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Abstract

High performance robust motion and force tracking control of robot manipulators in contact with compliant

surfaces is considered in this paper. The robot parameters and the sti�ness of the contact surface may not be

known. The system may also be subjected to uncertain nonlinearities coming from the joint friction of the robot,

external disturbances, the contact surface friction model, and the unknown time-varying equilibrium position

of the contact surface. An adaptive robust motion and force tracking controller is proposed, which needs

measurements of position, velocity and interaction force only. The controller achieves a guaranteed transient

performance and �nal tracking accuracy, a desirable feature for applications and for maintaining contact. In

addition, the controller achieves asymptotic motion and force tracking without resorting to high-gain feedback

when the system is subjected to parametric uncertainties.
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I. Introduction

Applications such as contour following, grinding, deburring, as well as assembly related tasks involve the end-

e�ector of a robot in contact with its environment. To execute these tasks successfully (e.g., avoiding tool

or workpiece damage), it is necessary to control both motion of the robot and the contact force between the

end-e�ector and the environment. Depending on the type of contact environment, di�erent objectives and

approaches have been proposed, such as impedance control [1, 2], constrained motion control [3, 4, 5, 6, 7], and

hybrid position/force control [8, 9]. In constrained motion control [3, 4, 5, 6, 7], contact surfaces are assumed

to be rigid, which is justi�ed for very sti� surfaces when the deformation of the surface is negligibly small and

the motion along normal direction of the contact surface is well damped to be neglected for control purpose. In

contrast, this paper focuses on tasks in which the end-e�ector contacts with a compliant surface [10, 9] where the

deformation of the surface has noticeable e�ect on contact force and/or the motion along the normal direction

of the surface is not well damped and has to be considered in the controller design stage.

Practically, parameters of the system such as gravitational load and the sti�ness of the contact surface vary

from a task to another, and, hence, may not be precisely known in advance. The system may also be subjected

to uncertain nonlinearities coming from the joint friction of the robot, the friction and the unknown equilibrium

position of the contact surface, etc. These uncertainties make it diÆcult to solve the motion and force tracking

control problem. Unavailability of the time derivative of contact force further complicates the problem. Although

there are a number of papers dealing with the constrained motion control [3, 4, 5, 6, 7], only a few papers

[10, 9, 11] were published to address the motion and force tracking control of robot manipulators in contact

with compliant surfaces. Yao, et al. [9] developed a variable structure adaptive (VSA) method. The resulting

VSA control law was discontinuous and chattering was a problem. Subsequently, Yao and Tomizuka developed a

robust adaptive motion and force control algorithm in [11] to solve the chattering problem. However, transient

performance and �nal tracking accuracy were not guaranteed, and the e�ect of time-varying equilibrium position

and that of time-varying sti�ness of the contact surface were not considered.

Recently, Yao and Tomizuka proposed a new approach, adaptive robust control (ARC) [12, 13, 14, 15], for

high performance robust control of uncertain nonlinear systems in the presence of both parametric uncertainties

and uncertain nonlinearities. The approach e�ectively combines the design techniques of adaptive control (AC)

and those of deterministic robust control (DRC) (e.g., sliding mode control [16], SMC) and improves performance

by preserving the advantages of both AC and DRC. Speci�cally, through proper controller structure as in DRC

[17], the proposed ARC achieves a guaranteed performance in terms of both the transient error and the �nal

tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities. This result

overcomes the drawbacks of poor transient and poor robustness to uncertain nonlinearities of adaptive control

(AC) [18, 19, 20, 21], and makes the approach attractive from the view point of applications. Through parameter
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adaptation as in adaptive control, the proposed ARC achieves asymptotic tracking in the presence of parametric

uncertainties without resorting to a discontinuous control law [16] or an in�nite gain in the feedback loop [22],

which implies that the system is free of control chattering. In other words, the approach eliminates the e�ect of

parametric uncertainties and, thus, achieves a better tracking performance than DRC. The design is conceptually

simple and amenable to implementation. Comparative experimental results for trajectory tracking control of robot

manipulators [13, 23] have shown the advantages of the proposed ARC and the improvement of performance.

A general framework of the proposed ARC is formulated in terms of adaptive robust control (ARC) Lyapunov

functions [15, 23]. Through the backstepping design, ARC Lyapunov functions have been successfully constructed

for a large class of multi-input multi-output (MIMO) nonlinear systems transformable to semi-strict feedback forms

[15, 23].

In this paper, it will be shown that the robot equation for the motion and force tracking control in contact with

compliant surfaces with unknown time-varying sti�ness and time-varying equilibrium position can be converted

into a form similar to the semi-strict feedback form in [15] with a "relative degree" two. The synthesis technique

is thus qualitatively di�erent from existing robust motion and force control algorithms [5, 6, 7, 12, 13, 4] where

the design is essentially for a "relative degree" one system. The ARC design technique [15] is applied with

consideration of the particular structure and properties of the robot. Instead of the smooth projection used in

the previous ARC design [15, 23], a simple continuous projection is also developed to solve the con
icts between

the adaptive control design and robust control design. The resulting controller achieves a guaranteed transient

performance and �nal tracking accuracy for both motion and force tracking. This property is vital for avoiding

loss of contact. Asymptotic motion and force tracking is also achieved in the presence of parametric uncertainties

only. Only measurements of position, velocity and interaction force are needed.

