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ABSTRACT 
In this paper, au indirect neural network adaptive robust 

control (INNARC) scheme is developed for the precision motion 
control of lineax motor drive systems. The proposed INNARC 
achieves not only good output tracking t)erformance but also 
excellent identifications of unknown nonlinear forces in system 
for secondaxy purposes such as prognostics and machine health 
monitoring. Such dual objectives are accomplished through the 
complete separation of unknown nonlinem'ity estimation via neu- 
ral networks and the design of baseline adaptive robust control 
(ARC) law for output; tracking perfi)rmance. Specifically, re- 
current neural network (NN) structnre with NN weights tuned 
on-line is employed to approximate various unknown nonlinem" 
forces of the system having unknown forms to adapt to vari- 
ous operating conditions. The design is actual system dynamics 
based, which makes the resulting on-line weight tuning law much 
more robust and accurate than those in the tracking error dy- 
ninnies b~ed  direct NNARC designs in implementation. With 
a controlled learning process achieved through projection type 
weights adaptation laws, certain robust control terms are con- 
structed to attenuate the effect of possibly large transient mod- 
elling error for a theoretically guaranteed robust output tracking 
performance in general. Experimental results m'e obtained to 
verify the effectiveness of the proposed INNARC strategy. For 
example, for a typical point-to-point movement, with a measure- 
ment resolution level of :t=lttrn , the output tracking error during 
the entire execution period is within 4-51tin and mainly stays 
within 4-2#m showing excellent output tracking performance. 
At the same time, the outputs of NNs approximate the unknown 
forces very well allowing the estimates to be used for secondary 
purposes such as prognostics. 

*THE WORK IS SUPPORTED IN PAIt~I' BY THE NATIONAL 
SCIENCE FOUNDATION UNDElt~ THE CAREE[/, GRANT CMS- 
9734345. 
INTRODUCTION 
By el iminat ing mechanical  t ransmissions and the asso-. 

elated t ransmission problems such as the  s t ructura l  flexibil- 
i ty and backlash [1; 2; 3], direct  drive linear motors  show 
great  promise for widespread use in high-accuracy position-. 
ing systems. However, this class of drive systems also lose 
the advantage  of using mechanical  tral lsmissions - gear re-- 
ductkm reduces the effect of model  uncertaint ies  such as 
pa ramete r  variat ions (e.g., uncer ta in  payloads) and exter- 
nal d is turbance  (e.g., cu t t ing  forces in machining).  Thus, to 
achieve the goal of having high precision movements~ var- 
ious uncerta in  nonlineari t ies  including fi'ictions, which are 
direct ly t r ansmi t t ed  to the load and have significant effect 
on motion,  need to be explici t ly considered in controller 
design. 

Al though many efforts have been trot into the resem'ch 
of model ing of fri(:tion [4; 5; 6], it  may not be easy to in- 
tegra te  them into the  controller  design, due to either the 
complexi ty of model  or the  inaccuracy of model. How to 
bypass this problem is one of main focuses of this paper.  
Due to their  universal  approx imat ion  capabil i ty  [7; 8; 9; 
10; 11], neural  network (NN) is employed in this paper  to 
approximate  all the unknown nonlineari t ies in system. In 
this way, the complex model  of fl 'iction does not appear  in 
controller  design so tha t  the process of controller design can 
be simplified. Since the character is t ics  of linear motors  may 
vary fl'om one i,o the  other., on-line es t imat ion of fl'iction is 
necessary, which requires the  on-line tuning of NN weights. 
There  are two main  issues to be considered for this purt)ose. 
First ly,  certain a lgor i thms have to be derived to tune the 
unknown NN weights. Secondly, since the modeling error 
could be larK(; dur ing the t ra ining period,  the issue of ro- 
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bustness to the approximation error needs to be taken into 
account. Although NN based control designs have been ex- 
tensively investigated ill [12; 13; 14; 15; 16], tile transient 
performance of the closed-loop system cannot be guaran- 
teed and the tracking error during the transient period may 
be large, which makes the design unattractive to industry. 
To avoid this shortcoming, tl,e direct nem'al network adap- 
tive robust control (DNNAYCC) has been recently proposed 
ill [17; 18; 19], which preserves advantages of both tim di- 
rect adaptive robust control (ARC) [20; 21; 22] an(l learning 
capability of NNs. 

