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ABSTRACT

In this paper, an indirect neural network adaptive robust
control (INNARC) scheme is developed for the precision motion
control of lincar motor drive systems. The proposed INNARC
achieves not only good output tracking performance but also
excellent identifications of unknown nonlincar forces in system
for secondary purposes such as prognostics and machine health
monitoring. Such dual objectives are accomplished through the
complete separation of unknown nonlinearity estimation via neu-
ral networks and the design of baseline adaptive robust control
(ARC) law for output tracking performance. Specifically, re-
current neural network (NN) structure with NN weights tuned
on-line is employed to approximate various unknown nonlincar
forces of the system having unknown forms to adapt to vari-
ous operating conditions. The design is actual system dynamics
based, which makes the resulting on-line weight tuning law much
more robust and accurate than those in the tracking crror dy-
namics based direct NNARC designs in implementation. With
a controlled learning process achieved through projection type
weights adaptation laws, certain robust control terms are con-
structed to attenuate the effect of possibly large transient mod-
elling error for a theoretically guaranteed robust output tracking
performance in general. Experimental results are obtained to
verify the effectiveness of the proposed INNARC strategy. For
example, for a typical point-to-point movement, with a measure-
ment resolution level of £1pum, the output tracking ervor during
the entire execution period is within £5um and mainly stays
within £+2um showing cxcellent output tracking performance.
At the same time, the outputs of NNs approximate the unknown
forces very well allowing the estimates to be used for secondary
purposes such as prognostics.

*THE WORK IS SUPPORTED IN PART BY THE NATIONAL
SCIENCE FOUNDATION UNDER THIS CAREER GRAN'T" CMS-
9734345.

Bin Yao
School of Mechanical Engineering
Purdue University, West Lafayette, IN 47907
Email: byao@ecn.purdue.edu

INTRODUCTION

By eliminating mechanical transmissions and the asso-
ciated transmission problems such as the structural flexibil-
ity and backlash [1; 2; 3], direct drive linear motors show
great promise for widespread use in high-accuracy position-
ing systems. However, this class of drive systems also lose
the advantage of using mechanical transmissions — gear re-
duction reduces the effect of model uncertainties such as
parameter variations (e.g., uncertain payloads) and exter-
nal disturbance (e.g., cutting forces in machining). Thus, to
achieve the goal of having high precision movements, var-
ious uncertain nonlinearities including frictions, which are
directly transmitted to the load and have significaut effect
on motion, need to be cxplicitly considered in countroller
design.

Although many efforts have been put into the research
of modeling of friction [4; 5; 6], it may not be easy to in-
tegrate them into the controller design, due to either the
complexity of model or the inaccuracy of model. How to
bypass this problem is one of main focuses of this paper.
Due to their universal approximation capability [7; 8; 9;
10; 11], neural network (NN) is employed in this paper to
approximate all the unknown nounlinearities in system. In
this way, the complex model of friction does not appear in
controller design so that the process of controller design can
be simplified. Since the characteristics of linear motors may
vary from one to the other, on-line estimation of friction is
necessary, which requires the on-line tuning of NN weights.
There are two main issues to be considered for this purpose.
Firstly, certain algorithins have to be derived to tune the
unknown NN weights. Secondly, since the modeling error
could be large during the training period, the issue of ro-
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bustness to the approximation error needs to be taken into
account. Although NN based control desigus have been ex-
tensively investigated in [12; 13; 14; 15; 16], the transient
performance of the closed-loop system cannot be guaran-
teed and the tracking error during the transient period may
be large, which makes the design unattractive to industry.
To avoid this shortcoming, the direct neural network adap-
tive robust control (DNNARC) has been recently proposed
in [17; 18; 19}, which preserves advantages of both the di-
rect adaptive robust control (ARC) [20; 21; 22] and learning
capability of NNs,

Experimental results obtained in [18] has demonstrated
the excellent output tracking performance of the proposed
DNNARC. However, a closer examination of the outputs of
individual NNs reveals that the outputs of NNs can only
capture the features of nonlinear forces reasonable well and
the quality of the approximations is quite sensitive to ne-
glected factors such as noises. Such a practical limitation
is inherited to the direct NN control designs, as the NN
weight tuning laws and the underline ARC laws arc syn-
thesized jointly through a Lyapunov function with the sole
goal of reducing output tracking errors. Such an approach
restricts the choice of the tuning laws of NN weights to
gradient type with certain actual tracking errors as driv-
ing signals. As the actual tracking errors are rather small
in implementation, they are prone to be corrupted by ne-
glected factors such as measurement noises, which makes
the accurate estimations of individual unknown nonlinear
forces rather difficult. To avoid these shortcoming of direct
NN designs and further exploit the good theorcetical approx-
imation potential of NNs, an indirect neural network adap-
tive robust control (INNARC) is developed in this paper.
The proposed approach totally separates the construction of
suitable NNs for accurate unknown nonlinearity estimation
from the design of underline ARC law for a guaranteed ro-
bust output tracking performance. As such, there is no more
one-stone-two-birds problem, which makes the dual objec-
tives of having both excellent output tracking performance
and good nonlinearity estimnation a realist goal in implemen-
tation. Experimental results have been obtained verifying
the effectiveness of the proposed INNARC approach.