II. Problem Formulation and Model

In a Cartesian coordinate system, let x 2 Rn denote the vector of the position/orientation of the robot end-

e�ector and F 2 Rn the vector of interaction forces/moments on the environment exerted by the robot at the

end-e�ector. Suppose that the undeformed environment is described by a set of m hypersurfaces [9]

�(x; t) = �e(t) �(x; t) = [�1(x; t); : : : ; �m(x; t)]
T m � n (1)

which are mutually independent for any t. �e(t) = [�e1; : : : ; �em]
T represents the equilibrium position of

the undeformed environment and is unknown. Suppose that there exists a set of (n � m) scalar functions

f 1(x; t); : : : ;  n�m(x; t)g such that f�i(x; t); j(x; t)g are mutually independent for any t. The task space is
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de�ned as [9]

r = [rTf ; rTp ]
T rf = [�1(x; t); : : : ; �m(x; t)]

T 2 Rm

rp = [ 1(x; t); : : : ;  n�m(x; t)]
T 2 Rn�m

(2)

In de�ning the task space (2), the directions of curvilinear coordinates rf are aligned with the normal directions

(assumed to be outer normal directions) of the undeformed surfaces. Therefore, force tracking control is required

along rf coordinates. The rest curvilinear coordinates rp represent the motion of the end-e�ector along the contact

surfaces, in which motion control is needed. Along the normal directions of contact surfaces, the environment is

assumed to be represented by an elastic model with an unknown time-varying symmetric positive de�nite (s.p.d.)

sti�ness matrix Ke(t), i.e.,

fn = Ke(t)(rf � rfe(t)) or rf = Kf (t)fn + rfe; fn � 0 (3)

where fn 2 Rm is the vector of normal contact force components, rfe(t) = �e(t) represents the unknown

equilibrium position, and Kf (t) = K�1
e is an unknown s.p.d. compliance matrix. Since the contact surfaces are

unilateral, fn � 0 1. It is assumed that the end-e�ector is initially in contact with the surfaces, and that fn � 0

is never violated after the control torque is applied, i.e., contact is never lost. If the exact force tracking control

can be achieved and the transient response of force tracking can be guaranteed, which will be the case of the

proposed controller, the assumption that fn � 0 can be justi�ed since the desired force trajectory must satisfy

the condition that fnd < 0.

By using the same technique as in [9], the robot dynamic equation in the task space can be obtained as [23]

M(r; t; �)�r + C(r; _r; t; �) _r +G(r; t; �) +Dt(r; _r; t; �) + ~f + Fr = ur (4)

where M;C, and G represent the inertia matrix, the Coriolis and centrifugal force, and the gravitational force

respectively, Dt is due to the time-varying nature of the transformation (2), ~f represents the vector of unknown

nonlinear functions due to external disturbances and joint friction, etc, Fr is the interaction force, � 2 Rl� is the

vector of a suitably selected set of robot parameters, and ur is the control input. Fr can be written as

Fr = Lr(�; r; _r; t)fn + ~Lr(r; _r; t)fn (5)

where Lrfn represents the modeled interaction force including surface friction force, and ~Lrfn represents the

1The operation � for vectors is de�ned in terms of their corresponding elements
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modeling error. Lr can be linearly parametrized in terms of the unknown friction coeÆcients � 2 Rk� , i.e.,

Lr(�; r; _r; t)fn = f�(r; _r; fn; t) + Y�(r; _r; fn; t)� (6)

where f� and Y� are known 2. The following properties can be obtained for (4) by using the same techniques as

in [24].

Property 1 For the �nite workspace 
q in which all kinematic transformations are well de�ned, M(r; t; �) is an

s.p.d. matrix with k0rIn �M(r; t; �) � k00r In, where k0r and k00r are some positive constants and In represents an

n� n identity matrix. }

Property 2 The matrix _M(r; t; �) � 2C(r; _r; t; �) is a skew-symmetric matrix. }

Property 3 M(r; t; �); C(r; _r; t; �); G(r; t; �), and Dt(r; _r; t; �) can be linearly parametrized in terms of �, i.e.,

Mzv + Czr +G+Dt = f�(r; _r; zr; zv; t) + Y�(r; _r; zr; zv ; t)� (7)

where zr and zv are any reference values, and f� and Y� are known. }

Denote the set of independent unknown parameters of Kf as �(t) 2 Rk� . Because of the symmetry of Kf ,

k� �
1
2m(m+ 1). Then, for any vector �, since Kf is linear w.r.t. �, we can write

Kf (t)� = f�(�) + Y�(�)�(t) (8)

where f� and Y� are known. We make the following reasonable assumptions on the parametric uncertainties and

the modeling error.