Experiinei,tal results obtained in [18] has demonstrated 
the excellent output tracking performance of the proposed 
DNNARC. However, a closer examination of tile outputs of 
individual NNs reveals that tile outputs of NNs can only 
capture the features of nonlinear Forces reasonable well and 
the quality of tile approximations is quite sensitive to ne- 
glected factors such as noises. Such a practical limitation 
is inherited to the direct NN control designs, as the NN 
weight tuning laws and the underline ARC laws are syn- 
thesized joinLly through a Lyapunov function with tile sole 
goal of reduc, ing outtmt tracking errors. Such an apt)roach 
restricts the dloice of tile tuning laws of NN weights to 
gradient type with certain actual tracking errors as (h'iv- 
ing signals. As the actual tracking errors are rather small 
in implementation, they are prone to be corrupted by ne- 
glected factors such as ineasurement noises, which makes 
the accurate estimations of individual unknown nonlinear 
forces rather difficult. To avoid these shortcoming of direct 
NN designs and further exploit the good theoretical approx- 
imation potential of NNs, an indirect neural network adap- 
tive robust control (INNAI~C) is developed in this paper. 
Tim proposed approach totally separates the construction of 
suitable NNs for accurate unknown nonlinearity estimation 
fl'om the design of underline ARC law for a guaranteed ro- 
bust output tracking performance. As such, there is no more 
one-stone-two-birds problem, which makes the dual objec: 
lives of having both excellent output tracking per for iuance  
and good nonlinearity estimation a realist goal ill implemen- 
tation. Experimental results have been obtained verifying 
the effectiveness of the proposed INNAR,C approach. 

Tile rest of the paper is organized as follows: firstly, the 
model of linear motor drive systeln and control problem is 
presented; iL is followed by the approxinmtion l)roperty of 
neural network; then, based on the assumption that all the 
input-hidden weights are known, RNN identilier and IN- 
NARC are designed; subsequently, the case that  all of tile 
NN weights are unknown is discussed; after all of these the- 
oretical preparations, experiments are carried out, followed 
by some conclusions drawn at last. 
LINEAR MOTOR MODEL AND PROBLEM FORMULATION 
Tile umthenlatical mo(lel of a linear inotor drive system 

with negligible electrical dynamics Call thus be described by 
[I8] 

M i) = .,, - ~ :0  - F , n ( . v ,  :0) - F,.(:q, :0) + r~z (1) 

where y tel)resents the l)osition of the inertia load, M is tim 
normalized* ulass of the inertia load plus the coil assembly, 
'a is the intmt voltage to the motor, B is the equivalent vis- 
cous friction coefficient of the system, Fj+z is the normalized 
nonlinear Coloumb fl'iction term, F,. represents the normal- 
ized electro=magnetic force ripple, and Fd represents the 
normalized external disturbance force (e.g. cutting force 
ill nlachining). Eq. (1) can be writtev into the following 
state-space form 

B 1 1 1 
: ~  = - ~ : ~ . ,  - ..V2t~gx:L'x2)+ ~ 'u-~:F, dxl,~.2) 

f'~(xl,x=) b2(z~ ,*2) A2 
(2) 

where x~ := !1 and x2 = :0, and Fa ~ Fin(x, ~')-+-tg(x,:~). Ill 
(2), for generality, all state-dependent unkwnon nonlinear.- 
ities are lumped together as a general unknown nonlinear 
function f2(xl, x2) and b is assmned to depend on states a,~ 
well. 

Although many models have been proposed for the non.- 
linear friction, it is still ill general difficult to know the exact 
form of the 6'iction. As such, in this paper, a three-layer 
feedforward neural network is constructed to approximate 
the nonlinearity f2, which is detailed in the following as- 
sumption 

Assumption 1. The NN approximation error associated with 
the nonlinear function f2 is assumed to be bounded by [8], 

I f . , (~u)  - w~'~.qf~(Uf.=,~==)l < a f t ( m 2 ) ,  V~2 ~ n 2 (a)  

where 22 = [x l ,x2 ]  T is the state vector, x~,2 = 
[ - 2 , - 1 ]  :t' is the a,a.qmentcd input vector to the neu- 
ral network (-1 term denotes the input bias), wi. 2 = 
[Wf2 ,1  , ' ' ' ,  'llJf2,,,f2]T is the optimal hidden-output wei.qht 
vector, V]2 = [vf2,1, . . . ,  v]=,~,2 ]7' E 7~ ~I2 ×a is the optimal 
input-hidden wei.qht matrix with vf2,j E 7~ a×l, ri= is the 
number of neu,v'ns in the hidden layer, and g f2 (V  f2'2a.2) = 

[M2,1(v~'=,IX~2), ' " ,  .qf.a,~,s2(vi2,r, 2~2) is the activation 
function vector, and 5f2(22 ) is a non-negative known shape 
function. 

tNormalized with respect to the unit input voltage. 
Copyright @ 2002 by ASME 



Assumption 2. Similarly, it is also assumed b2 can be ap- 
proximated by the output of a three-layer feedforward NN 
as follows 

where Wb~, 9b~, Vb~, and 5b. arc defined in similar ways us 
w]~, 9I~, V]~, and 51. 2 in A s s u m p t i o n  1, respectively. It 
is assumed that the 'number of neu,lvns in the hidden-layer 
is 'rb~. The dimensions Of Wb~, Yb,~, and Vt,~ can be decided 
accordingly. 

