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ABSTRACT
The goal of this work is to present some theoretical results

which can be used for increasing fault sensitivity of a detection
scheme, without sacrificing robustness. Robustness against mod-
eling uncertainties and fault sensitivity are two contradicting de-
mands, and typically, one is achieved at the expense of the other.
The main reason for this trade-off is the use of a worst case sce-
nario bound for modeling uncertainties at the residual evaluation
stage. Many robust fault detection algorithms have been pro-
posed based on the assumption that an a priori known functional
bound exists for modeling uncertainties. In the present work, we
look into the two main sources of modeling uncertainties, para-
metric uncertainties and unmodeled dynamics, and carefully ex-
amine their effect on residual evaluation. Finally, based on our
analysis, and certain assumptions about the unmodeled dynamics
and parametric uncertainties, we propose a threshold for residual
generation and evaluation, and analytically prove its superior ro-
bustness and sensitivity properties.

1 Introduction
The ability to take preventive measures in case of a fault is

crucial for reliable functioning of any control system. A prop-
erly designed fault detection and diagnosis (FDD) module can
quickly respond to any abnormal changes in the operating condi-
tions owing to actuator or sensor failures. For this reason, it has
become an integral part of many industrial processes and various
1

other control systems.
Model-based FDD algorithms have found extensive use, as

they are easy to implement and do not require any additional
hardware. But, these algorithms rely on the assumption that an
accurate mathematical model of the system is available. In real-
ity, however, there are often significant differences between the
actual system and the model. These modeling errors can deteri-
orate the performance of the FDD scheme. Robustness to mod-
eling uncertainties guarantees the proper functioning of the FDD
scheme in spite of modeling errors. Usually, a detection scheme
is made robust by assuming a functional bound for modeling un-
certainties and using it at the residual evaluation stage [1], [2].
But, the robustness comes at the cost of reduced fault sensitiv-
ity, which means small and incipient faults can go undetected. In
order to improve sensitivity without the corresponding loss in ro-
bustness, we have to critically examine the assumptions on which
the fault detection algorithms are designed.

In [3], [4] and [5], the authors present a detection architec-
ture which uses parameter adaptation for reducing modeling un-
certainties and improving sensitivity. The other main source of
uncertainty is unmodeled dynamics, and in order to further im-
prove sensitivity, it is essential to reduce the deviations caused
by unmodeled dynamics. In the present work, we specifically
focus on actuator fault detection in presence of input unmod-
eled dynamics (IUD) and parametric uncertainties. IUD has been
considered by many researchers in the context of designing con-
trollers [6], [7], [8]. But, its effect on fault detection has not been
Copyright c© 2007 by ASME



studied by many researchers. In [9], the authors present the sig-
nificance of considering unmodeled dynamics in the scheme of
fault detection and give a procedure to design a threshold func-
tion which can effectively differentiate between faults and devia-
tions due to unmodeled dynamics. But, some of the implementa-
tion issues were left unaddressed in [9]. In this work, we analyze
the case when there is parametric uncertainties in addition to un-
modeled dynamics, and present a more practical way of tackling
the problem by designing observers for the unmodeled states.

The paper is organized as follows. In the first section, we
describe the class of system under consideration and the var-
ious assumptions associated with it. Then, we formulate the
main problem that we solve in this work and the significance
of the problem. In the next section, we describe the strategy
used to tackle the two main problems in generating the residu-
als - unmodeled dynamics and parametric uncertainties. Design
of adaptive robust observers for estimating the unmodeled states
and adaptation law to reduce the extent of parametric uncertain-
ties is explained in details. We also briefly describe the residual
evaluation strategy. In the third section, we propose a threshold
for residual evaluation and state the main performance results as
theorems. In the last section, we state the main results and con-
tributions of the present work, and conclude. For the sake of
completeness and making this paper self-contained, some results
which already exists in the literature have been mentioned along
with proper references.

