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Observer-based adaptive robust control
of a class of nonlinear systems with dynamic uncertainties*

Bin Yao*' and Li Xu

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, US.A.

SUMMARY

In this paper, a discontinuous projection-based adaptive robust control (ARC) scheme is constructed for
a class of nonlinear systems in an extended semi-strict feedback form by incorporating a nonlinear observer
and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities,
and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to
enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the
unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other
model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed
robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed
ARC method makes full use of the available structural information on the unmeasured state dynamics and
the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC
controller achieves a prescribed output tracking transient performance and final tracking accuracy in the
sense that the upper bound on the absolute value of the output tracking error over entire time-history is
given and related to certain controller design parameters in a known form. Furthermore, in the absence of
uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Almost every physical system is subject to certain degrees of model uncertainties, which makes
the design of high-performance control algorithms a very challenging job. Normally, the causes of
model uncertainties can be classified into two categories: (i) repeatable or constant unknown
quantities such as the unknown physical parameters (e.g., the inertia load of any industrial drive
systems) and (i) non-repeatable unknown quantities such as external disturbances and imprecise
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336 B. YAO AND L. XU

modelling of certain physical terms. To account for these uncertainties, two nonlinear control
methods, the deterministic robust control (DRC) [1-4] and the adaptive control (AC) [5-7]
(or its robustified version, the robust adaptive control [8-11]), may apply. In general, the
deterministic robust controllers can achieve a guaranteed transient and final tracking accuracy in
the presence of both parametric uncertainties and uncertain nonlinearities. However, since no
attempt is made to learn from past behaviour to reduce the effect of constant unknown quantities,
the design is conservative and involves either switching [1] or infinite-gain [4] feedback for
asymptotic tracking; both means are impractical and unattainable. In contrast, the adaptive
controllers [5-7] are able to achieve asymptotic tracking in the presence of parametric uncertain-
ties without resorting to infinite gain feedback. Recently, as in the robust adaptive control (RAC)
of linear systems, much of the effort in nonlinear adaptive control area has been devoted to
robustifying the adaptive backstepping designs [5] with respect to disturbances and significant
progress has been made [8-11].

In References [12-15], an adaptive robust control (ARC) approach has been proposed for the
design of a new class of high-performance robust controllers. By exploiting practically reasonable
prior information on a physical system such as the bounds of parameter variations as much as
possible, the approach effectively combines the design methods of DRC and AC. The resulting
ARC controllers achieve the results of both DRC and AC while naturally overcoming their
practical limitations. The approach has been applied to various applications and comparative
experimental results [16-187] have verified the effectiveness and the high-performance nature of
the proposed ARC strategy; for different applications [16, 17], tracking errors have been
consistently reduced almost down to measurement resolution level during most of the execution
period.

In addition to parametric uncertainties and uncertain nonlinearities, some systems are further
subjected to dynamic uncertainties that depend on the unmeasured states of exogenous dynamic
systems [ 19, 20]. Practical examples include the dynamic friction model in Reference [21] and the
control of eccentric rotor in References [19, 22]. This class of systems have received a lot of
attention in recent years since there are few results available on the general problem of robust
control of nonlinear systems with partial state feedback. In Reference [19], Freeman and
Kokotovi¢ constructed an adaptive controller for a class of extended strict feedback nonlinear
systems in which the unmeasured states enter the systems in a linear affine fashion. As pointed out
in the paper, it is unclear how the approach can be made robust to modelling errors such as
uncertain nonlinearities. In Reference [23], Jiang and Praly generalized the idea of using
a dynamic signal to dominate dynamic disturbances to the robust adaptive control of nonlinear
systems subjected to dynamic uncertainties. Using a small-gain type of argument, they also
presented in [20] a modified robust adaptive control (RAC) procedure [9] for a class of uncertain
nonlinear systems subject to dynamic uncertainties satisfying an input-to-state stability property.

