in Eq. (25), v, is
synthesized in the following to attenuate the effect of model un-
certainties, and vy is an additional robust control action term
synthesized in the following to handle the effect of time-varying
parameter estimate.

Noting the particular form of Eq. (25), from Egs. (30) and (34),
it can be checked out that

days day dag da; . Jda
Zu=li—a=@l0+ A, +v— —Loy —L+ et € —
96 at  Ixg 73 at

day = da
O+vy,—¢,0+A,——A+v
(923 ¢ 52 ¢u u ﬁf 53

=_ksuzu_ §+ 61{0_

(35)

B QB
$ 3
>

where

. da
¢u = (Pud(g’ t) - a_C;QDd(I)

Define an augmented non-negative function as

Journal of Dynamic Systems, Measurement, and Control

U

where V, is defined by Eq. (28). Noting Egs. (24) and (33), from
Egs. (35), it is straightforward to show that

Va=V+ %z% (37)

o

Vst = 2 min(Qg) - kQ)||x§||2 - ng + f[_ (P55+ A+ as2] - (ksu
aS
- <pu4)zi + |:6¢u3||x8| + (7_6 (6X§HX§” + 5§|§|):| |Zu| + Zu|:vs2
~ J das »
— O+ A, - am} +2.] v 24h (38)
9€ a0
vy, is now chosen to satisfy conditions similar to Eq. (27)
~ day
Zu|:vs2_¢£9+Au_&_a‘£A:| Ssu (1)
ZuVs2 =0 (11) (39)

Specific form of v, can be obtained using the techniques in Refs.
[13,15]. For example,
L,
Vpo=——hz,
52 4s,
where £, is any function satisfying A, = ||, ||| Oyl + 5, +| 0/ 9&| 5.
Let the adaptation function be

(40)

T=T,+ ¢uzu = (Pdg-" ¢uzu (41)
U3 can now be chosen as
day A Jda
vy =—L0=—IProjyI'n) 42)

a6 a0

to cancel the effect of the time-varying parameter estimate as seen
from Eq. (38). Note that v, given by Eq. (42), may experience
possible finite jumps since the projection mapping is discontinu-
ous at certain boundary points. If this poses a problem (e.g., if
further backstepping design is needed as in Refs. [13-15]), then,
instead of the perfect cancellation by Eq. (42), the technique in
Ref. [15] can be used to construct a smooth v to dominate the
effect of the time-varying parameter estimate. The details are quite
tedious and omitted here.

Theorem 5.1. Consider the DCARC law (34) and the adapta-
tion function (41) for the system (30). When the controller gain kg,
in Eq. (34) is chosen large enough such that

2
)

day S ’ L S
Xe + 4d3 ¢,3 +
(43)

29
where d| is any positive scalar, d, and dy are any positive nonlin-
ear gains satisfying dy <Nyin(Qp—ko and dy<k, respectively,
then,
(a) In general, all signals are bounded. Furthermore, the non-
negative function V,; defined by (37) is bounded above by

Ja.

it}

23

1
ksu = dl + 5(9144 + 2_d2( 5“’113 +

V= expl- NV (0)+ T -exp(-hn)]  (44)
v

where Ny=min{\;n(Qg) —ko—dy/ Nyay(Py), 2(k—d5), 2d;}, and

ey=g+e,.

(b) If after a finite time, the system is subjected to parametric
uncertainties only (i.e., A=0 and A,=0). Then, in addition to the
results in (a), asymptotic tracking of states and zero final output
tracking error are achieved, i.e, x,—0, z,—0, and e—0 as t
— 0, O

Remark 5.1. 1t is easy to verify that the DCARC law (34) has
the unique structure that the model compensation v, depends on
the reference output trajectory and parameter estimate only. In
addition, the robust control term v, vanishes whenever the state
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tracking errors x, and z, converge to zero, i.e., v,—0 when x,
—0 and z,— 0, which implies that the proposed DCARC control
law is rather smooth. In the presence of parametric uncertainties
only, in viewing the result (b) of the theorem, v,—0 as r—0,
which indicates that v, is indeed the desired control action needed
for perfect output tracking. O