2 Problem Formulation
The following nonlinear system will be considered in this

paper,

ẋi = θT Fxi(x)+Φi
T (x,θ)v+∆xi +U(t−Ti) fai(x,u, t) (1)

η̇ = Fη(x,u)θ+Gη(x)η+∆η (2)
v = u+µcη (3)

where xi is the ith component of x ∈ Rn. u ∈ Rm is the com-
manded or nominal control effort and v is the actual control ef-
fort. θ ∈ Rp is the vector of unknown parameters. η ∈ Rη rep-
resents the unmodeled states. Fxi ∈ Rp×1,Φi ∈ Rm×1,Fη ∈ Rη×p

and Gη ∈ η×η are matrices or vectors of known smooth func-
tions and c ∈ Rm×η is constant matrix. µ and ∆(•) represents
the extent of unmodeled dynamics and uncertain nonlinearities
present in the system respectively. U(t − Ti) represents a step
function, and fai(x,u, t) represents the fault function.

As seen from (1), the dynamics of ith-channel is not only
affected by faults but, also by modeling errors. Ideally, it is ex-
pected that the detection scheme can completely isolate the effect
of fault from that of unmodeled dynamics (η), parametric uncer-
tainties (θ) and other bounded uncertainties (∆xi). There are two
main objectives of the present work - (a) to reconstruct the states
2

in a way so that the effect of unmodeled dynamics and paramet-
ric uncertainties can be captured and generate residuals which
are affected only by faults and bounded modeling errors and, (b)
to design a threshold which can effectively differentiate between
the effect of small/incipient faults and the bounded modeling er-
rors.

Following are the assumptions associated with the class of
systems under consideration,

Assumption 1: The unknown but constant parameters θi lie
in a known bounded region Ωθi , i.e.,

θi ∈Ωθi = {θi : θi,min < θi < θi,max} (4)

Assumption 2: The uncertain nonlinearities ∆η and ∆xi are
bounded by known constants i.e.,

∆i ∈Ω∆i = {∆i : |∆(x,u, t)| ≤ δi} (5)

where δi, i = η,x j, are known constants.
Assumption 3: Control input u(t) and system states

η(t),xi(t) remain bounded before and after the occurrence of
fault.

Remark 1: The assumption above implies that the states and
control input remains bounded after the occurrence of fault, as
no fault accommodation has been considered in this work.

Assumption 4: There exists a vector of design functions
ω(x,θω) ∈ Rη,θω ∈ Rpω such that,

n

∑
i=1

∂ω
∂x

ΦT
i (x,θ)c =

n

∑
i=1

Ψi(x) (6)

where Ψi(x) is a known function of x and is independent of θ.
Moreover, Ψi(x) and ω(x,θω) are such that,

Aξ(x) = Gη(x)−µ
n

∑
i=1

Ψi(x) (7)

ω(x,θω) = σ(x)θω (8)

and Aξ is exponentially stable i.e., there exists a positive constant
νAξ such that yT (AT

ξ +Aξ)y≤−νAξyT y, ∀y ∈ Rny×1.
Assumption 5: The function Φi(x,θ) can be linearly param-

eterized in terms of θ i.e.,

Φi(x,θ) = θT ζi(x) (9)

The notation that has been used throughout the paper is as fol-
lows, unless otherwise mentioned. ˆ(•) represents the estimated
Copyright c© 2007 by ASME



value of (•), |(•)| is the matrix norm of (•), (•) represents a
bounding functional for the regressor (•) and a capital Greek
letter in subscript denotes a Kronecker product of two or more
vectors of unknown parameters.

3 Fault Detection Architecture

In this section, we will explain the design of adaptive ro-
bust observers for estimating the unmodeled states and adapta-
tion law to reduce parametric uncertainties. We will also describe
the residual evaluation procedure.

Before we go into the details of the observer design, we
would like to mention the following results related to Kronecker
product. If A ∈ Rn×m and B ∈ Rr×s, then the Kronecker product
is given by [10],

A⊗B =




A11B A12B . . . A1nB

A21B A22B . . .
...

...
... . . .

...
Am1B Am2B . . . AmnB




= matrix[Ai jB] (10)

where A⊗B ∈ Rnr×ms.