The rest of the paper is organized as follows: firstly, the
model of linear motor drive system and control problem is
preseuted; il is followed by the approximation property of
neural network; then, based on the assumption that all the
input-hidden weights arc known, RNN identifier and IN-
NARC are designed; subsequently, the case that all of the
NN weights are unknown is discussed; after all of these the-
oretical preparations, experiments are carried out, followed
by some conclusions drawn at last.

LINEAR MOTOR MODEL AND PROBLEM FORMULATION

The mathematical model of a linear motor drive system
with negligible electrical dynamics can thus be described by
(18]

Mjj =w— By — Feo(y,9) — Fo(y,9) + Fa (1)

where y represents the position of the inertia load, M is the
normalized! mass of the inertia load plus the coil assembly,
w is the input voltage to the motor, B is the equivalent vis-
cous friction cocflicient of the system, F,, is the normalized
noulinear Coloumb friction term, F, represents the normal-
ized electro-maguetic force ripple, and Fy represents the
normalized external disturbance force (e.g. cutting force
in machining). Eq. (1) can be written into the following
state-space form

.’i;l = &y
B 1 1 1
Ly = ety — —J0 (1 L T oy ——F( i
&y Y a1, m2) + v YT a(z, @2)
~ ) N’ | S —
Sfa(m1,xa) ba(21,22) Ay

(2)
where &y = 5 and xy = 3, and F, & Fenla, &)+ Fo(x,2). In
(2), for generality, all state-dependent unkwnon nonlinear-
itics are lumped together as a general unknown nonlinear
function fo(ws,x2) and b is assumed to depend on states as
well.

Although many models have been proposed for the non-
linear friction, it is still in general difficult to know the exact
formm of the friction. As such, in this paper, a three-layer
feedforward neural network is constructed to approximate
the nonlinearity fo, which is detailed in the following as-
sumption

Assumption 1. The NN approximation error associated with
the nonlinear function fo is assumed to be bounded by [8],

|f2('z2) - ’UJ}';gfz(Vfﬂ‘i.UtQ)l < 6f2 (:Z"Z)a Viy € R? (3)

where &z = [w1, 2]’ s the state wvector, ., =
(2L, =11V is the augmented inpul vector to the neu-
rul network (-1 term denotes the input bias), wj =
[Why1s oy Whyy, 1 ds the optimal hidden-output weight
vector, Vg, = [V, o0, Vg 1T € RT3 s the optimal
inpul-hidden weight matriz with vy, ; € R¥*Y, vy, is the
nuwnber of neurons in the hidden layer, and g f2(V falay) =
(962,00, 18as)s s Gfaryy (V] 0, Faa) |7 s the activation
function vector, and §,(E2) is ¢ non-negutive known shape
Sfunction.

tNormalized with respect to the unit input voltage.
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Assumption 2. Similarly, it is also ussumed by can be ap-
proximated by the outpul of a three-layer feedforward NN
as follows

b2 — Wi, gy, (Vi,Bay)| < 00, (22), VE2 € R?, (4)

where Wy, Gy, Vi, und 8y, are defined in similar ways as
Wy 9y Vg, and 85, in Assumption 1, respectively. 1L
is assumned that the number of neurons in the hidden-layer
is 7y, . The dimensions of wy,, g,,, and Vy, can be decided
accordingly.

Furthermore, without loss of generality, the following as-
sumption is made

Assumption 3. The input gain by is nonzero with known
sign, and by > bya > 0, Viy € R*, where b2 s a known
positive constant representing the lower bound of by.

While it is usually difficult to predici the type of distur-
bances that the system is going to encounter, it is reason-
able to assume that the disturbance is bounded in certain
way. Hence, the following practical assumption is made

Assumption 4. The time-varying nonlinearity Ay is bounded
by Azl < da,(E2,t), where 8a,(%2,t) 45 a non-negative
known function of T and lime 1.

The control objective is to drive the systemn output y = @ to
follow a smooth desired trajectory yy as quickly and closely
as possible ia spite of unknown nonlincaritics in system. At
the same time, since f; and by are unknown, certain mech-
anism is needed to approximate the dynamics described in
the second equation of (2). In the following discussion, some
shorthands of notations will b(ﬁ used: g, =g fz(Y f28as ),
G, = gbg(vb2‘i.ﬂz2)1 ng = gfg(vf;zi'ag)a .()b;, =4y, (Vb2.'i'a.2),
= w};gh, and b3 = 'w},l;g,,2. Without introducing am-
biguity, f-z = ﬁ:};gh, when er is used; or f-), = w};gh,
when Vi, is known. § is defined in the same way.