Furthermore, without loss of generality, the following as- 
sumt)tion is made 

Assumption 3. The input gain b2 is nonzero with known 
sign, and b 2 > bl,2 > 0, V~2 E T(',  where bt,2 is a known 
positive constant representing the lower bound of b2. 

While it is usually ditficult to t)redk:t the type of distur- 
bances that  the system is going to encoul~ter, it is reason- 
able to assume that  the disturbance is bounded in certain 
way. Hence, the following practical assumption is made 

A s s u m p t i o n  4. The time-varying nonlinearity A2 is bounded 
by IA2[ <_ 5~x:(22,t), where 5A~(:c2,t) is a 'rton-negative 
known function of'22 and time t. 

The control objective is to drive the system output  y = xl ~o 
follow a smooth desired trajectory Yd as quickly and closely 
as possible in spite of unknown nonlinearities in system. At 
the same time, since f2 and b2 are m~known, certain mech- 
anism is needed to approximate the dynamics described in 
tim second equation of (2). In the tbllowing discussion, some 
shorthands of ltotations will be used: gfe = 91,2 (Vf2:Ca2), 

gb~ = gb.~ ( V  b~Y;a~), by= = .q f2 (l~'rf2'~a2 ), Ob.2 ~- .~]b2 (Y~b2"~a2) ,  
* }~ , * = w T Without  introducing aln- f2 = w 91~ and b~ ' ~;~9t,~. 

~b:l '  ^ biguity, ]2 fugf~, when l~f= is used; or f~, ^ T e = := 'Wf2,]f~ : 
when Vf~ i~ known..02 is defined in the same way. 

APPROXIMATION PROPERTY O F  NEURAL NETWORKS 
Lemma 1. For a neuTul network with x{m} E T¢ p+I being 

its input vector, V = [v, ,  . . . ,  'v~ ]'v E 7~ ~''' ×(p+a) bein.q its 
input-hiddea weight matrix, 9 being the activation function 
vector, w ~ 7U '~x'''' beinq its hidden-o'atput weight matrix, 
The output of neural network w T g ( V x { i %  ) can be approx- 

imated by its estimate @7'g(17x{~}) by the following form 

W T ^  ,~i)T, ^ ^ r e ,  , {])T ^ r e .  "w~.q = 9 -  (.q-.q vx { .~ } ) - "  9 v x { ~ I + d x N  (5) 
3 
where 0 = .q(Vx(i,~}), {1' = dia.qlO~, . . . ,  .0~.} with 

= .~h(vi x(,~}) = d~ ~:=v, x(,,,) . . . , r , , ,  
~ T ^ l . .  and residual term dNN = -- 9 VX(m} + wO(lYx{m}) 

with CO(Vw{in}) bein 9 the sum of the higher order terms. 
Ttw residual term dNN can be bounded by a linear-in- 
parameter function as IlduNII2 < ¢ V Y  123], whe,'e ¢~ 
is an unknown vector constituting of positive elements, 
and the known function vector Y is defined as Y = 

[1, II*(.~tll~, l lell,,. l lx(.~}ll~, l IYl lFI l~(, .~l l2]  T ,~,ith 11.112 
being tit(; 2-norm of a v e c t o r . ,  and II • IIF denoting the 
F,'ol, e'nius norm of a m a t r i x . ,  which is defined as II • II~ = 
Trace {.T®}. 0 

By applying the above lemma to continuous noldinear flmc- 
tions f2 and b2, we have 

• ~ ~' ^'r ^, l)f@a2 +df2 ,N~6)  .f2 = . f2-  @}~ ( 0 f ~ - ^ '  " - g J'2 V f2t(:a2 )-- "w f2t] f2 

. , ~ ,  ^ - @ T ^ ,  ,~, :i?a~+db2NN(7) 
T y  7' [d~ ,uul  <_ Os~ I~, Idb~,uNI < ~b~Yb~ (s) 

where all the notations are dellned in the same way as in 
the above lemma. 

INNARC DESIGN WITH KNOWN INPUT-HIDDEN LAYER 
WEIGHTS 

In this section, based on the assmnl)tion that  all the 
input-hidden weights in both neural networks are known, 
R N N  will be used ill the construction of the identifier, and 
then INNARC will be develot)ed accordingly. 

Design and Stability Analysis of RNN Identifier 
Since the first dynamic equation in (2) is exactly known, 

only the second equation needs to be approximated. BasEd 
on its smmture ,  the following I{NN identifier is proposed 

:~'2 = -a2e2 + f~ + b2u + 'a.l~,~,2 (9) 

where :ca is the estimate of z2, a2 = u2,1 + a2,2 with both 
a2,1 and a2,2 t)eing positive constants, e2 = :~2 - x2 is the 
identification error, and 'alden,2 is a smooth function of e2 
sat.isfying the following condition [19] 

e2'ltiden,2 _~. 0 
F (10) 
Copyright @ 2002 by ASME 



with 

ee2 =: 1 + [(llm, S=l[~ -IiPw=ll'.)l  2 
~wff2 ]~22 Q2,1 

+ I + I(llpwb=l[2 -I[~,,~=11=)1 (11) 

Pw/2 and Pwb2 are bounds of w h and Wb2 respectivley, and 
Pw/2 and/~wb2 arm fct i t ious  ones [19]. 'aide,~,2 can lie chosen 
in the same way as in [19]. 