In this paper, by incorporating a nonlinear observer design and the dynamic signal introduced
in Reference [20], the discontinuous projection-based ARC approach [12] will be extended to
a class of nonlinear systems subjected to parametric uncertainties, uncertain nonlinearities, and
dynamic uncertainties. The motivation for this research is that, in most situations, the structural
information on the unmeasured state dynamics and on the way it interacts with the rest of the
system dynamics is known. If these prior structural information can be utilized effectively, a less
conservative controller can be synthesized and a better performance can be achieved. With this
fact in mind, departing from Reference [20], in the absence of uncertain nonlinearities, the
nominal structure of the unmeasured state dynamics are assumed to be known and the
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ADAPTIVE ROBUST CONTROL 337

unmeasured states are assumed to enter the system equations in a linear affine fashion as in
Reference [19]. With a mild assumption which is equivalent to the detectability assumption in
linear systems, a nonlinear observer is first constructed to recover the unmeasured states of
dynamic uncertainties. By doing so, the estimates of the unmeasured states can be used in the
controller design to eliminate the effect of dynamic uncertainties for an improved achievable
nominal performance—asymptotic tracking is obtained in the presence of parametric uncertain-
ties and dynamic uncertainties. In addition, in the presence of uncertain nonlinearities, the
observer error dynamics is made to be input-to-state stable. Estimation errors, as well as model
uncertainties, are dealt with effectively via certain robust feedback as in the ARC design in
Reference [12] to achieve a guaranteed robust performance. Consequently, the contributions of
the paper are as follows. Firstly, compared to the adaptive control design [19] where uncertain
nonlinearities are not considered, the proposed scheme is observer based and is robust to
uncertain nonlinearities; in fact, a guaranteed robust performance is obtained even in the presence
of uncertain nonlinearities. Secondly, compared to the RAC approach [20], the proposed scheme
explicitly utilizes the structural information of the system and a better nominal performance,
asymptotic tracking, is obtained in the absence of uncertain nonlinearities. In addition, the
approach puts more emphasis on the robust control law design; in fact, the parameter adaptation
law in the proposed ARC design can be switched off at any time without affecting global stability
or sacrificing the prescribed transient performance result, since the resulting ‘non-adaptive’
controller becomes a deterministic robust controller. Because of this design philosophy, the
proposed controller achieves a prescribed transient performance and final tracking accuracy, i.e.
the upper bound on the absolute value of the tracking error over the entire time-history is given
and related to certain controller design parameters in a known form, which is much more
transparent than that in RAC design [20]. Lastly, the nonlinear observer design in this paper is
motivated by the recent excellent research done in Reference [24]. However, in Reference [24],
the effect of parametric uncertainties and uncertain nonlinearities are not considered. Thus, the
paper also extends the nonlinear observer design.

The paper is organized as follows: Problem statement is presented in Section 2. A nonlinear
state observer design is presented in Section 3. The proposed observer-based ARC controller is
shown in Section 4. A design example and comparative simulation results are presented in
Section 3, and conclusions are drawn in Section 6.

2. PROBLEM STATEMENT

The following nonlinear system will be considered in this paper:
i = Fy(%)0 + G,(%)n + A(x,n,u,1)
xi = Xi+1 + 9T€09i(>3i) + Ai(xa”’ u, t)r 1 < S -1

%i = Xir1 + 0T Qo) + @p(X)n + Ai(x,mout), I<i<n—1 1)
Yo = U+ 0" 0ou(x) + Qa1 + An(x, 1,1 1)
y=X1

where X, = [x1, ..., x] e R, X; =[x, ..., x;]Te R,and x = [xy, ..., x,]TeR" ye Randue R

are the control input and the output, respectively. n € R™ represents the unmeasured states, and
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0 € R is a vector of unknown constant parameters. F, € R"*?, G, € R"*", @5, € R and ¢,; € R™
are matrices or vectors of known smooth functions, which are used to describe the nominal model
of the system. A and A, represent the lumped unknown nonlinear functions such as disturbances
and modelling errors.

Throughout the paper, the following notations will be used. In general, *; represents
the ith component of the vector - and the operation < for two vectors is performed in
terms of the corresponding elements of the vectors. The following practical assumptions are
made:

Assumption 1
The extent of parametric uncertainties and uncertain nonlinearities are known. In other words,
parametric uncertainties 6 and uncertain nonlinearities A and A; satisfy

0€Qy2 {0: Omin < 0 < Opay}
AeQu2{A: |A(x,n,u,t)] < 5(%)} 2)
Aie Q2 (A [A(x,mu,1)| < 8:(%:)}

where Opin, Omax> 0(X;) and 6;(x;) are known.’ (|| denotes the usual Euclidean norm.)

Assumption 2

The n-subsystem, 77 = F,(%,)0 + G,(%)n + A(x,n,u,t), with i as the state and X,(t) as the input,
is bounded-input-bounded-state stable in the sense that for every 5, € R™ and every X,(f) e
L', [0, oo), the solution #(t) starting from the initial condition #, is bounded, i.e. 5(t) € L™ [0, ).