APPROXIMATION PROPERTY OF NEURAL NETWORKS

Lemma 1. For a newral nelwork with @y, € RPL being
its input vector, V.= [vy, -+, v, |1 € R™ P being its
wnput-hidden weight matriz, g being the activation function
vector, w € R™*™ being its hidden-output weight matriz,
The output of neural network ng(Vw{m}) cun be upproz-
imated by its estimale ﬁJTg(V:L'{m}) by the following form

@@= V) - §' Vi +dvn (5)

where g = g(V-’B{m}):

g = diag{g},
- T ig: (=
W= g ) =

an} with
|Z::'b;-1‘m{in)’ i = 1,.--,1.'"”
and residual term dyy = r_f]'Vw{m} + ’wO(V:c{m})
with O(V i) being the sum of the higher order terms.
The residual term dyy can be bounded by a linear-in-
parumeter function as ||dywylls < BTY [23], where B
is an unknown wvector constituting of positive elements,
and the knoun function vector Y is defined us Y =

R T
[]-:H:B{in}HZﬁ H'lU“[: .

&inylls WEN@ gy ll2 ] with || »]]
being the 2-norm of a vector o, and || o ||p denoting the
Frobenius norm of a matriz e, which s defined as || o ||% =
Trace {o'w}.

By applying the above lemima to continuous nonlinear func-
tions fo and by, we have

o F Tl Xy o P APV
f:z =/ Wy, (-qu— glj'gvhwaz)" wfggifzvfzwaz'{_ dfzle\(G)
b3 =la— @y, (G, = G, Vi Faa )~ Wiy, VoaTas+ dog v (7)
ldp vnl < BLY fay ldoy vl < BLY b, (8)

where all the notations are defined in the same way as in
the above lemma.,

INNARC DESIGN WITH KNOWN INPUT-HIDDEN LAYER
WEIGHTS

In this section, based on the assumption that all the
input-hidden weights in both neural networks are known,
RNN will be used in the construction of the identifier, and
then INNARC will be developed accordingly.

Design and Stability Analysis of RNN Identifier

Since the first dynamic equation in (2) is exactly known,
ouly the second equation needs to bhe approximated. Based
on its structure, the following RNN identifier is proposed

&y = —ages + fa+ bau+ Uiden,2 9)

where &y is the estimate of xg, ¢y = w2, + agy with both
uy, and ay» being positive coustants, ex = &» — x4 1s the
identification error, and uigen,» 18 a smooth function of ey
satisfying the following condition [19]

C2Uiden,2 <0

) [(fz - fz) + (l;z - bz)“ -~ Qg+ Umen,2] < €2 (10)
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with

2

-e2,1

[ Wl [pesle)
”/)'Lufz | |2

l(”/’wbz | |'2 ~ || Probs HZ)l
HAwbs |2

2
€e2,2, (11)

+l1 +

Pwf, and pyp, are bounds of wy, and wy, respectivley, and
Pwfs and oy, are fictitious ones [19]. wigen,2 can be chosen
in the same way as in [19].

Remark 1. Dased on the fact thut wigen 2 is a smoolh func-
tion of ey and extigen, < 0, il can be prowven that
litme, 4o Uiden,2 = 0.

Proof. Since it is a smooth function of €3, Uidens
is a continuwous function of ey, and lime, 50 Uigen,2(€2) =
Uiden,2(0). It only needs to prove that wigen 2(0) = 0.

Suppose that wigen,2(0) > 0, then there is a neighbor-
hood [=ny,n,] of 0 with ny > 0, and n, > 0, such that
Uiden,2(tm) > 0, Yng, € [—ny,n,] due to the smoothness of
Widen,2. Choose nu, = =, which is greater than 0. Then
we have Npigen,2 (M) > 0, which contradicls the condi-
tion eatiden,2 < 0, Veo. Similarly, it can also be shoun that
Uiden,2{0) < 0 does not hold. Hence, tigen2(0) = 0. In
conclusion, Lime, voliden,2(€2) = Widen,2(0) = 0. O

Subtracting the second equation (2) from (9) results in the
following identification error dynamic

i = —awpes +(f5 = fo] + |2 - 13

-+ [b: — bz] u -+ [IA)z - I);] U+ Uiden,2 — A'Z (12)

The above identification error dynamic equation can also
be written in the following form

€y == —agey + [y — fa] + ﬁ)};gh
+ [b; — bg] u + Tbg;gbﬂu + Uiden,i — Ay (13)

Based on identification error equation{13), the following
gradient type of tuning laws are proposed along with pro-
jection mapping [19]

wp, = Projy, |Vwpmw, | Trw, =9

(14)

W, = P"'O-’Tva.) Fw,bz’r["wbg v Trab,, = —¢2ugy,

where I's are diagonal positive definite matrices, and 7's
are tuning functions.

Remark 2. It should be noted that other types of tuning laws
can also be used to tune NN weights. In this paper, for the
purpose of illustration, only gradient type of tuning laws are
considered. o

Theorem 1. Using the identifier (9) along with tuning luws
given in (14), the following resulls hold

A. In general, estimates of NN weights are bounded, and
the square of identification error ey exponentially con-
verges Lo ¢ region bounded in the following manner

; 1
Lty eoe3(t) < E;Ce"z (15)

B. If there is no bime-varying nonlinearity and the optimal
NNs can match all the nonlinearities exactly, i.e., Ay =
dr, = 6y, = 0, and all the states x;’s and input u are
bounded, then oll identification error ey goes to zero
asyrptolically provided that true values of NN weights
are within fictitious bounds.