Assumption 1 � 2 
�
�
= f� : �min < � < �max g and �(t) 2 
�

�
= f� : �min < � < �max g, where 
� and


� are known sets. }

Assumption 2 The modeling error is bounded by some known functions and the derivatives of �e(t) and �(t)

are bounded, i.e.,

k ~f(r; _r; t) + ~Lr(r; _r; t)fnk � Ær(r; _r; fn; t)

k _�e(t)k � Æe; k _�(t)k � Æ�
(9)

where Ær is a known function and Æe and Æ� are known. }

Note that when �e and � are unknown but constant as studied in [11], _�e = 0; _� = 0, and the last two

equations of (9) are trivially satis�ed.

2a function is called known if it is a known function with respect to (w.r.t.) their variables
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Suppose that rpd(t) 2 Rn�m is given as the desired motion trajectory in the unconstrained subspace and

fnd(t) 2 R
m is the desired force trajectory in the constrained subspace. The objective is to design a control law

and some parameter adaptation laws under Assumptions 1 and 2 such that the motion and force tracking errors,

epa = rp(t)� rpd(t) 2 R
n�m and efa = fn(t)� fnd(t) 2 Rm, are as small as possible.

III. ARC Motion and Force Control

In this section, the ARC design technique [15] is applied to solve the above robust motion and force tracking

control problem.

3.1. Semi-strict Feedback Form

De�ne state variables as

x1 = [xT1;1; xT1;2]
T ; x1;1 = fn; x1;2 = rp

x2 = _r
(10)

Noting (3), (4) and (5), the system can be represented by

_x1 = B1x2 +D1�1

_x2 =M�1(r; t; �)[�C(r; x2; t; �)x2 �G(r; t; �) �Dt(r; x2; t; �)

�Lr(�; r; x2; t)x1;1 + ur +�2]

y = x1

(11)

where

B1 =

2
64
Ke 0

0 In�m

3
75 ; D1 = [Im 0]T

�1 = _Ke(t)(rf � �e)�Ke
_�e(t); �2 = � ~f(r; x2; t)� ~Lr(r; x2; t)x1;1

(12)

The �rst equation of (11) has parametric uncertainties in B1 and uncertain nonlinearities in �1. These uncertain-

ties are mismatched uncertainties since the control input ur appears in the second equation. The appearance of

mismatched uncertainties makes the controller design complicated. Since r and _r are measurable, we may treat

r in the second equation of (11) as a known quantity3. Then, noting Assumptions 1 and 2, and Properties 1

and 3, (11) is similar to the semi-strict feedback form in [15] with a "relative degree" of two. Thus, in principle,

we may be able to apply the general results in [15] to obtain an ARC controller. However, in order to take into

account of the special structure of the robot dynamics, we proceed the design in the following way. The design

parallels the recursive backstepping design procedure in [15]. An ARC Lyapunov function is �rst constructed for

3Otherwise, we have to write r as a function of x1. The relationship r(x1) is unknown because of the unknown sti�ness and
the unknown equilibrium. Then, terms like M(r(x1); t; �) cannot be linearly parametrized.
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the �rst equation of (11). Then, using the backstepping design, an ARC Lyapunov function is found for the

whole system.

The �rst equation of (11) is actually made of two decoupled equations, i.e., the force equation

_fn = Kex2;1 +�1 (13)

and the motion equation

_rp = x2;2 (14)

Thus, in the following, ARC Lyapunov functions will be constructed for the force and motion equations sepa-

rately. Furthermore, instead of tracking rpd(t) and fnd(t) directly, the controller is designed to track the �ltered

desired motion and force trajectories, rpr(t) and fnr(t), each created by a second-order stable system. Such

a procedure enables us to choose the initial conditions, rpr(0); _rpr(0); fnr(0), and _fnr(0), freely to guarantee

transient performance as in [14]. In practice, whenever the system tracking error experiences a sudden jump

due to some discontinuous perturbations, such a desired trajectory initialization can be adopted to minimize the

transient response as done in [25] for eliminating reaching transient by suitably choosing initial conditions. In the

following, let ep = rp � rpr and ef = fn � fnr be the motion and force tracking errors respectively.

3.2. Notations and Smooth Projection

Let �̂ denote the estimate of � (e.g., �̂ for �) and �i the i-th component of �. For any unknown parameter

vector � lying in a known bounded region 
�=f� : �min < � < �max; g (e.g., 
�), a simple smooth projection

map � can be de�ned for �̂ and satis�es the following properties: (a). 8�̂ 2 
�; �(�̂) = �̂; (b). 8�̂,

�(�̂) 2 
�̂=f�̂� : �min � "� � �̂� � �max + "�g where "� is a known vector of positive numbers that can be

arbitrarily small; (c). �i(�̂i) is a nondecreasing function of �̂i; and (d). The derivatives of the projection are

bounded up to a suÆciently high-order. See [14] for further details. For convenience, de�ne �̂� as �̂� = �(�̂)

and the projected estimation error as ~�� = �̂� � �.