6 Conclusions

A general framework on the DCARC has been presented for a
class of nonlinear systems having both parametric uncertainties
and uncertain nonlinearities. For systems with matched model un-
certainties, the resulting DCARC controllers have the desirable
feature that the regressor used in the adaptive model compensa-
tion and the adaptation law depends on the desired output refer-
ence trajectory only and can be precomputed to save on-line com-
putation time. For systems with unmatched model uncertainties,
the resulting DCARC controllers has the unique feature that the
adaptive model compensation and essential part of the regressor in
framework depend on the desired output trajectory and the on-line
parameter estimates only. These features make the resulting
DCARC controller significantly less sensitive to measurement
noises. Consequently, a faster adaptation rate can be used in
implementation to significantly improve the tracking performance.
Though not presented in this paper, the proposed DCARC frame-
work has also been applied to the precision motion control of
linear motor drive systems having matched model uncertainties
[18] and electrohydraulic systems having unmatched model uncer-
tainties [19]. Extensive comparative experimental results obtained
in both applications [18,24,25] have verified the above claims on
the significantly improved control performance in implementa-
tion.
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Appendix

1 Proof of Theorem 3.1. Substituting Eq. (11) into Eq. (1),
the error equation is

(A1)

Noting Egs. (10) and (12), the derivative of a non-negative func-
tion szézz is given by

i+ kaz=3"0— @0+ A(x,1) +uy,

V= —ky2?+2|876 + 2[- @10+ A+ up] = —k® +2[— L0+ A
+ uxZ] (AZ)

Thus, from Eq. (13),

V.= —k?+e=-2kV,+¢ (A3)

which leads to Eq. (9) and proves results in (a) of the theorem.
Now consider the situation in (b) of the theorem, i.e., A=0, ¢
=1,. Choose a non-negative function V, as

V,=V,+30T7'0 (A4)

Noticing Egs. (A2) and (11), condition ii of Eq. (7), and P2 of Eq.
5,

V,=V,+ 0T 0= -k + 6T (§-T7) = — ks>
+ 0 (T "ProjyT D) -1 = —kz? (AS)

Therefore, z € L,. It is easy to check that Z is bounded. So, z is
uniformly continuous. By Barbalat’s lemma, z— 0 as r— ¢, which
proves (b) of the theorem. O
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2 Proof of Theorem 4.1. In order for the results in this sec-
tion to be conveniently used in the DCARC backstepping design
in the Sec. 5, formulas are derived for the general case that u
might be different from the control function « first. Denote the
input discrepancy as z,=u—a, from Egs. (14), (17), and (25), it
can be checked out that

b=z,—k E-BiPorg+ 80— Q)0+ A+ ay (A6)
Noting Egs. (20), (22), (A6), and (24), the derivative of V, given
by Eq. (28) is
Vs == %ng.gxg - kslgz + §¢T0+ g[_ (ng_'. A+ (152] + fzu =

- %()\mm(Qgt) - kQ)Hx§||2 - k§2 + E[_ ¢§5+ A+ asZ] + gzu
(A7)
in which £576= 5, Jxdllél+ £ = 1/ 2kl + (1/2kQ5§E+ 8 €
has been used. Thus, if u=a or z,=0, noting (i) of Eq. (27),
Vis-NV+e (A8)

which leads to Eq. (29) and proves the results in (a) of the theo-
rem. Noting (ii) of Eq. (27) and (b) of the theorem can be proved
by using a positive definite function V,, of the form Eq. (A4) and
the same techniques as in Eq. (A5). O

3 Proof of Theorem 5.1. If Eq. (43) is satisfied, by using the
completion of square and noting Eq. (42), from Eq. (38), it is easy
to show that

th =- %()\min(Qg) - kQ - d2)||x§||2 — (k- d3)§2 - dlzi +4- @55

~ Jda,
+A+apl+z,|vo- o+ A, - a—a‘f“A (A9)
Noting (i)of Egs. (27) and (39),
Vy=-\V,+ey (A10)

which leads to (a) of the theorem.
When A=0 and A, =0, noting Eq. (41) and (ii) of Egs. (27) and
(39),

Vy=-\V,—70 (A11)
Thus, (b) of the theorem can be proved by using a positive definite

function Vat=VS,+1/25TI‘_15 and the same techniques as in Eq.
(A5). |
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