C. If all the condition in Result B holds und the following
PE condition

t+T T T
[¢ (13
T, Ty, s.t., / [gfﬁ"’f% Iyt ) ge > y1y, > 0,
t UGpy G 1y UGp, 9, Y

M,.(e)

[N,

is also salisfied, oll the estimales of hidden-output
weights will also converge to the corresponding optimal
values. &

Proof. A. By the property of projection mapping, the
boundednesses of all the estimates of NN weights are guar-
auteed [19].

Consider Lyapunov function V, = %L% Using the sec-
oud coudition in (10), it is known that

Ve = e36n < =205V, + €2 (17)

By comparison lemima, it can be shown that

t
Ve(t) < V. (0)eap(-—2aat) + 6e,2/ exp(—2as(t — 1))dr
0
1
< Ve(0)eap(—2azt) + — e, (18)
2&2

which indicates that V, (1) exponentially decays to a regiou,
and limy 00 Ve (t) < 5i-€c,2. Hence, inequality (15) holds.

— 2a9
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B. Consider the following Lyapunov function
Vea = Vi + [0], 05 g, + BT 0] (19)

Following the assumptions g, = &, = 0, fo = f; and
by = b} hold. Furthermore, since Ay = 0, the identification
error dynamic equation (13) is simplified into

&y = —agey ﬁlﬁgh = "l’ng.‘leU + Uiden,2 (20)
Differentiating (19) results in

S 2 T L o )
Vea = {_‘Ufzez — €aWiy, Tf iy, — CoWy, TJ iy, U + Ui(len,QL‘l}

ST -l f STl
+ {wfgI‘w,wifZ + waFw’bzwa}
< —aze) (21)

where the property of projection mapping is used [19]. It is
then clear that V,, is a positive semi-definite function. By
Barbalat’s lemna, it is obtained that limy_ ey = 0.

C. From the result in A, all the estimates arc always
bounded. Furthermore, from equation (20), it is also found
that é»’s are bounded.

Differentiating both sides of (20) results in

" . . T T . T

€y =1 —U9Cy + wfzgf2 + w;ggf,z + ’lDszbz’UA

auzden 2
(962

+wbng2 u+ wbz,qbzu + (22)

From (22), it is clear that é; is bounded. Heuce, ¢ is a
uniform continuous function of time. It is also true that
Jo éadt = e2(00) — €2(0) = —e3(0) since Result B shows
that ez(oo) = 0. Then fooo e2dl is bounded. By Barbalat’s
lemma, lit, ,oq€2 = 0 can be obtained.

From equation (20), it is known that l'im,,_mﬂb};gh +
ﬁaz'ngﬂ = (. Tt follows that

o . 2
lim ('w},zgf2 -+ w,f;gb,zu) =0

t—oo

. o A L T T, Wy, —
= i [, w1 | 92 | [af, ab) [ 7] =0

R Wy, | _
= lim [@], wbz]Mpe[ﬂ,bJ 0 (23)

Since it has already been obtained that lim, e ¢3 =0,
we have liyyo0 Wy, = 0 and iy, o0 s, = 0 from equa-
tions given in (14).

From (23), for any {inite time interval 7', it is obtained
that

1i Hr P ~ M wy, &) d 0
Jim / (07,0 B,(6)] Mye©) | ) | de =
(24)
Utilizing mean value theorem and noting the fact hat
iy oo Wy, = 0 and lim,_,oo'ti)bz = 0, equation (24) in-
duces that

T N

. T T (f) _
i [ (w0 @5 0) My | 02 | de =0
—

T

lim [w} (1) '&),{‘ )]

o, [, M, i | 0 = )

From condition (16), we arrive at

2
> 0,

4T i

] 3t] 2o 2]
ba Whe,

Vit > Ty. Irom equation (25) and inequality (26), it is ob-

. 2

H’lfjh] = 0, which is equivalent to
wy,

lmnyg 0 Wy, = 0, and lim;_yo0 Wy, = 0. In conclusion, all

the estimates of hidden-output weights converge to their

optimal values asymptotically. O

& Se

t

tained that limn,_s0

Remark 3. A of Theoremn 1 shows that the ervor belween of
the RNN identifier and the true system can be made as small
as possible. B of Theorem 1 shows that the identification er-
ror can possibly converge to zero. Hence, from the viewpoint
of input-state relationship, RNN identifier (8) can be looked
on as a good model of the true plant. %

Remark 4. By fust feedback, A of Theorem 1 shows that
identification errors e;’s are always under the control of de-
signer even when NNs do not match the unknown nonlinear-
ities, With the help of tuning laws, B shows the possibility
of asymptotic identification. Furthermore, if PE condition
is satisfied, in addition to Results A and B, estimates of
NN weights converge to thewr optimal value asymptotically,
which fulfills the learning capability of NNs. Unlike what
have been done in [24; 25; 26], such an approach does not
pose any restriction on the estimates of NN weights. $

INNARC Design

Throughout the process of controller design, fy and by
are approximated by the outputs of the correspouding neu-
ral networks and the tuning laws for NN weights are given
in (14).
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Considering the error indices z; = 2y — 214 and z =
Z1 + k1,21 with k1, being a positive constant, the objective
of controller design is to make both z) and z; as small as
possible. Based on the basic idea of ARC (21}, the following
controller law is proposed

1 L
“= = [_h ~ ki wt1 + Erg — 21]
2
ke
— 2+ gy (27)
by

where u, is the model compensation part, and ug is an
extra robust term satisfying following conditions

zy {Resy + batga} < ez (28)
Zyltgz <0 (29)

where
Resy = [fo = fo] 4 [b2 = boJuq + By (30)

and €, 9 is a positive constant.