3.3. Force ARC Lyapunov Function

In this subsection, a force control function uf will be constructed for x2;1 such that force tracking control will

be achieved with a guaranteed transient performance if x2;1 = uf . This is achieved by constructing an ARC

Lyapunov function Vf as follows.

Recent one-dimensional force experimental results [26] have shown that integral force feedback control has

some advantages since it has a stronger robustness to the measurement time delay and can remove steady state

force tracking error. For this reason, we introduce the integral of force tracking error, If = If (0) +
R t
0 ef (�)d�,
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in the design. Also, since Ke is an s.p.d. matrix, it will be easier to design a control law based on the estimate

of Kf = K�1
e instead of the estimate of Ke. Considering these factors, from (13), equations for If and the force

are
_If = ef = fn � fnr(t)

Kf
_fn = x2;1 + ~�1

~�1 = K�1
e

_Ke(rf � �e)� _�e

(15)

De�ne a switching-function-like vector �f as

�f = ef +D1If (16)

where D1 is an s.p.d. matrix. By choosing the initial value of If as If (0) = D�1
1 ef (0), we have

�f (0) = ef (0) +D1If (0) = 0 (17)

From (16), we note

_�f = _fn � � �
�
= _fnr �D1ef (18)

Choose a positive semi-de�nite (p.s.d.) function Vf as

Vf = 1
2wf�

T
f Kf�f (19)

where wf > 0 is any weighting factor.

Lemma 1 Let the control law for x2;1 be

uf (�; �f ; �̂�; t) = ufa(�; �f ; �̂�) + ufs(�; �f ; �̂�; t) (20)

where

ufa = K̂f ��D2�f = f�(�) + Y�(�)�̂� �D2�f (21)

and ufs is any vector of di�erentiable functions satisfying the following two conditions

i. �Tf ufs � 0

ii. �Tf (
~�1 +

1
2
_Kf�f + Y�(�)~��) + �Tf ufs � "f

(22)

in which "f > 0 is a design parameter, D2 > 0, and �̂� is the projection of �̂ de�ned in subsection 3.2. Then, we

have
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a. In general,

_Vf juf � ��VfVf + wf"f (23)

where �Vf = 2�min(D2)
suptf�max(Kf )(t)g

, and _Vf juf denote _Vf under the condition that x2;1 = uf .

b. In addition, when ~�1 = 0 and _Ke = 0,

_Vf juf � �wf �
T
f D2�f + �Tf

~�� (24)

where

�f = wfY
T
� (�)�f (25)

}

Remark 1 Lemma 1 shows that Vf is an ARC Lyapunov function [15] for (15) with the control function given

by (20) and the adaptation function given by (25).

Proof: Noting (8), (15), and (18), the derivative of Vf is

_Vf = wf�
T
f (Kf

_�f +
1
2
_Kf�f ) = wf �

T
f (Kf

_fn �Kf �+
1
2
_Kf�f )

= wf�
T
f [x2;1 +

~�1 � f�(�)� Y�(�)� +
1
2
_Kf�f ]

(26)

If x2;1 = uf , then,

_Vf juf = �wf�
T
f D2�f + wf�

T
f [

~�1 +
1
2
_Kf�f + Y�(�)~�� + ufs] (27)

which leads to (23) by noting ii of (22).

When ~�1 = 0 and _Ke = 0, _Kf = 0 and (27) leads to (24) by noting i of (22). 2

3.4. Motion ARC Lyapunov Function

As above, in this subsection, a motion control function up will be constructed for x2;2 such that motion tracking

control will be achieved with a guaranteed transient performance if x2;2 = up. Since the position equation (14)

has no modeling uncertainties, we can use the technique in designing dynamic sliding mode in [12] to obtain a

stabilizing control for it. Namely, let a switching-function-like vector be

�p = _ep + yp; �p 2 R
(n�m) (28)

8



where yp is the output of a np-th order dynamic compensator given by

_zp = Apzp +Bpep; zp 2 R
np

yp = Cpzp +Dpep; yp 2 R
(n�m)

(29)

(Ap; Bp; Cp;Dp) is required to be controllable and observable. Transfer function from �p to ep is

ep = G�1
�p

(s)�p (30)

where

G�p(s) = sIn +Gc(s); Gc(s) = Cp(sInp �Ap)
�1Bp +Dp (31)

Thus, by suitably choosing the dynamic compensator transfer function Gc(s), the transfer function G�1
�p

(s) can

be arbitrarily assigned as long as G�1
�p

(s) has a relative degree of one. The state space realization of G�1
�p

(s) has

the state x�p = [zTp ; e
T
p ]

T and the following representation

_x�p = A�px�p +B�p�p y�p = C�px�p

A�p =

2
64

Ap Bp

�Cp �Dp

3
75 B�p =

2
64

0

In�m

3
75

C�p = [0 In�m]

(32)

In state space, the result equivalent to the transfer function G�1
�p

(s) being arbitrarily assigned can be stated as

follows: the following Lyapunov equation has an s.p.d. solution P�p for any s.p.d. matrix Q�p

AT
�p
P�p + P�pA�p = �Q�p

(33)

Furthermore, �Vp
�
=

�min(Q�p)

�max(P�p )
can be arbitrarily large value by assigning the poles of A�p to the far left plane to

obtain any exponentially fast converging rate.