Let y,(t) be the desired output trajectory, which is assumed to be known, bounded with
bounded derivatives up to nth order. The objective is to synthesize a control input u such that the
output y tracks y,(t) as closely as possible in spite of various model uncertainties.

Before leaving this section, we would like to make the following remark concerning the
connection and the difference between system (1) and the systems extensively studied in the
literature.

Remark 1

(i) In the absence of dynamic uncertainties, i.e. if there are no unmeasured state # in (1),
system (1) with Assumption 1 reduces to the semi-strict feedback form studied in References
[12, 15], where a discontinuous projection based ARC scheme has been presented for a guaran-
teed output tracking transient performance and final tracking accuracy [12]. (ii) If there are no
uncertain nonlinearities, i.e., A = 0, and A; = 0, Vi, the system (1) with Assumption 2 reduces to
the extended strict feedback form studied by Freeman and Kokotovic [19], where an
adaptive controller was constructed. (iii) In Reference [20], Jiang and Praly considered a similar
system which allows uncertain nonlinearities to depend on nonlinearly appearing parametric
uncertainties also. However, the n-dynamics is assumed to be input-to-state practically stable,
which is more stringent that Assumption 2. Also, the nominal structure of the #-dynamics is
ignored.

$The design can be extended to the case where 6 and §; depend on t explicitly.
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3. STATE ESTIMATION

Since 7 states are not measurable, a nonlinear observer need to be constructed to provide their
estimates. Motivated by Reference [24], we first introduce a transformation of co-ordinate.
Define a vector

E=n—owx) @)
where o(X;) = [01(X), ..., ©,,(X;)]" is the vector of design functions yet to be determined. Its
derivative is computed as

& =i — d(%)
_ _ ) dw
= F(x)0 + G,(X)n + A — Z E (Xi+1 + 0T + A) — — oun 4)
=1 0x; 0x;
_ . o ! Ow - & ow
=E1(Xl)6+ G"(Xl)——QD;l n— Z ‘—(xi+1 +8T(P91)+A— Z _Ai
0x; =1 0X; =1 0%;
For simplicity, let
_ _ 0w
Ax) = Gy(X1) — 7 @ (5)

Substituting (3) and (5) into (4), we have

1

. _ _ - dw - ' dw
&= AX) (€ + o(x) + F(x)0 — Z 6_(xi+1 + 0%pg) + A — Z A; (6)
i=1 0% =1 0x;
If 6 were known, we would design a nonlinear observer
2 PN _ B L Ow T
E= A=) + 0(@) + FE)0 — ¥ 22 (xi + 070u) )
i=1 i

Then, the state estimation error ¢ = & — & would be governed by the following dynamic system

. _ _ ' dw
E=AX)e+A, A,=—A+ ) —A (8)
=1 0x;

Since 0 is not known, observer (7) is not implementable but it provides motivation for the design
of following nonlinear filters:

X L)
g=mmg+mmmm—25§m4

i=1
. _ _ ! dw )
{i=AE) + Fy(x) — > o, i 1<j<p

i=1
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where {; € R™, F,; represents the jth column of F,, and ¢,; ; is the jth element of the vector ¢g;. The
state estimate can, thus, be represented by

f=€0+25j9jzgo+w (10)
=1

where { =[{;,...,{,] e R™*?. From (9) and (10), it can be verified that the observer error
dynamics is still described by (8). Therefore, the equivalent expression for the unmeasurable state
n is

n="0+{0+wx)—¢ (11)

In viewing the observer error dynamics (8), the following additional assumption is made.

Assumption 3

(A) There exists an exp-ISpS Lyapunov function” V, for the observer error dynamics (8), i.e.
there exists a Lyapunov function, V, such that

71(le)) < Vi(e) < p2(lel), VeeR™

i (12)
V:e < - CSI/S(S) + Ve(|331|) + de

where y4, 7, and y, are class £, functions, ¢, > 0 and d, > 0 are two constants.
(B) The unperturbed system of (8) is assumed to be exponentially stable, i.c., when A, = 0, the
observation error ¢ converges to zero exponentially.