Lemma 1: If A ∈ Rη×pω ,B ∈ Rpω×1,C ∈ R1×p,D ∈ Rp×1,
then the product ABCD can be expressed as,

ABCD = (A⊗DT ) · (B⊗CT ) (11)

Proof: Follows by expanding the product using (10).5

3.1 Adaptive Robust Observer Design

In this work, we will use the observer design technique pro-
posed in [11]. For designing observers for unmodeled states, we
will use the following coordinate transformation,

ξ = η−ω(x,θω) (12)
3

and the dynamics of the transformed state is given by,

ξ̇ = η̇−
n

∑
i=1

∂ω
∂xi

ẋi (13)

⇒ ξ̇ = Fη(x,u)θ+Gη(x)η+∆η−
n

∑
i=1

∂ω
∂xi
{θT Fxi(x)+Φi(x,θ)v

+∆xi +U(t−Ti) fai(x,u, t)} (14)

⇒ ξ̇ =
{

Gη(x)−µ
n

∑
i=1

∂ω
∂xi

Φi(x,θ)c
}

η

+Fη(x,u)θ−
n

∑
i=1

∂ω
∂xi

θT Fxi(x)

−
n

∑
i=1

∂ω
∂xi

Φi(x,θ)u+

{
∆η−

n

∑
i=1

∂ω
∂xi

∆xi

}

−
n

∑
i=1

∂ω
∂xi

U(t−Ti) fai(x,u, t) (15)

⇒ ξ̇ = Aξ(x)ξ+χ(x)θω +Fη(x,u)θ−
n

∑
i=1

ϕi(x)θnew

−
n

∑
i=1

ρi(x)θnew− fξ(x,u, t)+∆ξ (16)

where we have used the following simplification in (16),

Aξ(x)σ(x) = χ(x) (17)
n

∑
i=1

∂ω
∂xi

U(t−Ti) fai(x,u, t) = fξ(x,u, t) (18)

{
∆η−

n

∑
i=1

∂ω
∂xi

∆xi

}
= ∆ξ (19)

n

∑
i=1

∂ω
∂xi

θT Fxi(x) =
n

∑
i=1

∂σ
∂xi

θωθT Fxi(x)

=
n

∑
i=1

(
∂σ
∂xi

⊗FT
xi

(x)
)

(θ⊗θω)

=
n

∑
i=1

ϕi(x)θnew (20)

n

∑
i=1

∂ω
∂xi

Φi(x,θ)u =
n

∑
i=1

∂σ
∂xi

θωθT (ζi(x)u)

=
n

∑
i=1

{
∂σ
∂xi

⊗ (ζi(x)u)T
}

(θ⊗θω)

=
n

∑
i=1

ρi(x,u)θnew (21)
Copyright c© 2007 by ASME



If all the parameters were known, the following observer could
be used,

˙̂ξ = Aξ(x)ξ̂+χ(x)θω +Fη(x,u)θ

−
n

∑
i=1

ϕi(x)θnew−
n

∑
i=1

ρi(x)θnew (22)

⇒ ˙̂ξ = Aξ(x)ξ̂+ϒθϒ (23)

where ϒ = [Fη(x,u),−∑n
i=1{ϕi(x) + ρi(x)},χ(x)] and θϒ =

[θ,θnew,θω]T

Let ξ̃ = ξ̂−ξ. Then,

˙̃ξ = ˙̂ξ− ξ̇ (24)

⇒ ˙̃ξ = Aξ(x)ξ̃−∆ξ (25)

in absence of any faults. But, the observer designed above is not
implementable, as the parameters θϒ are not known. Hence, we
will use the following nonlinear filter,

τ̇θϒ = Aξ(x)τθϒ +ϒ (26)

Using the above filter, the estimated transformed state ξ and un-
modeled state η can be expressed as,

ξ̂ = τθϒθϒ (27)

η = τθϒθϒ +σ(x)θω− ξ̃

= τθηθη− ξ̃ (28)

where, τθη = [τθϒ ,σ(x)] and θη = [θϒ,θω]T .