Theorem 2. With the use of identifier (9), controller (27),
and tuning laws (14), the following system performance can
be auchieved

A. In general, all the signals in closed system are bounded.
The bound of tracking error and estimation error can
be indicated by the following inequality

1 — eap(—K1i)
- e (31
K e (1)

Vae(t) < Ve (0)exp(—Kit) +
where Vie = (e + 24+ Z2),

K =2min{az, k1,5, ka,s1}, and €, = €03 + €42
B. If there is no disturbance, the optimal NNs can match
all the nonlinearities exvactly, i.e., Ny = dp, = &, = 0,
tdeal values of all the hidden-oulput weights are within
fictitious bounds, und PE condition (16) is satisfied,
then both identification error and tracking error con-
verge to zero usymptotically. O

Proof. A. Considering the identification error in (12) and

the time derivative of V,q, V. is given as follows

. . . b .
Vie = €€y — kl,szf - gz—kg,slz.g’ + 2o {batgn + Resy}
12
< ~aze§ + €en — kl,ng - kz,“ZS + €22
<~ KV,o+ €es (32)

B. Result Bin Theorem 1 indicates that limyg_, e €9 = 0,
which means that identification errors converge to zero
asymptotically. Furthermore, since PE condition is satis-
fied, all the estimates of weights converge to their ideal val-
ucs asymptotically, lim,_, o, Res; = 0 can be obtained from
equation (30) by keeping in mind that Ay = 8, = §, == 0.
Consequently, inequality (32) changes to V,e < —KV,,
when ¢ — oo. Hence, limy. 00 Ve = 0, which means that
ez, 21 and 2y converge to zero asymptotically. 0

Remark 5. While A of Theorem 2 shows that all signals in
closed-loop system are under control and both identification
error and tracking error con exponentially decay to certain
small region, B indicates the possible asymplotic conver-
gences of both tracking error and identification error, which
achieves the ideal performance that NNs are used for. I is
noted that {12; 13; 14; 15] cannot achieve such a perfor-
mance. O

INNARC DESIGN WITH UNKNOWN INPUT-HIDDEN
WEIGHTS

In this section, the assumption that input-hidden
weights are known is relaxed, and a more general case will
be considered.

Design and Stability Analysis of RNN Identifier
Same as before, the following RNN identifier is pro-
posed
i‘g = —Ugety + f-z + IA)zu

~ T AT
- [;3/2Yfg + ﬁbzybzlull 3.‘/”(‘32) -+ U'zden,z (33)

Subtracting the second equation in (2) fromn (33) results in
the following identification error equation

er = —anes + (J5 = fa) + [fo = 5]+ 5 = balu [ = b3 u

A ~T
- [Bf:zyfz + ﬂbgyb;"u‘] 3.‘]”(02) + tiden,2 — Ay (34)

By applying cquations (6) and (7), the above identification
error dynamics can also be written in the following form

€3 = —azes + | f5 — fa] + b5 — ba]u

-l— {‘” ;)[; (!:'bz - g;m Vb?"z'ﬂ&) + ﬁ)g;gsjg f/bgi;ag - dbg,NN] u
AT ~T
- {'afzyf2 + ‘BbQYb’)l’ul} sgn(ez) + Uiden,2 — Do (35)
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Based on identification error equation (35), the following
gradient type of tuning laws are proposed along with pro-
jection mapping [19]

12)/!2 = PX‘ijfz I'*F'W,fzc‘Z (gh — g}2‘7f2£a2)}
i , T
Vy, = Proij [(—F,,,h(zg:l‘mﬁjhf]'h) J
2
By,

Wy,

= Projg [T ple2lY p]
N Y (36)
= P_[‘Oth2 =T pae2u(@y, — gszb.z:i'az)]

R r

% . — S A ]

th = :P['O_]V (——FU’MC-Z'IL(Uu?'wang) ]
b2

By, =P (L8065 le2u|Y s, ]

roj 3
by

Theorem 3. Using the identifier (38) along with tuning laws
in (36), the following results hold

A. In general, estimates of NN weights are bounded, and
the square of identification errors ey exponentially con-
verges to a region bounded in the following fashion

; 1
2
lim e5(t) < —e€.n
t—ro0 (62

(37)

B. If there is no disturbance and the optimal NNs can
match all the nonlinearitics cazactly, i.e., Ay = by, =
dp, = 0, and all the states ©; and inpul u are bounded,
then all identification errors go to zero asymptotically
provided that true values of NN weights are within fic-
titious bounds.