Remark 1. Based on the fact that 'a,>.,~,.2 is a smooth fane- 
tion of e 2 and e2Uiden2 < O, it can be proven that 
lilne2~O 'aiden, 2 = O. 

P r o o f .  Since it is a smooth f'urtetio'n of c2, 'ttiden,2 
is a continuous function of ('.2, and liIne2--~O'aiden,2(e2) = 
'aiden,2(O). It only needs to prove that Uid~,~,'2(O) = O. 

Suppose that 'aiden,2(O ) > O, t/ben there is a neighbor 
hood [--nl,'/tr] o f  0 with '[t I > O, and nv > O, such that 
'ttiden,2 ( I tm)  > O, V n  m E [--ltl, 'rt.r] due to the smoothness of 

which is ¢lreater than O, Then 'alden,2. ~ h o o s e  n m = '2 ~ 
we have nmuiaen,u(nm) > O, 'which contradicts the condi- 
tion e2niden,2 < O, Ve2. Similarly, 'it can also be shown that 
'aiden,2(O) < 0 does not /told. Itence, 'aid~,~,'e(O) = 0. ['n 
conclusion, l'irn~_~OU~de,~,.2 ( e2 ) = alden,2 (0)  = 0. [] 

Subtracting the second equation (2) fi'om (9) results in the 
following identification error dynamic 

+ [ <  - < 1 -  + - t4] + - (12) 

The  above identification error dynamic equation can also 
be written in the following form 

(~2 : :  - -a2(32 q- [f2* --  .f2] + ~};gf2 
+ [b.~ - < 1  ,,, + ~ L , a ~ ' , ,  + ',~,,e,,,~ - A . ,  (13) 

Based on identification error equatioi,(13), the following 
gradient type of tinting laws are proposed along with pro- 
jection mapt)ing [19] 

wf~ = Pro . lws  ~ 

Wb2 = P r o j , o ~  

Fw'/=rI'@:° ' Tl"gOl2 =--e'egI'~ (14) 

Fw,burl,@b,2J , Tl,'l~b2 = --e2'agb~ " 

where F's are diagonal positive definite matrices, and r ' s  
are tinting fimctions. 
4

Remark 2. It should be noted that other types of tuning laws 
cart also be used to tune N N  weights. In this paper, for the 
pu71)ose of illustTntion, only gTndient type of tuning laws are 
considered. 0 

Theorem 1. Using the identifier (9) along with tuning laws 
given in (14), the following results hold 

A. ln general, estimates of N N  weights are bounded, and 
the square, of identification error e.2 e:q~onentially con- 
vewes to a region bounded in the following manner  

1 
l i ' . t t _+~e~( t )  < - - .  (16) 

__ a 2  ( . e , 2  

B. I f  there is no time-varying nonlinearity and the optimal 
NNs  can match all the nonlinearities exactly, i.e., A.2 = 
5f: = 5~ = O, and all the states x i ' s  and input u are 
bounded, then all identification error c2 goes to zero 
asymptotically provided that true values of N N  weights 
are within fictitious bounds. 

C. I f  all the condition in Result  B holds and the foUowing 
PE condition 

37,:/o,  s.t., at ['a.qb=gf2 ugb=Yg2 u -- 

Vt > To, (16) 

is also satisfied, all the estimates of hidden-output 
weights will also converge to the corresponding optimal 
'values. <) 

P r o o f .  A.  By the proper ty  of t)rojection mapt)ing, the 
boundednesses of all the es t imates  of NN weights are guar- 
anteed [19]. 

Consider Lyapunov fimction Ve = 1 ~'2 . ~c 2. Using the sec- 
ond condition in (10), it is known that  

17e = e'j>2 < -2a'2Ve + ee,u (17) 

By comparison lmnma, it can be shown that  

O•[i 
t 

V(~(t) <_ Ve(O)exp(-2a2t)  + ee,2 exp( -2a2( t  - r ) )dr  

1 
< We (O)exp(-2a2t)  + 2a--~zee,2, (18) 

which indicates that  V¢(t) exponentially decays to a region, 
I e and limt-~ooVe(t) <_ ~ e.,~. Hence, inequality (15) holds. 
 Copyright  @ 2002 by ASME 



B. Consider the following Lyapunov function 

V ~ . : : E ; + [ w S ~  ~,f~Ws~ + " T - ~  - (19) 