3.2 Parameter Estimation Scheme
From (28), we still cannot estimate the unmodeled state η, as

the parameters θη are unknown. In the present work, parameters
are estimated using batched least square algorithm. The param-
eters are updated only when the regressor is rich enough i.e., if
R(kT ) =

R kT
(k−1)T Ω(τ)ΩT (τ)dτ, then the adaptation law is given

by,

θ̂(•)(kT ) =
{ R(kT )−1 R kT

(k−1)T Ω(τ)z(τ)dτ if R(kT ) > α(kT )I
θ̂(•)((k−1)T ) otherwise

(29)
where T is the window over which the regressor is monitored,
k = 1,2,3, .. is an integer, α(kT ) is a positive number, (•) repre-
sents any subscript and z(t) is the static model used for parameter
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estimation, which we will be described later. Finally, the param-
eter estimate is given by,

θ̂(•)(t) = θ̂(•)((k−1)T ) (30)

We will now derive a model to estimate the unknown param-
eters. Let us rewrite the dynamics of the ith-channel as follows,

ẋi = θT Fxi(x)+θT ζi(x)(u+µcη)+U(t−Ti) fai(x,u, t)+∆xi

⇒ = Θ(x,u)θΘ−θT (µζi(x)cξ̃)+U(t−Ti) fai(x,u, t)+∆xi(31)

where we have used the following simplification,

θT ζi(x)µcη = θT ζi(x)µc(τθηθη− ξ̃)

= (θT ⊗θT
η)(ζi(x)µ⊗ (cτθη)T )−θT (µζi(x)cξ̃)

= θT
ΞΞ−θT (µζi(x)cξ̃) (32)

and
ΘT (x,u) = [Fxi(x),ζi(x)u,Ξ], θT

Θ = [θT ,θT ,θT
Ξ]. But, as the pa-

rameters θΘ are not known, we shall use the following filters,

Ω̇T = AΩT +Θ(x,u) (33)
Ω̇0 = A(Ω0 + xi) (34)

where A is any exponentially stable matrix i.e., there exists a
νA such that yT (AT +A)y≤−νAyT y, ∀y ∈ Rny×1. Define, z =
Ω0 + xi, which is calculable. Using equations (31) and (34), we
obtain,

ż = Az+Θ(x,u)θΘ +∆z (35)

where, ∆z = ∆xi −θT (µζi(x)cξ̃) in absence of any faults.
If ε = xi +Ω0−ΩT θΘ, then its dynamics is given by,

ε̇ = Aε+∆z (36)

which is stable when ∆z = 0. Thus, the model used for estimating
the parameters θΘ is,

z = ΩT θΘ + ε (37)

where ε represents the cumulative effect of modeling errors and
faults in the system. Now we shall state two lemmas which sum-
marize the main results regarding the model developed for pa-
rameter estimation in this work. See [12], [4] and [5] for detailed
proof and discussion about the following lemmas.

Copyright c© 2007 by ASME



Lemma 2: The transformed state estimation error given by
the solution of equation (25) is always bounded i.e., ξ̃∈L∞[0,∞).

In absence of any modeling uncertainties i.e., ∆ξ = 0, the
state estimation converges to zero with proper choice of the ob-
server gain matrix Aξ(x), as seen from (25). In presence of
bounded of uncertainties, however, it is easy to check that the
estimation error remains bounded by using ξ̃2 as a Lyapunov
function.

Lemma 3: The model mismatch ε given by the solution of
equation (36) remains bounded and satisfies the following in-
equality,

|ε(t)| ≤ 2
|δz|
νA

(38)

In absence of any modeling uncertainties i.e., when ∆xi =
∆η = 0, ε is asymptotically stable, which makes the parameters
converge to its exact value. But, in the presence of bounded un-
certainties and bounded estimation error ξ, ε remains bounded
with proper choice of the Hurwitz matrix A and observer gain
matrix Aξ(x).

With these two lemmas in hand, we will now state the theo-
rem which gives an explicit bound for the parameter estimation
error.