C. If the discontinuous terms sgn{x) drop from identifier
(33), the basic performance stated in A is still valid. &

Proof. A. It can be proven in the same way as that in

Theorem 1.
B. Cousider the following Lyapunov function

Tr_ pocqg o e 4
Vo = Vet 5 [0 D5l o + 07,151 0,
~ ~ T o~ 1 =T
+Trace {V ;, T 5, Vi b+ Trace (VI V)

B T =
+'Hf2F/3,%f2’3f2 +Bb2r/3,]bglﬂb2] (38)

Following the assumptions dp, = 8y, =0, fo = f5 and
by = b3 hold. Furthermore, considering Ay = 0, from equa-
tion (35), Ve, satisfies V,q < —agel. By Barbalat’s lemma,
it is known that lim,_, es = 0.

C. It can be proven by the same way as that in the
proof of A. ]

Remark 6. Due Lo the same reason stated in Remark 8, RNN
identifier (33) approzimates input-oulput relationslip of the
true plant very well. &

INNARC Design

Theorem 4. With the use of identifier (33), controller (27),
and tuning law (36), the following system performance can
be achieved

A. In general, all the signals in closed system are bounded.
The bound of tracking error and estimation error can
be indicated by the following inequality

Vie(t) < Vie(0)ewp(— K1) + };""”T'{(';Jew

(39)
Proof. A. The result can be worked out by the similar
manner as that in part A of the proof of Theoremn 2. ]

EXPERIMENTAL STUDIES

To investigate how well the proposed INNARC solves
the control problem in reality, the proposed INNARC is ap-
plied to the control of linear motor drive system by neglect-
ing its fast clectrical dynamics (bandwidth above 1000Hz).

To simplily the implementation, it is chosen that
Widen,2 = —Kiden,2€2 With Kigen 2 being a positive constant.
In order to experimentally investigate the approximation
capability of RNN, unlike thosc done in [18; 19], the NN
used to cstimate f; does not assume any special struc-
turc. A common three-layer feedforward NN with hyper-
bolic tangent function as activation function, five hidden
neurons and one bias neuron is used to estimate fo. It
means that ,fg = Z?:] Wiy itenh(r,,iTay) + Whias. Sub-
sequently, tuning laws for NN weights arve given as b fayi =

Dyeryi . ; Do o . 1 .
I’O-l“’fz-‘ [ Twsy.s [ta‘”h(uf‘h"l’“?) cosh?(Dsy,iBay)Upy iTay 62]’

AL — ey - - At e . L At —
Ufasi = Py 0oy .: [ Yup, V2€2W ey i cosh?(p,®a,) |° Whias =
Projay,, ["'Ywmage?]a Wy, = P"'U.'I"li!bg [—’Vwbz 62“]’ ﬂfz =

Proj A, ['yg i sgn(ex)Y f2], where the fact that by is a con-
stant is used to simplify the NN for estimating by.

Parameters

The experiments are conducled on an epoxy core lin-
ear motor. The detailed experimental setup is given in [18].
The nominal normalized values of M and B are M = 0.027
and B = 0.273, respectively. In cxperiments, constant feed-
back gains are used to simplify the control law for real-time
implementation. Specifically, ki ; = 400, uz; =
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and kp g1 + ko2 = 10. ag = 2000 is used in RNN identi-
fier. The parameters used for tuning laws are summarized
in Table 1. Within the given bounds, the initial values of all
NN weight estimates are simply set to be zero except that
1wy, = 20 to avoid singularity.

Table 1. Parameters for Weight Estimates

estimates Weeyi | Ofai | Whias | Way 8 fa
lower bounds -3 -3000 -3 10 0
upper bounds 3 3000 3 50 1
adaptatio;;tes 40 | 1000 | 10° | 50 | 107¢

Experimental Results

In experiments, the desired trajectory is a smooth
point-to-point back-and-forth trajectory, which is described
in Fig. 1. It can be seen that the maximal displacement
of the desired trajectory is 0.1 m and the maximal speed is
0.02 m/s. For casy comparison, desired trajectory is chosen
to be the same as that in [18).

In Fig. 2, it can be seen that the tracking error is within
£5urn and mainly stays within #:2pm, which is in the same
level as the measurcment resolution level, i.e., £1um. As
a matter of fact, the maximal magnitude of tracking error
achieved by INNARC is 4.8y, which is smaller than the
maximal magnitude of tracking error, 5.5urn achicved by
DNNARC in [18]. The identification crror ¢; is shown in
Fig. 3, where the “actual” velocity is obtained by pass-
ing the backward differentiation of position signal through
a low-pass filter with transfer function ;39%. Since the
resolution of position signal is 1um and sampling time in-
terval is 4 x 10~1 see, the resolution of its differentiation is
R%% == £0.00251 /5. It is found that the error in Fig.
3 is within the “resolution” level.