Remark 2

In Reference [25], it is shown that Assumption 3(A) is equivalent to the assumption that the
observer error dynamics (8) with ¢ as the state and X, as the input is input-to-state practically
stable (ISpS). A control system X = f(x, u) is ISpS if there exist a class /"% function f, a class
A function y, and a non-negative constant d such that, for any initial condition x(0) and each
input u € £, [0, t), the corresponding solution x(¢) satisfies, for all ¢ > 0,

(@] < B(Ix(O)], 1) + y(llwll) + d (13)

where u, is the truncated function of u at t and ||| stands for the %, supremum norm.
In Reference [20], a similar assumption as Assumption 3(A) is made with respect to the dynamic
uncertainties.

Remark 3

It should be noted that Assumption 3 is a quite mild assumption and is in fact a nonlinear
generalization of the detectability of the unmeasured #-dynamics. To see this, let us assume that
¢y, is a constant output vector and G, is constant matrix. It is proved in the following that the
detectability of the pair (¢y;, G,) implies Assumption 3.

Since the pair (¢,;, G,) is assumed to be detectable, there exists a constant vector L € R™ such
that

A, =G, — Loy, (14)

“The ISpS notion was first introduced in Reference [25].
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ADAPTIVE ROBUST CONTROL 341

is Hurwitz. By choosing w(X;) = Lx;, from (5), it follows that A(X;) = A,. Hence, there exist two
positive-definite matrices P > 0 and Q > 0 such that

PA,+ AP = —0Q (15)
Let
Vi(e) = &"Pe (16)
Then, we have
71(lel) < Vile) < v2(lel) (17)

where 71(lg]) = Amin(P)|e]* and 5(Je]) = Amax(P)|e]>. Noting Assumption 1, from (8), the derivative
of V,(¢) satisfies

Ve < = Amin(Q)[&]? + 2[e] Amax(P)(|1A] + |LI|A,])
< = Amin(@)lel® + 2[e] Amax (P) (O + | L131) (18)
)“ﬁlax(P)
)Lmin(Q) - ce/lmax(P)

where ¢, >0 is any positive scalar satisfying ¢, < Amin(Q)/Amax(P). Noting that 6 + |L||5, is
a function of X, and ¢ only and is bounded with respect (w.r.t) to ¢, there exist a class 4, function
7.(%;]) and a positive constant d, such that y,(|%]) +d, = A2.(P)(S + |L|5,)%/
Amin(Q) — €¢ Amax(P). Thus, (18) becomes

< - cs/ﬂtmax(P)|8|2 + (5 + lLlél)Z

Vs< ‘CEVE(S)+VS(!>EZ|)+d8 (19)

which implies that Assumption 3(A) is satisfied. Since 4, is Hurwitz, B of Assumption (3) is also
satisfied.

Remark 4
If the unmeasured state # is of dimension 1, i.e. m = 1, then, as long as ¢,(X;) is non-zero,

a nonlinear w(x;) can be explicitly constructed as follows. Let k, be a positive design constant and
choose w(X;) to satisfy

- 0w _
—ky = gy(x1) — o O (X1) (20)

The differential equation (20) has the following explicit solution:

X, = k
o(x) = J g&) Ty g 21)

o @u(X)
In such a case, A(x;) = — k,. It is thus obvious that Assumption 3 is satisfied. Furthermore, the

exponential convergence rate for the unperturbed observer error dynamics (8) can be arbitrarily
placed.

The following lemma, which is proved in Reference [20], will be used in the subsequent ARC
controller design.
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Lemma 1!

If (12) holds, then, for any constants ¢ € (0, ¢,), any initial condition ° = ¢0) and #° > 0, for any
function 7 such that 5(%;) = 7,(]%|), there exists a finite T° = T°(, r°, &%) > 0, a nonnegative
function D(¢) defined for all ¢ > 0 and a dynamic signal described by

F=—cr+%%)+d, r0)=r° (22)
such that D(t) = 0 for all t > T° and
Vie) < r(t) + D(t) (23)

for all t > 0 where the solutions are defined.
From (12) and (23), it follows that [20]

le(®] <1 '(r(8) + D) <1 ' @2r(®) + 71 ' (2D(©) (24)

4. DISCONTINUOUS PROJECTION-BASED ARC BACKSTEPPING DESIGN

4.1. Parameter projection

Let 0 denote the estimate of 0 and 8 the estimation error (i.e. § = § — 0). Under Assumption 1,
a discontinuous projection-based ARC design [12] will be constructed to solve the robust
tracking control problem for (1). Specifically, the parameter estimate § is updated through
a parameter adaptation law having the form given by