Theorem 1: When the parameters are estimated using model
(37) and adaptation law specified by (29), the estimation error
remains bounded, and is given by,

|θ̃Θ(t)| ≤ θ̃Θ,max(kT ), ∀t ∈ [kT,(k +1)T ) (39)

where,

θ̃Θ,max(0) = |θΘ,max−θΘ,min| (40)

and

θ̃Θ,max(kT ) =

{
2|δz|

α(kT )υA

R kT
(k−1)T |Ω(τ)|dτ if R(kT )≥ α(kT )I

θ̃Θ,max((k−1)T ) otherwise
(41)

Proof: For the sake of completeness, we will outline the proof
of the theorem, which has been proved previously in [12]. From
(37), the parameter estimation error is given by,

θ̃(t) = R(kT )−1
Z kT

(k−1)T
Ω(τ)ε(τ)dτ (42)

where ε(t) is bounded.
5

As parameter adaptation is carried out only when
λmin(R(kT ))≥ α(kT ), we obtain,

λmax(R(kT ))≥ λmin(R(kT ))≥ α(kT ) (43)

⇒ 1
λmax(R(kT ))

≤ 1
λmin(R(kT ))

≤ 1
α(kT )

(44)

i.e., all eigenvalues of R(kT )−1 ≤ 1
α(kT ) . Therefore, using (42-

44) for ∀t ∈ [kT,(k +1)T ) the estimation error satisfies,

|θ̃(t)| ≤ 1
α(kT )

Z kT

(k−1)T
|Ω(τ)ε(τ)|dτ

≤ 1
α(kT )

2|δz|
νA

Z kT

(k−1)T
|Ω(τ)|dτ (45)

Hence, the maximum parameter estimation error in presence of
uncertain nonlinearities is given by (41).5

Now that we have a mechanism for estimating the param-
eters θη, the estimated unmodeled state and estimation error is
given by,

η̂ = τθη θ̂η (46)
η̃ = η̂−η

= τθη θ̃η + ξ̃ (47)

3.3 Residual Evaluation Scheme
Using the adaptive robust state reconstruction scheme, the

states can be estimated as follows,

˙̂xi = −hi(x̂i− xi)+ θ̂T Fxi(x)+ θ̂T ζi(x)(u+µcη̂) (48)
⇒ ˙̂xi = −hi(x̂i− xi)+Θ(x,u)θ̂Θ (49)

The state estimation error dynamics ˙̃xi = ˙̂xi− ẋi is given by,

˙̃xi(t) = −hi ˙̃xi +Θ(x,u)θ̃Θ +θT (ζi(x)µcξ̃)
−U(t−Ti) fai(x,u, t)−∆xi (50)

x̃i(t) = e−hi(t−(k−1)T )x̃i((k−1)T )

+
Z t

(k−1)T
e−hi(t−τ)β(x,u,τ)dτ, ∀t ∈ [(k−1)T,kT )

(51)

where
β(x,u,τ) = Θ(x,u)θ̃Θ +θT (ζi(x)µcξ̃)−U(t−Ti) fai(x,u, t)−∆xi .
In the fault-free case, U(t−Ti) fai(x,u, t) term will be absent in
Copyright c© 2007 by ASME



the expression for β. It can be easily verified that the initial esti-
mation error satisfies the following equation,

x̃i(kT ) =
k

∑
j=1

e( j−k)hiT
Z jT

( j−1)T
e−hi( jT−τ)β(x,u,τ)dτ (52)

4 Performance Results
In this section, we will design a threshold function for resid-

ual evaluation and prove the robustness and sensitivity properties
of the fault detection scheme.

4.1 Robustness Analysis
Theorem 2: If the threshold for residual evaluation x̃0

i is cho-
sen such that,

x̃0
i (t) = e−hi(t−(k−1)T )Γi((k−1)T )+

δi

hi
[1− e−hi(t−(k−1)T )]

+θ̃Θ,max((k−1)T )
Z t

(k−1)T
e−hi(t−τ)Θ(x,u)dτ

+µ(θ̃T
max((k−1)T )+ |θ̂T ((k−1)T )|) ·

Z t

(k−1)T
e−hi(t−τ)κi(x,u,τ)dτ (53)

then the proposed actuator fault detection scheme is robust to
input unmodeled dynamics and other modeling uncertainties and
avoids false alarm.

Proof: We will first consider the following integrals.