Lemma 2 Let the control law for x2;2 be

up = _rpr(t)� yp (34)

Then, the positive de�nite (p.d.) function de�ned by

Vp =
1
2x

T
�p
P�px�p (35)
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is a Lyapunov function or an ARC Lyapunov function for the motion subsystem, i.e.,

_Vp jup� ��VpVp (36)

Proof: If x2;2 = up, from (28), we have

�p = x2;2 � ( _rpr + yp) = 0 (37)

Noting (32) and (33), (36) is obvious. 2

3.5. Backstepping Design via ARC Lyapunov Function

In the previous subsections, we have shown that if x2 takes the feedback law u1d = [uTf ; uTp ]
T given by (20)

and (34), we can achieve motion and force tracking as demonstrated in Lemmas 1 and 2. So the backstepping

design in this section is to design an ARC law for the second equation of (11) so that its output x2 tracks its

desired value u1d with the transient performance we want. This process can be completed by making the following

p.s.d. function an ARC Lyapunov function:

V = Vf + Vp +
1
2z

T
2 M(r; t; �)z2 (38)

where z2 = x2�u1d = _r�u1d is the tracking error for the second equation. Noting that _� = �fnr+D1
_fnr�D1

_fn

and _�f = _fn � �, by di�erentiating (20), we can write

_uf = Y1(�; �f ; ��
(1)
� ; t) + Y2(�; �f ; �̂�; t) _fn +

@uf

@�̂
(
_̂
� � P�(�; �f ; �̂; t)) (39)

where P� is a bounded function w.r.t. �̂ which will be speci�ed later. Y1 and Y2 are calculable and given by

Y1 =
@uf
@�

( �fnr +D1
_fnr)�

@uf
@�f

�+
@uf

@�̂
P� +

@uf
@t

Y2 = �
@uf
@�
D1 +

@uf
@�f

(40)

Noting (13), _u1d can be decomposed into the following terms

_u1d = zv +

2
64
Y2

0

3
75 (Ke _rf +�1) +

2
64

@uf

@�̂

0

3
75 ( _̂� � P�) (41)

where

zv =

2
64
Y1(�; �f ; ��

(1)
� ; t)

_up

3
75 (42)
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zv is calculable based on the measurements of position, velocity, and force only. Noting that M is linear w.r.t.

�, there exists known Y3(r; �; �f ; �̂�; _rf ; t) and Y#(r; �; �f ; �̂�; _rf ; t) such that

M(r; t; �)

2
64
Y2(�; �f ; �̂�; t)Ke _rf

0

3
75 = Y3 + Y## (43)

where # represents a set of suitably selected unknown constants whose elements are the products of the elements

of � and Ke. In view of Assumption 1, # 2 
#, where 
# is a known bounded set and is denoted by 
# = f# :

#min < # < #max g. So we can de�ne #̂� = �#(#̂), the projection of #̂, in the same way as in subsection 3.2.

Lemma 3 Let the control law for ur be

ur = ura + urs

ura = f�(r; _r; u1d; zv ; t) + Y�(r; _r; u1d; zv; t)�̂� + f�(r; _r; fn; t)

+Y�(r; _r; fn; t)�̂� + Y3 + Y##̂� � u0r �Kzz2

u0r =

2
64

wf�f

BT
�p
P�px�p

3
75

(44)

where Kz > 0 and urs is any vector of continuous functions satisfying the following two conditions

i. zT2 urs � 0

ii. zT2 [Y�
~�� + Y�~�� + Y# ~#� + ~�2] + zT2 urs � "z

(45)

in which "z > 0 is a design parameter and

~�2 = �M

2
64
Y2

0

3
75�1 +�2 (46)

Then, the following results can be obtained:

a. In general,

_V � ��V V + "+ @V

@�̂
(
_̂
� � P�) (47)

where �V = minf�Vf ; �Vp ;
2�min(Kz)

k00r
g and " = wf"f + "z.

b. In addition, if �i = 0; i = 1; 2, then,

_V � ��V V + �Te
~�e� +

@V

@�̂
(
_̂
� � P�) (48)

where

11



�Te = [�Tf ; zT2 Y�; zT2 Y�; zT2 Y#]