0 = Projs(I'7) (25)

where I is a symmetric positive-definite (s.p.d) diagonal adaptation rate matrix, 7 is an adaptation
function to be synthesized later, and the projection mapping Proj(-) =
[Projg, (1), ...,PI'Ong('I,)]T is defined by Sastry and Bodson [26] and Goodwin and
Mayne [27]

0 if 0;=0im and >0
Projs, () ={0 if 0;=0;p, and + <0 (26)
., otherwise
It can be shown [13] that for any adaptation function , the projection mapping (26) guarantees
Pl 0eQ,= {9: Oumin < 0 < Opmax )

_ 27)
P2 0TI 'Projs(I't) — 1) <0, Vr

4.2. ARC controller design

In this subsection, the ARC backstepping design [12] will be employed and extended to the
present case with dynamic uncertainties. In the first [ — 1 steps, the design procedure is the same

See Reference [20], Lemma 3.1.
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ADAPTIVE ROBUST CONTROL 343

as that in Reference [12], since the first [ — 1 steps do not involve the unmeasured dynamic
uncertainties . From step [, we will deal with the effect of the unmeasured state # by replacing it
with its estimate for high performance. The effect of state estimation error will be dealt with via
certain robust feedback terms through the incorporation of a dynamic normalization signal for
a guaranteed robust performance.

4.2.1. Step 1 <i<Il—1 Atstepi, V1 <i<I[—1, we construct a control function «; for the
virtual input x; ¢ such that x; tracks its des1red ARC control law «;_ synthesized at step i — 1
(for simplicity, denotes ao(t) = y4(t)). Let z; = x; — ot 1, Ay(x, )=A(x, 1), p1(x1) = @o1(x4), and
recursively define the following functions:

di(%:, 0) = Z <P9; + @oi(X:),
(28)
' Oot; -
- 2 T A+ A, 1),
Then we have the following lemma, which is proved in Reference [12].
Lemma 2
At step i, V1 <i <1 — 1, choose the desired control function «; as
o;(Xs, 9: 1) = oy + g
A i-1 aoﬂ'_— 1 aOC -1
w=—2i—1— 0%, : ; . 29
o Zi-1 ¢ +J§1 ox; Xj+1+ e (29)
oa Oi—1 2
Ois = Oljs1 + Olisa,  Olist = — KisZi,  Kis = gi + 0 Co: +1CyiT ]

where g; > 0 is a constant, Cy; and C,; are positive-definite constant diagonal matrices, and o, is
a robust control term satisfying the following two conditions

() zi(ous — 0T + A) <og

. (30)
(i) zio2 <O
in which ¢; is a positive design parameter. Then the ith error subsystem is
5 i-1 A
fi= 2 = 2o — K+ (i — 076+ B) = =520 (31)
and the derivative of the augmented p.s.d. function
» Vi=Vioi+3zi, Vo=0 (32)
satisfies
K:Zizi-%-l—‘— Z {-—kjszf-l—zj(ijsz 9 ¢J+A)— ]61021'} (33)
ji=1

(The fact that dxe/00 = 0 is used in the above descriptions.)
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4.2.2. Step I. Noting (1) and (11), the derivative of z; = x; — o;_; is
Zr=x141 + 0T0g + oulo + (0 + 0(%) — &) + Ay — 644 (34)

where d&,_; = Y521 (60— 1/0x;) (xj+ 1 + 0% @o; + A;) + 8oy~ /000 + doy_1/0t. If we treat x;; as
the input, we can synthesize a virtual control law «; for x;.; such that z; is as small as possible.
Since (34) contains unknown parameters 6, uncertain nonlinearity A;, and the estimation error ¢,
the ARC approach proposed in Reference [12] will be generalized to accomplish the objective.
The control function «; consists of two parts given by

(Xl(')_cls r, CO 5 C5 05 t) = Uyq + Uis

G =—2—1 — 0T g — @3:((0 + 0 + o(x))

-1

00— 4 AT 00— 1
* jgl 6Xj (xj+1 + 9 ¢6j) + (31?

(33)

O = Oust + Uisa, Oyt = — Kisz,  kis = gy

Ooty
hcm

2
20 + 1CuThil* + colth]?