Following the assmnptions 5f~ = 5~ = 0, fu = .f~ and 
be = b~ hold. thn'thermore, since A2 = 0, the identification 
error dynamic equation (13) is simplitied into 

~ 7' ~ T I ( 2 0 )  ~2 :=: - - 32e2  + qAl f2g f2 + ~Ub~gb2't + 'aide~,2 

Differentiating (19) results ill 

-- -- e2"Wb2 Tl,@bz 'a + Uiden,2e 2 } 

f - T p - ~  " - T  
+ 'OJb~ + 1qlOf~ w, f~Of2 rw~b2@Ob~ } 

<- (21) 

where the proper ty  of l)rojection mapping  is used [19]. It  is 
then clear tha t  Vea is a positive semi-definite fimetion. By 
Barba la t ' s  lemma, it is obtained tha t  li'mt_,e:,. = O. 

C. lh'om tile result in A, all tile est;imates are always 
bounded. Fm'thernlore, fi'om equation (20), it is also found 
tha t  ;~'s are bounded. 

Differentiating both  sides of (20) results ill 

z T  ., =T 
g2 . . . .  32~)2 + lO f~g f2 + "(O~20 f~ + 10b,~gb2'a 

' " ' O e 2  
(22) 

From (22), it is clear tha t  L;2 is bounded, ttence, e2 is a 
uniform continuous function of |time. It  is also true that  
.['o ~° i~2dt = e 2 ( ~ )  - e.)(0) = -e2(0)  since Result B shows 
tha t  e2(oc) = 0. Then .f~o i~2dt is bounded. By Barbala t ' s  
lemma, limt~c~(~2 = 0 can be obtained. 

l~'om equation (20), it is kiiown that  l i 'mt_~o~v~gf  2 + 

~o~'2ffb2'a = O. It follows tha t  

, ~ .  , 
liIll  ( ' W I 2 ~ f  2 + wT2,b2'a) 2 = 0  

t --~¢x) 

t --+(x~ [ .qb2 'tt J W b ~  

¢=~ litrl [ '~}; -T [~f2] "Wb2 ] Mpe = 0 
t - ->oo  [ l o b ,  2 

= 0  

(23) 

Since it has already been obtained tha t  lilnt4oo e.2 = 0, 
we have l i m t ~  wi~ = 0 and limt-~oo '~b2 =: 0 from equa- 
tions given ill (14). 
5 
Froili (23), for any [inite t ime interwd T, it is obtained 
tha t  

r [ ] t--~ oo ,11, 
(24) 

Utilizing mean value theorent and noting the fact hat . 
limt-~c~ zbi~ := 0 and limt-~c~ "Wb2 = 0, equation (24) iil- 
duces tha t  

f '+: '  = 0 lim [@};(t) @7' (t)] M,,e(e)  [@~=(t)] 
t ~ o o  j t 

.t+T 
lira [~J}'.(t) ~ T [~y~( t ) ]  = 0(25) 

t--~oo d t 

From condition (16), we arrive at 

[W:I '  Z~:I' '/M f2 f2 b,2] M m d ~  . >a t  > 0 ,  
J t "~b2 -- ~ ~l)b2 J 

(26) 
Vt > To. From equation (25) and inequality (26), it is ob- 

2 

rained tha t  l i m t ~  ] ~ h ~  = 0, which is equivalent to 
L Wb2 J 

lilnt_~oo w/2 := 0, and limt-~oo Wb2 = 0. In conclusion, all 
the est imates of hidden-output  weights converge to their 
optimal  values asymptotically.  [] 

Remark 3. A of Theorem 1 shows that the error between of 
the R N N  identifier and the true system can be made as small 
as possible. B of Theorem 1 shows that the identification er- 
~vr cart possibly conveule to zeTv. Hence, f i r m  the viewpoint 
of i'lwut-state relationship, R N N  identifier (9) can be looked 
on as a 9ood 'model of the true plant. 

Remark 4. By fast feedback, A of Theorem 1 shows that 
identification errors ei 's are always under the control of de- 
si.q'aer even when NNs  do not match the unknown nonlinear- 
ities. With the help of tuning laws, B shows the possibility 
of asymptotic identification. Furtherwtore, if PE condition 
is satisfied, i,t addition to Results A and B, estimates of 
N N  weights conver.qe to their optimal value asymptotically, 
which fulfills the learning capability of NNs. Unlike what 
have been done in [2.4; 25; 26], such an app'~vaeh doe,~ not 
pose any restriction on the estimates of N N  weights. (> 

I N N A R C  Design 
Throughout  the process of controller design, f.~ and b2 

are approximated  by the outputs  of the corresponding neu- 
ral networks and the tuning laws for NN weights are given 
in (14). 
Copyright (~) 2002 by ASME 



Considering the error indices z~ = a:, -- a:~d and z.~ = 
~?~ + k~,szi with kl,, being a positive constant,  the objective 
of controller design is to make both z~ and z.e as small as 
possible. Based on tile basic idea of ARC [21], the following 
controller law is proposed 

1 [  ] 
< 

~ 2 ) s l  
Z2 @ U82 

bl,2 
(2r) 

where u(~ is the model compensat ion part ,  and 'a~2 is an 
extra  robust term satisfying following conditions 

Z2 {Res2 + b2'as2} < e.z,2 (28) 
z2uo.~ 5 0 (29) 

w h e r e  

Res2 = [A - L / +  lb.2 - b2]ua + A.e (30) 

and ez,2 is a positive constant.  