�̂e = [�̂T ; �̂T ; �̂T ; #̂T ]T
(49)

}

Proof: Noting (26), (32), and Property 2, we have

_V = _Vf juf +wf�
T
f (x2;1 � uf ) + _Vp jup +x

T
�p
P�pB�p(x2;2 � up) + zT2 (M _z2 + Cz2)

= _Vf juf + _Vp jup +z
T
2 [M( _x2 � _u1d) + C(x2 � u1d) + u0r]

(50)

Substituting the second equation of (11) into (50) and noting (41) and (43), we have

_V = _Vf juf + _Vp jup +z
T
2 fur �Mzv � Cu1d �G�Dt � Lrfn � Y3 � Y##+ u0r

�M

2
64

@uf

@�̂

0

3
75 ( _̂� � P�) + ~�2g

(51)

Noting that the only term in V that contains �̂ is uf in z2,

@V

@�̂
= �zT2 M

2
64

@uf

@�̂

0

3
75 (52)

Substituting the control law (44) into (51) and noting (6), (7), and (52),

_V = _Vf juf + _Vp jup �z2Kzz2

+zT2 [urs + Y� ~�� + Y�~�� + Y# ~#� + ~�2] +
@V

@�̂
(
_̂
� � P�)

(53)

which leads to (47) because of (23), (36), and (45).

When �i = 0, from (15) and (46), ~�i = 0. Noting (24) and (36),

_V � ��VfVf � �VpVp � z2Kzz2 + �Tf
~�� + zT2 urs + zT2 Y�

~��

+zT2 Y�~�� + zT2 Y#
~#� +

@V

@�̂
(
_̂
� � P�)

(54)

which leads to (48) because of i of (45). 2

Remark 2 There are several ways to choose the robust control terms ufs and urs to satisfy (22) and (45). Since

urs is required to be continuous only, it can be any continuous approximation of the discontinuous term �hz
z2

kz2k

with an approximation error "z. �hz
z2
kz2k

is normally used in sliding mode control (SMC) where hz is a bounding
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function satisfying

hz � kY� ~�� + Y�~�� + Y# ~#� + ~�2k (55)

hz exists since ~��, ~#�, and ~�� are bounded by some known constants because of the use of smooth projections.

See [12, 23] for di�erent approximation methods. Similarly, we can choose ufs to be a di�erentiable continuous

approximation of the discontinuous term �hf
�f
k�fk

where hf satis�es

hf (�; �f ; �̂�; t) � k ~�1 + Y�(�)~�� + 1
2
_Kf�fk (56)

}

Lemma 4 If the initial values of the �ltered motion and force trajectories are chosen as

fnr(0) = fn(0); _fnr(0) = K̂�1
f (0) _rf (0)

rpr(0) = rp(0); _rpr(0) = _rp(0)
(57)

then, V (0) = 0 by setting If (0) = 0 and z(0) = 0. 4

Proof: It is obvious that ef (0) = 0; �f (0) = 0; ep(0) = 0, yp(0) = 0; x�p = 0, and �p(0) = 0. From (20),

ufa(0) = K̂f
_fnr(0) and ufs(0) = 0. z2(0) = 0 and V (0) are thus obvious. 2

Let the adaptation law be
_̂
� = P�; P� = ���[l�(�̂) + �f ]

_̂
� = ���[l�(�̂) + Y T

� z2]

_̂� = ���[l�(�̂) + Y T
� z2]

_̂
# = ��#[l#(#̂) + Y T

# z2]

(58)

where l�, l� , l�, and l# are any bounded modi�cation functions satisfying the following two conditions

i. l�(�̂) = 0 if �̂ 2 
�

ii. ~�T� l�(�̂) � 0 if �̂ 62 
�

(59)

in which � represents �, �, �, or #. For speci�c modi�cation functions, see [12, 23]. Some examples suitable for

this application are given in the following remark.

Remark 3 Note that l�(�̂) = 0 is a trivial solution of (59), which, in general, makes the resulting control law

simple and easy to implement. The reason of introducing l� is to make the parameter adaptation process more

robust since l� functions as a nonlinear damping in the parameter adaptation law (58). In this application, the

adaptation law for �̂, �̂, and #̂, the right hand side of (58), can be discontinuous since the resulting �̂, �̂, and #̂

13



are still continuous and the control law (44) uses �̂, �̂, and #̂ only. Thus, the same as in [12], we can use the

popular discontinuous projection method [27] for l�, l�, and l#. See [12] for the details.

For �̂, since P� is also used in the control law (44), we have to use the continuous modi�cation function l�.