.+.

where g; and ¢, are positive constants, i, £ @q, Co and Cy; are positive-definite constant
diagonal matrices to be specified later. Let z,+; = x;4+; — o; denote the input discrepancy.
Substituting (35) into (34) leads to

0oy 1 4

G+ kszi =201 — 21 + —9~T¢l—¢/zT8+Zz—W0 (36)

where ¢; 2 — Y121 (00— 1/0x;) @55 + @or + ("o and A2 — Y171 (0y—1/0x;)A; + A, Choose
Vi=V,_, +%z7. From (33) and (36), its time derivative is

. ! ~ ~ 0oli_q &
Vi=zizioq + Z { - ksz;g + zj(%js2 — 9T¢j - %TS +4;) — ajé : sz} (37)
j=1

where y/; = 0, Vj < L Noting that |A)| < §(%;,t) 2 Y2} [0ey—1/0x;] ; + &, the ARC design [14]
can be applied to synthesize a robust control function a, satisfying the following two conditions

() zi(ouss — 0" — YTe + A) < e)(1 + p?)
(38)
(i) zoys, <0

where €, is a positive design parameter which represents the level of attenuation, and
p(t) £ y1 1 (2D(0)).

Remark 5
One smooth example of ay,, satisfying (38) can be found in the following way. Let h; be any
smooth function satisfying

by = 10ul il + Ialys *(2r) + S (39)
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ADAPTIVE ROBUST CONTROL 345
where 0y = Opmayx — Omin. Then, oy, can be chosen as
1
wﬂ=—Z—Mf+WWﬂl (40)
€

It is obvious that Condition (38) (ii) is verified. From (24), it follows that

2oy — 07y — Yle + Al) zousz + |20 10m 1l + z1llWaly s H(2r) + |zl p + lzlllgl

1 2 1 2
=— (2—\/‘621}11121‘ - \/Zz> - <2—\/a Z11EA —\/6—110) +e+ €’

<el+p?)

(41)

Condition (i) of (38) is thus satisfied. Other smooth or continuous examples can be worked out in
the same way as in References [12, 13, 15].

4.2.3. Step i (I + 1 <i<n). From (35) and (1),

i—-1

. a(xl &x_ .
Ofi—l-—jzl 8x11 (xXj41+ 07 (001+(Pm’7+A) arlr
60(1 1 (30(1 1 50(1-“1 A aOCi..l
. 42
m; i “2)
= 8i-1)c + Li-1)u
where
. i1 oo A _ Ooi—q
A~ 1y = z axl{x]+1+9 4001+(Pn;(Co + 0 + w(x)} + arlr
j=1 j
00—y ; Do Ooioy g 00—y
imilp 43
2 Co+j; %, G+ (43)
il du Qo1 A
i — 1y = ey L g A; i 0
o‘(l Lu j§1 an { Poj — %J(C +8 + }+ 66

In (42) and (43), noting (9) and (22), & 1), is calculable and can be used in the design of control
functions, but é&;- 1), cannot due to various uncertainties. Therefore, it has to be dealt with via
robust feedback in this step design. The details are given below.

To make the development general, mathematical induction will be used to prove the general
results for all intermediate step designs. At step i, the ARC design similar to that used in step [ will
be employed to construct a control function o; for x;4 ;. Let z; = x; — o;—; and recursively define

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:335-356



346 B. YAO AND L. XU

the following functions

i—1 aa.~1 i—-1 aa‘ml
¢i=— —— Pg — — T+ T + 0
= axj J jgl axj nj n
- i-1 aa__l
Ai = — : A + Ai (44)
121 ox;
i—-1 ﬁoc'_l
Vi= 2 —— Qi+ Pu
j;l axj nj 1

Lemma 3
At step i, VI + 1 < i < n, choose the desired control function «; as

OCi(')zia r, COw Ca 9; t) = Ui + Qs

Ug= —Zioy — 0T g — 4051'{50 + (0 + o (%)} + g1 45)
0oti 4 2 2 2
Oig = Ot + Oliga,  Ois1 = — KysZiy,  kig = gi + 0 Coi| +1CsiTil* + coliil

where g; > 0 are constants, Cy; and C,; are positive-definite constant diagonal matrices, and
o5 Satisfies

(i) ziloua — 0T — Yle + A) < i1 + p?)