T h e o r e m  2. With the use of idcntificr (9), controller (27), 
and tuning laws (14), the following system pc'~formancc ca'it 
be achieved 

A. In gene'lul, all the signals in closed system arc bounded. 
The bound of tracking cr, vr  and estimation erTvr can 
be indicated by the following inequality 

Vze(t) < Vze(O)exp( -Kt )  + 
1 - e z p ( - f ( t )  

K 
~.~ ( 3 1 )  

== 1 ' w/re,,, v~ ~ (4 + ~ + z.~), 
K = 2mirt {32, kl,, ,  k'),,l }, and eze = ee,2 + ez,2. 

B. I f  there is no disturbance, the optirnal NNs can match 
all the nonlinearities c'ractly, i.e., A.~ = ~22 = abe = 0, 
ideal values of all the hidden-output weights are within 
fictitious bounds, arm PE  condition (15) is satisfied, 
then both identification crrvr and tTucking er~vr con- 
veTyc to zero asymptotically. (} 

P r o o f .  A.  Considering tile identification error in (12) and 
the t ime derivative of ~ 2 ,  17z~ is given as follows 

<_ - . . 2 4  + ~o,2 - k ~ , , z ;  - ~,  ~, 4 + <,.2 

_< - K l 4 e  + e~ ,  (32) 
6 
B. Result B in Theorem 1 indicates that  liInt--+ee e2 =: 0, 
which means that  identification errors converge to zero 
asymptotically. Furthermore,  since P E  condition is satis- 
fied, all the estiinates of weights converge to their ideal val-. 
ues asymptotically,  l i m t ~ o  Res  3 = 0 can be obtained fl'om 
equation (30) by keeping i l l  mind tha t  A.~ = ~A = 6~ = 0. 
Consequently, inequality (32) changes to V~ <_ - K V z e  
when t ~ oo. tlence, lixnt-~oo We -- 0, which means that  
e2, z, and z2 converge to zero asymptotically.  [] 

Remark 5. While A of Theorem 2 shows that all signals in 
closed-loop system are under control and both identification 
error and tracking error cart exponentially decay to certain 
small region, B indicates the possible asymptotic conver- 
gcnccs of both tracking error and identification error, which 
achieves the ideal peTforrnance that NNs are used for. It is 
noted t/tat [12; 13; lit; 15] cannot achieve such a per fo f  
'Hta'ftce, 

INNARC DIESIGN WITH UNKNOWN INPUT-HIDDEN 
WEIGHTS 

In this section, (,he assumt)tion tha t  input-hidden 
weights m'e known is relaxed, and a more general case will 
be considered. 

Design and Stability Analysis of RNN Identifier 
Same as before, tim following RNN identifier is pro- 

posed 

~'2 = --.2e,,  + ]~ + b2u 
__ ^ T y  ^T . 

[¢tZe S, + ~ b ,  Vb~l'ul] sqn(e2)4-u,d~,~,~ (33) 

Subtract ing the second equation in (2) from (33) results in 
the following identiticafion error equation 

: : - o , , ,  + I f ; -  :,I + [ z , -  + I , : - < . . +  -- <] .. 

/3 f:, Y f ,  ^ T y ~ _ ^7' + 0b= b,,lul] sg'n(c2) + 'alden,2 A2 (34) 

By applying equations (6) and (7), tile above identification 
error dynamics can also be writ ten in tt~e following form 

~;',2 = -a2e~ + [f~ -- f2] + [b,; - b~] u 

+ ['~,};(o:. , : .  v : . : ~ o . ) +  W : e , : . V : . : ~ .  - . 

~ T ~ ^/ ^ - ~07' ^/ C. db2,NN ] + [wG(3b ~ - gb~V~:c~)  + ~gbeV~,~Xa~ -- 'a 

_ ^ ' r y  ^T I'al] s qn(e2) A2 (35) J3f2 f2 + fili2Yb2 + u u ,  e,~,2 - 
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Based on identification error equation (35), the fbllowing 
gradient type of tuning laws are proposed along with In'o - 
jection mapping [19] 

- ° 
wf~ = Pro.lw/~ 

Vf~ " " ,, = Pro.1 V :  ~ 

¢1/~ = Pro j f¢  
r~ f  2 

Wb~ = P r o j w ~  
1 

V~,~ = P r o J v ~  ~ 
L 

f l~ = Proj?~ 
r~b2 

- ^ 7 '  ^ t  T 

(36) 