One simple solution is to use the idea of continuous projection method proposed in [28], which is simpli�ed as

follows. Let W� > 0 be a weighting matrix such that 
� is contained in the set 
�0 = f� : kW�(� � �n)k � 1g

for some known �n. 8y, de�ne the continuous projection of y as

Proj(�̂; y) =

8>>>><
>>>>:

y if �̂ 2 
�0

y �̂ 62 
�0 and (�̂ � �n)
TW 2

� y � 0

y �
(kW�(�̂��n)k

2�1)(�̂��n)TW 2

�
y

"�0(2+"�0 )kW
2

�
(�̂��n)k2

W 2
� (�̂ � �n) �̂ 62 
�0 and (�̂ � �n)

TW 2
� y > 0

(60)

where "�0 is any small positive number. Let the adaptation law for �̂ be

_̂
� = ��Proj(�̂;��f ) �̂(0) 2 
� (61)

i.e., letting �� = ��I and l� = ��f � Proj(�̂;��f ) in (58). Then, similar to [28], it can be proved that the

adaptation law (61) guarantees that

i. �̂ 2 
�00 = fp : kW�(p� �n)k � 1 + "�0g; 8�f

ii. ~�T l� � 0; 8�f
(62)

Since 
�00 is a known bounded set, we can restrict the smooth projection �(�̂) to a class of smooth projections

with the property that �(�̂) = �̂; 8�̂ 2 
�00 . In other words, we actually do not use smooth projection in

implementation in view of i of (62). It is thus easy to verify that (59) is satis�ed and the continuous projection

(61) is a valid continuous modi�cation function. }

Theorem 1 When the robot manipulator described by (4) moves on the sti� surfaces (1) with the interaction

force (5), the following results hold if the control law (44) with the adaptation law (58) and the initial values

(57) is applied:

a). In general, the control input is bounded and ep; zp; ef , and If exponentially converge to some balls whose

size can be freely adjusted by controller parameters in a known form. Furthermore, V is bounded above by

V (t) � "
�V

[1� exp(��V t)] (63)

b). When the system does not have uncertain nonlinearities, i.e., �e and Ke are unknown but constant and

14



�2 = 0 in (11), in addition to the results in a) of the theorem, asymptotic motion and force tracking

control is achieved, i.e., ep �! 0 and ef �! 0 when t �! 1. 4

Proof: In general, from (47), (58), and lemma 4, (63) is true. Since the exponential converging rate �V

and the bound of the �nal tracking error, V (1) � "
�V

, can be freely adjusted by the controller parameters "f ,

"p, D2, �Vp , and Kz in a known form, a) of the Theorem is true.

De�ne

V�e(
~�e) =

P 1

i

R ~�ei
0 (�i(�i + �ei)� �ei)d�i (64)

where 
i > 0. The same as in [29, 14], it can be proved that V�e is a p.d. function w.r.t. ~�e and

@

@~�e
V�e(

~�) = ~�Te��
�1
e

(65)

where �e = diagf
ig. Thus, we can choose a p.d. function as

Va = V + V�e (66)

In the absence of uncertain nonlinearities, �i = 0 and � is unknown but constant. From (48), (58), (59), and

(65),

_Va � ��V V + �Te
~�e� + ~�Te��

�1
e

_̂
�e

� ��V V � ~�T� l�(�̂)�
~�T� l�(�̂)� ~�T� l�(�̂)�

~#T� l#(#̂) � ��V V
(67)

Thus, V 2 L1. It is easy to prove that V is uniformly continuous. By using Barbalat's lemma, V converges to

zero and thus b of the theorem is true. 2

IV. Simulation

A two DOF direct drive SCARA robot in the Cartesian space shown in Fig. 1 is used in the simulation. Dynamic

equation of the robot can be found in [12] where the robot parameter set is � = [ p1; p2; p3]
T . Actual values of

the robot parameters (with a payload of 10kg) are l1 = 0:36m; l2 = 0:24m; � = [5:1023; 0:7502; 1:03685]T ,

and d = 0:35m. The exact value of � is assumed to be unknown with initial estimate �̂(0) = [1:8; 0:1; 0:1]T .

The robot is assumed in contact with a surface S, which rotates around the Z-axis as shown in Fig.1. The

surface S has a sti�ness ke = 4000 and a friction coeÆcient � = 0:3. ke and � are assumed to be unknown with

initial estimates k̂e = 500 and �̂ = 0. The time-varying undeformed surface S is described by

�x sin('(t)) + y cos('(t)) = �e(t); '(t) =
3

8
� �

1

8
� cos(

1

2
�t) (68)
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where the distance between S and Z-axis, �e, is given by �e(t) = 0:0025cos(wet) and we is unknown. Thus, the

task space (2) can be de�ned as

r = [rf ; rp]
T ; rf = �x sin(') + y cos('); rp = x cos(') + y sin(') (69)

The task space dynamic equation (1) can thus be obtained where Fr is given by (5) with

Lr =

2
64

1

�sign(fn)sign( _rp)

3
75 (70)

and ~Lr = 0. f� and Y� can be obtained from (6). Let � = Kf 2 R. Then, f� and Y� in (8) are 0 and

� respectively. Y1 and Y2 can be obtained from (40) and f� and Y� can be obtained from (7). De�ne # as