(46)
(i) zo, <O
Then the ith error subsystem is
, AT T e 00— q A
Zi=2zZit1 — Zi-1 — kisZi + (s — 0" s —Yie + A) T 0 (47)
and the derivative of the augmented p.s.d. function
Vi=Viei+52¢ (48)
satisfies
. d ~ ~ 00— &
I/i =Z;iZi+1 + Z { — kjSZJQ“ + Zj(ajsz — QT(bj — lp']l“g + AJ) — aajé ! GZj} (49)
j=1

Proof. Itis easy to check that the steps [ + 1 and [ + 2 satisfy the lemma. So let us assume that
the lemma is valid for step j, Vj <i — 1, and show that it is also true for step i to complete the
induction process. From (44), we have

8+ 9 (50)
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Since 0, is known, there exist ;5 (%:, 7, (o, {, 0, t) satisfying (46) as in the step [ design. The control
law (45) can then be formed. We express the derivative of z; as

Zp =X — Uiy

= X1+ 0" 0pi + oniCo + (0 + 0(F) — &) + A; — dg—1)c (51)
il Bo;— 4 ~ pe 00— 1 &
e I ({4 Ay ——510
= an { Doj $ﬂJ(C + 8) + J} o0
Substituting x; 1 = z;+1 + o;, (45) and (44) into (51), it is straightforward to verify that (47) and
(49) are satisfied for i. This completes the induction process. O

4.2.4. Step n. This is the final design step. By letting u = x, 4, the last equation of (1) has the
same form as the intermediate equations [ + 1 < i < n — 1. Therefore, the general form (44)-(49)
applies to Step n. Since u is the actual control input, we can choose it as

u= Ocn(x’ T, CO: Cn ga t) (52)
where «, is given by (45).

Theorem 1
Let the parameter estimates be updated by the adaptation law (25) in which 7 is chosen as

T= i $jz; (53)

Let cpj and cgy; be the ith diagonal elements of the diagonal matrices Cp; and Cyy, respectively. If
the controller parameters Cy; and C,, are chosen such that c3y; > (n/4) Y= 1/cg5, Vk, i, then, the
control law (45) guarantees that

(A) In general, the control input and all internal signals are bounded. Furthermore, V, is
bounded above by

V(®) < exp( = 2ut) Va(0) + +- [1 = oxp(— Adl] + j exp[ — alt — ]P0 A0 (54
n nJ0

where 2, = 2 min {gy, ..., g,} and € = ¥"_, €;. Noting that p(t) = 0 for all t > T°, V,(t) is
ultimately bounded by

Va(o0) < (35)

>—>|m

n

(B) If after a finite time ¢, A = 0and A; = 0, i.e. in the presence of parametric uncertainties and
dynamic uncertainties only, then, in addition to results in (A), asymptotic output tracking
(or zero final tracking error) is also achieved.
Proof of the theorem is given in the appendix.

Remark 6
Results in A of Theorem 1 indicate that the proposed controller has an exponentially
converging transient performance with the exponentially converging rate 4, and the final tracking
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error being able to be adjusted via certain controller parameters (g; and ;) freely in a known
form. Theoretically, this result is what a well-designed robust controller can achieve. In fact, when
the parameter adaptation law (25) is switched off, the proposed ARC law becomes a deterministic
robust control law and Results A of the Theorem remain valid as in References [13, 15].

Results B of Theorem 1 implies that the proposed controller is able to make full use of the
nominal structure of the system and eliminates the effect of parametric uncertainties and dynamic
uncertainties through certain parameter adaptation laws. As a result, asymptotic output tracking
is obtained without using infinite-gain feedback (i.e. none of the nonlinear gains used in the
control law approaches infinity as time goes infinity). Theoretically, Result B is what a well-
designed adaptive controller can achieve.

Remark 7
It is seen from (54) that the transient tracking error is affected by the initial value V,(0) also. To

further reduce transient tracking error, the idea of filter initialization [5, 15] can be used to render
V,(0) = 0.

5. DESIGN EXAMPLE AND COMPARATIVE SIMULATION RESULTS

In order to illustrate the above ARC algorithm and compare it with the previous RAC design
algorithms, simulation results are obtained for the following simple example which is used in
Reference [20]:

=—n+xi+A (56)
X1 =%, +0x2+ A, +2p (57
X, =1u (58)

y=X1 (59)

where 0 is an unknown constant parameter, A and A,(t) are two unknown bounded disturbances
and 7 is the unmeasured state. For comparison purpose, we take exactly the same simulation
values as in Reference [20] for 6, A and A,(), i.e. 0 = 0.1, A = 0.5 and A,(f) = 0.6sin(2¢). The
bounds describing the uncertain ranges in (2) are Qy = (— 1, 3), d = 2 and §, = 2. The control
objective is to track a desired trajectory x,(t).