To further investigate the performance of neural net-
work estimating nonlinearity £, = M f», the “true” valuc
of F, needs to be found. From equation (2), it is found
that F,, = u — M& by assumiing that disturbance Fy = 0.
F,, can be calculated if M and # is available. The nominal
value M = 0.027 is known, and acceleration & is approxi-
mated by passing the backward differentiation of the posi-
tion signal through a filter ﬂi’fga. Then the “true” value
of nonlinearity F, is obtained and is shown in Fig. 4. The

NN approximation of F, is calculated by I, = '6&" and is
2
shown in Fig. 5. It can be seen that the estimate of F), can

follow its “true” values very well except that it is a little
bit noisy. It has been shown in [18] that NN approximation
in DNNARC can only capture the features of the nonlin-
ear force, it cannot approximate it very well. In this sense,
NN approximation result in INNARC is better than that in
DNNARC. It should also be noted that desired trajectories
to be tracked in both cases are the same.

For completeness, the control input is shown in Fig, 6.
Compared with the magnitude of nonlinear force shown in
Fig. 4, it is found that, approximately half of the control ef-
fort is used to counteract the nonlinear force. It also means
that, the control objective is achieved by intelligently using
model information rather than by purely strong feedback as
in robust control.

CONCLUSION

In this paper, an indirect ncural network adaptive ro-
bust coutrol (INNARC) scheme has been developed for the
precision motion control of linear motor drive systems to
achieve the dual objectives of having not only excellent out-
put tracking performance but also good noulinear forces es-
timation for secondary purposes such as prognostics and
machine health monitoring. Departing from the usual di-
rect NN control desigus, the proposed INNARC completely
separates the unknown nonlinearity estimation from the de-
sign of underline adaptive robust control law. By doing so,
various practical limitations associated with the NN learn-
ing in direct designs are overcome as there is no more one-
stone-two-birds problem. Specifically, the estimation via
NNs in the proposed INNARC is actual system dynamics
based with certain actual measured states as driving sig-
nals, as opposed to the tracking error dynamics based esti-
mation process of the direct designs that is more proue to be
corrupted by measurement noises due to the use of rather
smaller magnitude of tracking errors as driving signals. Fur-
thermore, various practical modification such as the explicit
monitoring of persistent excitation conditions can be used to
enhance the quality of the estimates. Theoretically, the pro-
posed INNARC achieves a guaranteed robust performance
for both the NN identifier and the closed-loop system; in
general, when all the NN weights, including input-hidden
layer weights and hidden-output layer weights, are tuned
on-line, even in the presence of disturbances, both the pre-
diction errors of the identifier and the output tracking crrors
of the overall system are shown to exponentially couverge
to swmall regions that can be tuned by designers. Further-
more, in the ideal case that unknown noulinearities are in
the approximation ranges of the corresponding neural net-
works and the input-hidden layer weights are known, the
identification error asymptotically converges to zero in the
absence of disturbances. Experimental results have been ob-
tained to verify the effectiveness of the proposed INNARC
in achieving exccllent output tracking performance as well
as good estimations of unknown nonlinear forces for other
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secondary purposes.

REFERENCES

1. D. M. Alter and T. C. Tsao, “Control of linear motors for
machine tool feed drives: design and implementation of o 0p-
timal feedback control,” ASME J. of Dynamic systems, Mea-
surement, and Control, vol. 118, pp. 649-656, 1996.

2.D. M. Alter and T. C. Tsao, “Dynamic stiffness enhancement
of direct lincar motor feed drives for machining,” in Proc. of
American Control Conference, pp. 3303-3307, 1994.

3. P. V. Bracmbussche, J. Swevers, H. V. Brussel, and P. Van-
herck, “Accurate tracking control of lincar synchronous motor
machine tool axes,” Mechatronics, vol. 6, no. 5, pp. 507-521,
1996.

4. P. R. Dahl, “Solid friction damping of mechanical vibration,”
AIAA Journal, vol. 14, no. 12, pp. 16751682, 1976.

5. B. Armstrong-Hélouvry, P. Dupont, and C. Canudas de Wit,
“A survey of models, analysis tools and compensation methods
for the control of machines with friction,” Automatica, vol. 30,
no. 7, pp. 1083-1138, 1994.

6. C. C. de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, “A
new model for control of systems with friction,” IEEE Trans.
on Automatic Control, vol. 40, no. 3, pp. 419-425, 1995.

7. K.-1. Funahashi, “Oun the approximate realization of contin-
uous mappings by ncural networks,” Neural Networks, vol. 2,
pp. 183-192, 1989,

8. K. Hornik, “Approximation capabilities of multilayer feed-
forward networks,” Neural Networks, vol. 4, pp. 251-257, 1991.
9. G. Cybenko, “Approximation by superpositions of sigmoidal
function,” Mathematics of Control, Signals and Systems, vol. 2,
pp- 303-314, 1989.

10. T. Poggio and F. Girosi, “Networks for approximation and
learning,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1481~
1497, 1990.

11. J. Park and I. W. Sandberg, “Universal approximation using
radial-basis-function networks,” Neural Computation, vol. 3,
pp- 246-257, 1991.