Theorem 3. Using the identifier (33) alon:] with twaing laws 
in (36), the .following results hold 

A. In general, estimates of N N  wei.qhts are bounded, and 
the square of identi.ficatiou errors e2 exponentially con- 
ve~yes to a re:lion bounded in the following fashion 

1 
lira e'.22(t) < --e~.,.~ (37) 

t--~oo 32  

B. I f  theTv is no disturbance and the optimal NNs can 
match all the nonlinearities exactly, i.e., ~'2 = ~/~ = 
5b2 = O, and all the states :ci and input u are bounded, 
then all identification erwrs  9o to zeTv asymptotically 
pwvided that true values of N N  weights are with, in fic- 
titious bounds. 

C. I f  the discontinuous terms sg'u(,) dwp f w m  identifier 
(33), the basic performance stated in A is still valid. 0 

P r o o f .  A.  It call be proven ill the same way as that  ill 
Theorem 1. 

B.  Consider tile following Lyapunov function 

1 [ ~ T  , - 1  ,~ - T p - 1  ~ 
Vea = Ve + "~ "tof2I w , f 2 w f 2  +'lOb. 2 w,b,e'Wb,2 

_ ,  - : , ,  
+3h'ace {IV/2 Fv,): VI2 } + ~I¥ace 

Following tile assumptions ~/~ = ~b~ = 0, f2 = f~ and 
b~ = b~ hold. Furthermore, considering A.2 -: 0, fi'om equa- 
tion (35), 1)~ satisties 1)~, _< -a':?'2. By Barbalat 's  lemma, 
it is known that  l imt~ e2 -- 0. 

C. It can be proven by the same way as that  ill the 
proof of A. El 
7 
Remark 6. Due to the same reason stated in Remark 3, R N N  
identifier (33) appTvximates input-output relationship of the 
true plant very well. (~ 

INNARC Design 
Theorem 4. With th, e 'use o.f identifier (33), controller (27), 
and twuing law (36), the following system performance can 
be achieved 

A. In general, all the signals in closed system arc bounded. 
The bound of tracking error and estimation error can 
be indicated by the following inequality 

Vze(t) < Vzc(O)exp( -Kt ) - t -  
1 - exp( - -Kt )  

K eze (39) 

P r o o f .  A .  "File result can be worked out by tile sitnilar 
manner as that  ill part  A of the proof of Theorem 2. E] 

EXPERIMENTAL STUDIES 
To investigate how well the proposed INNARC solves 

the control problem ill reality, the proposed INNARC is ap- 
plied to the control of linear motor  drive system by neglect- 
ing its fast electrical dynainics (bandwidth above 1000Hz). 

To simplify the implementation, it is chosen that 
'alden,2 = --kide.n,2e 2 with kiden,2 being a positive ( : O l l S t a l l t .  

Ill order to experinmntally investigate the approximation 
capability of I~NN, unlike those done ill [18; 19], the NN 
used to estimate f2 does not assume any special struc- 
ture. A common three-layer feedforwm'd NN with hyper- 
bolic tangent flmction as activation function, tive hidden 
neurons and one bias neuron is used to estimate f2. It 
means that  ,[~ == ~ 5  w$2,ita'uh('bf2,i'xa2) + 'Wbias. Sub- i = l  

k 
sequently, tuning laws for NN weights are given as w/:,,i = 

'Of2,i : Proj i~i2, i  ,i ~ 'tt)bia8 ----- 

P,roj3f~ [73,2sg'u(e2)Y/2], where the fact that  b2 is a con- 

stant is used to simplify the NN for estimating b2. 

Parameters 
Tile experiinents are conducted oll an epoxy core lin- 

ear motor. The detailed experimental setup is given ill [18]. 
The nonfinal normalized values of M and B are M = 0.027 
and B = 0.273, respectively. Ill experiments, constant feed- 
back gains are used to simplify the control law for real--tinm 

k2,~2 iml~leinentation. Specifically, kl,s = 400, us2 -- ~1.2 z~, 
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and k2,sl + ~:2,s2 = 10. a2 = 2000 is used in RNN identi- 
tier. Tile paraineters used for tuning laws are smmnarize(l 
in Table 1. Within the given bounds, the initial values of all 
NN weight estimates are simply set to be zero except that 
'&b2 = 20 to avoid singularity. 

Table 1. Parameters for Weight Estimates 

estimates @f2 ,i ~)]'~ ,i ~)biaa ~Ob2 ~ f 2  

lower bolmds -3 -3000 -3 10 0 

upper bounds 3 3000 3 50 1 

adaptation rates 40 1000 106 50 1 -~ 

Experimental Results 
In experiments, tim desired trajectory is a smooth 

l)oint-to-point back-and-forth trajectory, which is described 
ill Fig. 1. It can be seen that tim maximal displacement 
of the desired trajectory is 0.1 m and tile maximal speed is 
0.02 'm/s. For easy comparisou, desired trajectory is chosen 
to be the same as that in [18]. 