I1 = |
Z t

(k−1)T
e−hi(t−τ)θT ζi(x)µcξ̃dτ|

≤ µ
Z t

(k−1)T
e−hi(t−τ)|θT ||ζi(x)µcξ̃|dτ

≤ 2µ
Z t

(k−1)T
e−hi(t−τ)(|θ̂T ((k−1)T )|+

θ̃T
max((k−1)T ))ζi(x)|c|ξmaxdτ

= 2µ(|θ̂T ((k−1)T )|+ θ̃T
max((k−1)T )) ·

Z t

(k−1)T
e−hi(t−τ)κi(x,u,τ)dτ (54)

where |ξ(0)| ≤ ξ0 i.e., we assume that the initial estimation
error for unmodeled states has a known bound and ξmax =
6

max
[
ξ0,

|δξ|
νAξ

]
, κi(x,u, t) = ζi(x)|c|ξmax.

I2 = |
Z t

(k−1)T
e−hi(t−τ)Θ(x,u)θ̃Θdτ|

≤ θ̃Θ,max

Z t

(k−1)T
e−hi(t−τ)Θ(x,u)dτ (55)

I3 = |
Z t

(k−1)T
e−hi(t−τ)∆i(x,u,τ)dτ|

≤
Z t

(k−1)T
e−hi(t−τ)δidτ

=
δi

hi
[1− e−hi(t−(k−1)T )] (56)

I4 = |
k

∑
j=1

e( j−k)hiT
Z jT

( j−1)T
e−hi( jT−τ)β(x,u,τ)dτ|

≤
k

∑
j=1

e( j−k)hiT |
Z jT

( j−1)T
e−hi( jT−τ)β(x,u,τ)dτ| (57)

and

|
Z jT

( j−1)T
e−hi( jT−τ)β(x,u,τ)dτ| ≤ I1 + I2 + I3 (58)

when there are no faults and with the limits of the integrals being
( j−1)T to jT . Using equations (54-58), we obtain,

|x̃i(kT )| ≤ Γi(kT )

=
k

∑
j=1

e( j−k)hiT [
δi

hi
(1− e−hiT )

+θ̃Θ,max(( j−1)T )
Z jT

( j−1)T
e−hi( jT−τ)Θ(x,u)dτ

µ(|θ̂T (( j−1)T )|+ θ̃T
max(( j−1)T )) ·

Z jT

( j−1)T
e−hi( jT−τ)κi(x,u,τ)dτ] (59)

Now, from (51,52) and (54-58), we obtain the result of theorem 2
as given by equation (53). It follows immediately from the proof
that the proposed scheme avoids false alarms in absence of any
faults and is robust against modeling uncertainties.5

4.2 Sensitivity Analysis
A fault detection scheme whichdoes not take into account

the effect of unmodeled dynamics will be susceptible to false
alarms, as the deviations in actual and nominal control effort can
Copyright c© 2007 by ASME



cause significant state-estimation errors. In order to make it ro-
bust to unmodeled dynamics, we have to use a worst case sce-
nario bound for generating the threshold for residual evaluation.
Similarly, if parameter adaptation is not considered in designing
the detection scheme, we have to use the maximum value of pa-
rameter variation at residual evaluation stage to make it robust
against parametric uncertainties. We will first derive the thresh-
old which does not consider the unmodeled dynamics and then
extend it to include the scenario where parameter adaptation is
not considered either.

In absence of unmodeled dynamics, the nominal model of
the system is given by,

ẋi = θT Fxi(x)+φi(x,θ)u (60)

Based on the above equation, the state can be reconstructed as,

˙̂xi = −hi(x̂i− xi)+ θ̂T Fxi(x)+ θ̂T ζi(x)u (61)
⇒ ˙̂xi = −hi(x̂i− xi)+Θ(x,u)θ̂Θ− θ̂T ζi(x)µcη̂ (62)

The state estimation error dynamics ˙̃xi = ˙̂xi− ẋi in this is given
by,

˙̃xi = −hix̃i +Θ(x,u)θ̃Θ− (θ̂T ⊗ θ̂T
η)(ζi(x)µ⊗ (cτη)T )

+θT (µζi(x)cξ̃)−U(t−Ti) fai(x,u, t)−∆xi (63)