12. F. L. Lewis, A. Yesidirek, and K. Liu, “Neural net robot
controller with guaranteed tracking performance,” IEEE Tran-
seations on Neural Networks, vol. 6, pp. 703--715, 1995.

13. M. M. Polycarpou, “Stable adptive necural control scheme
for nonlinear systems,” IEEFE Transcations on Automatic Con-
trol, vol. 41, no. 3, pp. 447-451, 1996.

14. Y. Zhang, P. A. loannou, and C. C. Chien, “Parameter con-
vergence of a new class of adaptive controllers,” IEEFE Trans.
on Automatic Control, vol. 41, no. 10, pp. 14891493, 1996.
15. R. M. Sanner and J.-J. E. Slotine, “Gaussian networks for
direct adaptive control,” IEEE Transcations on Neural Net-
works, vol. 3, no. 6, pp. 837-863, 1992.

16. S. Chen and S. A. Billings, “Neural nctworks for nonlinear
dynamics system modelling and identification,” International
Journal of Control, vol. 56, pp. 319-346, 1992.

17. J. Q. Gong and B. Yao, “Neural network-based adaptive
robust control of a class of nonlinear systems in normal form,”
in Proceedings of the American Control Conference, (Chicago,

Ninois, USA), pp. 1491--1423, June 28-30, 2000.

18. J. Q. Gong and B. Yao, “Neural network adaptive robust
control with application to precision motion control of linear
motors,” International Journal of Adaptive Control and Signal
Processing, vol. 15, no. 8, pp. 837-864, 2001.

19. J. Q. Gong and B. Yao, “Neural network adaptive robust
control of nonlinear systems in semi-strict feedback form,” Au-
tomatica, vol. 37, no. 8, pp. 1149-1160, 2001, Special Issuc on
Neural Networks for Feedback Control.

20. B. Yao and M. Tomizuka, “Smooth robust adaptive slid-
ing mode control of robot manipulators with guaranteed tran-
sient performance,” in Proc. of American Control Conference,
pp. 11761180, 1994. The full paper appeared in ASME Jour-
nal of Dynamic Systems, Measurement and Control, Vol. 118,
No.4, pp764-775, 1996.

21. B. Yao, “High performance adaptive robust control of non-
linear systems: a general framework and new schemes,” in Proc.
of IEEE Conference on Decision and Control, pp. 2489-2494,
1997.

22. B. Yao and M. Tomizuka, “Adaptive robust control of siso
nonlinear systems in a semi-strict feedback form,” Automatica,
vol. 33, no. 5, pp. 893-900, 1997. (Part of the paper appeared
in Proc. of 1995 American Control Conference, pp2500-2505).
23. L.-C. Fu, W.-D. Chang, J.-H. Yang, and T.-S. Kuo, “Adap-
tive robust bank-to-turn missile autopilot design using neu-
ral networks,” Journal of Guidance, Control, and Dynamics,
vol. 20, no. 2, pp. 346-354, 1997.

24. X.-B. Liang and T. Yamaguchi, “On the analysis of global
and absolute stability of nonlinear continuous neural networks,”
IEICE Transactions on Fundamentals of Electronics Communi-
cations and Computer Sciences, vol. E80-A, no. 1, pp. 223-229,
1997.

25. M. Forti, S. Manetti, and M. Marini, “Necessary and suffi-
cient condition for absolut stability of neural networks,” IEEE
Transactions on Circuits and Systems—I: fundamental Theory
and Applications, vol. 41, no. 7, pp. 491-494, 1994,

26. K. Matsuoka, “Stability conditions for nonlinear continuous
neural networks with asymmetric connection weights,” Neural
Networks, vol. 5, pp. 495-500, 1992.

Copyright © 2002 by ASME



0z

T T ——r T T T T H
- ¥
- us 01 ] A Y
EOOB - h f
‘éovos »; !
Eoo4 N 5 l'ﬁ' l !
£ o. a1
i Wi W Mt
ol H H . " . —t e
3‘0 0 50 e‘o _;._710 80 e ; o I‘ ime (%) i ” ;a .
0.02 - T i Lol NI N T L‘hl :
a |
% e , wrorf /e e
£ 5
i AN Al
! .t WM |
%»cm - 1
e ;o fa e ew ek e e s
tmo (8} o U
Figure 1. Position and velocity of the desired trajectory Figure 4. "True” value of normalized nonlinear force F,
————————— ————v——————————————
I
o y pia
3
- |
— i |
- L
b=
= 0.2 - - .
0 5 10 20 -]
:e: 18 e x0 s
®©
8 oz ——— ———— - —
g o
i
-af 2
74‘\;77 _ 7;7 o fr — ‘%7 ,2107 I 2|5 — ,3:)7 — 4.02 oo °D|4---|m| I_Ir:llcr- 0.08 a1 012
time (s)
Figure 2. Time history of tracking error Figure 5. Estimated value of normalized nonlinear force F,

estimate error of velocity ( m/s )

"ZL 3 [ 15 20 25 a0 s
time (s)
Figure 3. Estimate error of velocity

10

control input { v )

e

)

18
time (s

Figure 6. Control input

Copyright © 2002 by ASME



	dsc-toc: 