In Fig. 2, it can be seen that the tracking error is within 
:t:5#m and mainly stays within :k2pm, which is ilk the same 
level as the measurement resolution level, i.e., :kl#m. As 
a matter of fact, the maximal magnitude of tracking error 
achieved by INNAItC is 4.8#m, which is smaller than tile 
maximal magnitude of tracking error, 5.5#m achieved by 
DNNAR,C in [1.8]. Tile identification error e2 is shown in 
Fig. 3, where the "actual" velocity is obtained by pass- 
ing the backward differentiation of position signal Lln'ougtK 
a low-pass filter with transfer function T~V6'l°° Since the 
resolution of position signal is :klpm and sampling time in- 
terval is 4 x 10 -4 see, the resolution of its ditferentiation is 

±i#m =: ±0.0025m/s. It is found that the error in Fig. 4 x l 0  - 4  sec 
3 is within the "resolution" level. 

To further investigate tile performance of neural uet- 
work estimating nonlinearity Fn = Mr2, the "true" value 
of E,z needs to be found. Froin equation (2), it is found 
that F,~ = u - M'~ by assuining that distm'bance Fd = 0. 
FT~ can be calculated if M and ."~ is available. The nominal 
value M =: 0.027 is known, and acceleration :'~ is apt)roxi- 
Knated by passing the backwm'd dilferentiation of tile posi- 
tion signal through a filter 100~ Then the "true" value s+ÀO0 ' 

of Iionlinearity Fn is obtained and is slKowIl ilk Fig. 4. The 

NN approxiination of Fn is calculated by /~n = 5i,,, and is 

shown in Fig. 5. It can be seen that the estimate of/~',~ can 
8 
follow its "true" values very well except that it is a little 
bit noisy. It has been shown in [18] that NN approximation 
in DNNAR,C can only capture the features of the nonlin- 
ear force, it cmmot approximate it very well. In this sense, 
NN approximation result ill INNARC is better than that in 
DNNARC. It should also be noted that desired trajectories 
to be tracked in both cases are the same. 

For completeness, the control inpuL is shown ilk Fi n. 6. 
Compared with the inagnitude of nonlinear h)rce shown in 
Fig. 4, it is found that, approximately half of the control ef- 
fort is used to counteract the nonlinear force. It also means 
that, tim control objective is achieved by intelligently using 
model information rather than by purely strong feedback as 
in robust control. 

CONCLUSION 
In this paper, an indirect neural network adaptive ro- 

bust control (INNAR,C) scheme has been developed for tile 
precision motion control of linear motor drive systems to 
achieve the dual objectives of having not only excellent out- 
put tracking performance but also mood nonlinear forces es- 
tinlation for secondary purposes such as prognostics and 
machine health monitoring. Departing from the usual di- 
rect NN control designs, tile proposed INNARC completely 
separates the ullkllOWll nonlinearity estimation froiu the de- 
sign of underline adaptive robust COKltro1 law. By doing so, 
various practical limitations associated with tile NN lem'n- 
ing in direct designs are overcome as there is no more one- 
stone-two-birds problein. Specifically, the estimation via 
NNs in tile proposed INNARC is actual system dynamics 
based with certain actual measured states as driving sig- 
nals, as opt)osed to tile tracking error dynamics based esti- 
mation process of tim direct designs that is more prone to be 
corrupted by measureinent noises due to the use of rather 
smaller magnitude of tracking errors as driving signals. Fur- 
thermore, various practical Inodification such as tile explicit 
monitoring of persistent excitation conditions can be used to 
enhance the quality of tile estimates. Theoretically, tile pro- 
posed INNARC achieves a guaranteed robust perforlnance 
for both the NN identifier and the closed-loop system; in 
general, when all the NN weights, including input-hidden 
layer weights and hidden-output layer weights, are tuned 
on-line, even in the presence of disturl)ances, both the pre- 
diction errors of the identifier and the output tracking errors 
of the overall systein are shown to exponentially converge 
to small regions that call be tuned by designers. Further- 
more, in the ideal case that unknown nonlinearities are in 
the approxiination ranges of tile corresponding neural net- 
works and the input-hidden layer weights are known, the 
identification error asymptotically converges to zero in the 
absence of disturbances. Experimental results have been ob- 
tained to verify the effectiveness of tim proposed INNARC 
in achieving excellent output tracking performance as well 
as goo(t estiInations of unknown nonlinear forces for other 
Copyright (~) 2002 by ASME 



secondary purposes. 
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Figure 1. Position and velocity of the desired trajectory 
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Figure 4 "True" value of normalized nonlinear force F,~ 
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Figure 5. Estimated value of normalized nonlinear force Fn 

i ime (s~) v 

Figure 6. Control input 
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