# = [Ke�1;Ke�2;Ke�3]
T . Y3 and Y# can be formed from (43) where Y3 = 0.

Fast changing desired trajectories are used to test the performance, where rpd = 0:14(1 � cos(2�t)) and

fnd = �40 + 20cos(2�t). Each of the �ltered desired trajectories rpr and fnr is created on line by a critically

damped second-order system with a corner frequency of 10 and initial conditions determined from (57). An

integrator is used for the dynamic compensator, i.e., Ap = 0; Bp = 1;Dp = 20; Cp = 100. Then the resulting

motion sliding mode is critically damped with a corner frequency of 10. �min = [1:0; 0:05; 0:05]T ; �max =

[6:0; 0:8; 1:2]T , �min = 0:0002, �max = 0:004, �min = 0, �max = 0:4, #min = [250; 12:5; 12:5]T ;

and #max = [30000; 4000; 6000]T are used to de�ne the sets 
�, 
�, 
�, and 
# for allowable parametric

uncertainties. As explained in Remark 3, we use the discontinuous projection for l�, l�, and l#, and the continuous

projection (61) for l�. Parameters in (61) are �n = 0:0021, W� = 1=0:0019, and "�0 = 0:05. Robust control

terms ufs and urs are chosen according to Remark 2, in which a smooth approximation in [14] is used for

ufs, i.e., ufs = �hf tanh(
0:2785hf �f

"f
), and a continuous approximation in [12] (method 2) is used for urs with

a diagonal feedback gain matrix Krs for z2 within a boundary layer thickness of �z
hz+1

. The control input is

calculated from (44) with a sampling rate of �T = 2ms. Controller parameters used in the simulation are

D1 = 10;D2 = 0:01; wf = 0:5; "f = 16:7; #̂(0) = [900; 50; 50]T ; Kz = diagf200; 400g, Q�p = 5000, �z = 1500

and Krs = diagf600; 600g. Parameters used for adaptation rate are �� = 0:00001; �� = diagf4; 0:2; 0:2g,

�� = 0:8, and �# = diagf20000000; 2000000; 2000000g.

The following three controllers are run for comparison:

ARC: The ARC law as described in the above.

DRC: Same control law as in ARC but without parameter adaptation. In this case, the resulting control law

becomes a deterministic robust control law [15], which can achieve the results stated in a) of Theorem 1.

AC: The control law obtained by letting ufs = 0, urs = 0, �(�) = �, and l�(�̂) = 0 in ARC, i.e., no robust
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control terms and no projection and modi�cation for parameter adaptation laws. In this case, the resulting

control law becomes an adaptive control law [15], which can achieve the results stated in b) of Theorem 1.

To test nominal performance of each controller, simulations are �rst run for parametric uncertainties only

(we = 0), i.e., conditions in b) of Theorem 1. The �ltered desired force trajectory fnr converges to the desired

force trajectory fnd quickly without overshoot due to the use of trajectory initialization. The �ltered desired

motion trajectory rpr is the same as the desired motion trajectory rpd in this case since rpr(0) = rpd(0). As

shown in Fig.2 and Fig.3, all three controllers have good motion and force tracking ability, which avoids the

loss of contact. ARC and AC have a better �nal tracking accuracy than DRC since some of the estimated

parameters approach their true values. ARC also has a better transient response than AC. Control inputs for all

three controllers do not exhibit chattering.

To test performance robustness, simulation are then run in the presence of time-varying �e(t) and very large

disturbances, i.e., we = 6� and ~f = (�1)round(t)[30; 30]T in (4). As shown in Fig.4 and Fig.5, ARC still achieves

the best motion and force tracking results. AC has the worst tracking performance and needs a very large

control e�ort sometimes (Fig.6) since its parameter estimates are unbearably wrong due to the appearance of

disturbances. Again, control inputs of the proposed ARC do not exhibit chattering. All these results illustrate

the advantages of the proposed ARC motion and force controller.

V. Conclusions

In this paper, adaptive robust control is applied to solve the motion and force tracking control of robot manipu-

lators in contact with unknown sti�ness environment. The system is subjected to both parametric uncertainties

and uncertain nonlinearities coming from various sources. The guaranteed transient performance of the result-

ing controller alleviates the problem of loss of contact and makes the approach attractive to implementation.

Asymptotic motion and force tracking is obtained in the presence of parametric uncertainties without resorting

to discontinuous control law or in�nite feedback gains. Simulation results verify the advantages of the proposed

ARC motion and force controller.
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Figure 1: Con�guration of the robot

Figure 2: Motion tracking errors in the presence of parametric uncertainties

Figure 3: Force tracking errors in the presence of parametric uncertainties

Figure 4: Motion tracking errors in the presence of parametric uncertainties and large disturbances

Figure 5: Force tracking errors in the presence of parametric uncertainties and large disturbances

Figure 6: Control inputs in the presence of parametric uncertainties and large disturbances
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