⇒ ˙̃xi = −hix̃i +Θ(x,u)θ̃Θ− θ̂T
ΞΞ+θT (µζi(x)cξ̃)

−U(t−Ti) fai(x,u, t)−∆xi (64)

Theorem 3: If the threshold x̃i
0(t) is chosen such that,

1. an adaptive robust observer η̂ is used for the unmodeled
state η and

2. the parameter adaptation rate α(kT ) is such that,

α(kT )≥ 2|δz|
|θmax−θmin|νA

Z kT

(k−1)T
|Ω(τ)|dτ (65)

then the actuator fault detection scheme is more sensitive to in-
cipient and small faults i.e., x̃i

0(t)≤ µ0
i (t).

Proof: Let us first consider the following integral,

I5 = |
Z t

(k−1)T
e−hi(t−τ)θ̂T

Ξ(τ)Ξdτ| ≤

|θ̂T
Ξ(k−1)T |

Z t

(k−1)T
e−hi(t−τ)Ξdτ (66)
7

In absence of any faults, the state estimation error can be
bounded as,

|x̃i(t)| ≤ e−hi(t−(k−1)T )|x̃i((k−1)T )|
+|
Z t

(k−1)T
e−hi(t−τ)β(x,u,τ)dτ|

+|
Z t

(k−1)T
e−hi(t−τ)θ̂T

Ξ(τ)Ξdτ| (67)

Hence, a threshold which is robust against unmodeled dynamics
must be such that,

|x̃i(t)| ≤ µ0
i = e−hi(t−(k−1)T )Γ′i((k−1)T )+

δi

hi
[1− e−hi(t−(k−1)T )]

+θ̃Θ,max((k−1)T )
Z t

(k−1)T
e−hi(t−τ)Θ(x,u)dτ

+|θ̂T
Ξ(k−1)T |

Z t

(k−1)T
e−hi(t−τ)Ξdτ

+µ(θ̃T
max((k−1)T )+ |θ̂T ((k−1)T )|) ·

Z t

(k−1)T
e−hi(t−τ)κi(x,u,τ)dτ (68)

where,

Γ′i(kT ) = Γi(kT )

+
k

∑
j=1

e( j−k)hiT |θ̂T
Ξ(( j−1)T )|

Z jT

( j−1)T
e−hi( jT−τ)Ξdτ

(69)

It is obvious from the derivations of x̃0
i and µ0

i that µ0
i ≥ x̃0

i .
Also, if parameter adaptation law is such that α(kT ) is cho-

sen according to equation (65), then using the result of theorem
1, we obtain,

|θmax−θmin| ≥ 2|δz|
α(kT )

Z kT

(k−1)T
|Ω(τ)|dτ

= θ̃max((k−1)T ) (70)

Hence, if parameter adaptation is not used, we will replace
θ̃(•,max)(kT ) by θ̃(•,max)(0) and θ̂(•) by θ(•,max), which further in-
creases the threshold value µ0

i . This completes the proof. 5
For details regarding sensitivity analysis in the presence of

parametric uncertainties only, and detailed proof of the second
part of the theorem, refer to [5] and [12].
Copyright c© 2007 by ASME



5 Conclusions
In this paper, we presented a fault detection scheme which

improves fault sensitivity without losing robustness against mod-
eling uncertainties. The underlying assumption which allows us
to meet the conflicting demands is that the uncertainties have
known structure.

As a first step towards designing a sensitive yet robust algo-
rithm, we use adaptive robust state reconstruction for reducing
the effect of various uncertainties in estimating the states. Next,
we use the structural information about the uncertainties to de-
sign adaptive robust observers for estimating unmodeled states
and adaptation laws to reduce the extent of parametric uncer-
tainties. These estimates are then incorporated in the design of a
threshold for residual evaluation. The performance results for the
proposed scheme are analytically proved and stated as theorems.

The main contributions of this work are:

1. Design of adaptive robust observers for estimating unmod-
eled states.

2. Design of a threshold for residual evaluation which reduces
uncertainties due to unmodeled dynamics and unknown pa-
rameters.

3. Design of a fault detection scheme for nonlinear systems,
which is sensitive to incipient and small faults but, robust to
modeling uncertainties.
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