Let £ = n — w(xy), with = — (1 + 4)/2)x; and A is a negative design parameter. Then, the
observer design in Section 3 can be applied. Specifically, the filters are implemented as

. 0
by = Alo + Ao(xy) + xF — = x, (60)
0x4
; 0w
Cl:ACl—é_xlx% (61)
The equivalent expression for the unmeasured state # is
n="=Co+ 00+ o) —¢ (62)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:335-356



ADAPTIVE ROBUST CONTROL 349

where ¢ is the state estimation error which is governed by the following dynamic system:

144
é=A8—A~—%A1(t) (63)

Taking V, = 4¢2, we see that (12) is satisfied with y, = 0. Thus, Assumption 3 is satisfied, and the
general design procedure in Section 4 can be applied to obtain an ARC controller. Furthermore,

since ¢ is bounded above by an unknown constant as seen from (63), the dynamic normalization
signal r is not needed and the resulting simplified ARC controller is given below

Step I:
Zy =X — X, (64)
¢y =xi +2(, (65)
ae=—0x} —2(lo + {10 + w(xy) + %4 (66)
50 = —[g1 +(Cy1T1)* 124 (67)
Uiy = — [(OpP1)? + 01 + 1]z, /(4e,) (68)
0y = Olgg + Olyg1 + Xiga (69)
Step 2

Zy =X, — 04 (70)
b= -3+ 2 )
Ope = — 23 +2;::(x2 + 0x} + 200 + 20,0 + 2w) +—%éo +~gﬁ'§é1 +% (72)
Ogy = — [gz + <% C02>2 + (C¢2F¢2)2]zz (73)
gy = — [(0M¢2)2 + <%>2(5% + 1)]22/(462) (74)
U = 0Op, + Oogy + Oog (75)

The parameter adaptation law is given by
0 = Projs(T7), ©= 1z, + $as (76)

The following two cases are considered:

Case I: Set-point regulation. By setting x4 = 0, trajectory tracking comes to the set-point
regulation problem considered in Reference [20]. For the sake of easy comparison, the ARC
scheme is adjusted to employ about the same degree of control effort as that of the RAC scheme
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Output

2 3
Time (sec)

Figure 1. Set-point regulation in the presence of various model uncertainties.

100 . - : T

Control Input

2 3
Time (sec)

Figure 2. Control inputs in the presence of various model uncertainties.

[20] for the same initial conditions. The design parameters and initial conditions for ARC are
given as follows:

7(0) = x1(0) = x2(0) = 1, {o(0) = {4(0) =0, 0(0) = 0.5
A = — 10, gl B gz == 10, T = 1, Cd’l = C¢2 = 025 (77)
ng = 2, &1 = 30, &y = 300

The plots in Figures 1 and 2 show that the ARC scheme achieves a better performance without
using large control input. The parameter estimates of both controllers are given in Figure 3. It is
seen that both estimates do not converge to the true value. The reason is that the persistent
excitation condition is not satisfied.
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(2]

Parameter Estimate

0.51

2 3
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Figure 3. Parameter estimation of ARC and RAC.
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Figure 4. Tracking errors in the absence of uncertain nonlinearities.

Case 2: Trajectory tracking. To test the tracking capability of the proposed algorithm,
a sinusoidal desired trajectory given by x4 = 0.5(1 — cos(1.4nt)) is used. All design parameters
and initial conditions remain unchanged except 7(0) = 0 and x,(0) = x,(0) = 0. The following two
conditions will be considered:

(i) No disturbance: To test the nominal performance of the two controllers, simulation is first
run for the system without uncertain nonlinearities, i.e. A = A, = 0is used in the simulation. It is
seen from Figure 4 that the ARC scheme has a much better transient performance and final
tracking accuracy, which agrees with the theoretical results obtained in Theorem 1. Parameter
estimation is given in Figure 5, and it shows that the parameter estimate of ARC converges to the
true value. However, the parameter estimate of RAC does not converge because of the dynamic
uncertainties. It also can be seen from Figure 6 that the state estimate # converges to the true
value.
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(i) With disturbance: To test the performance robustness of the controllers to uncertain
nonlinearities, the assumed disturbances are used in the simulation, ie. A =05 and
A4(t) = 0.6sin(2¢). The tracking errors of both controllers are shown in Figure 7 with the control
inputs shown in Figure 8. The plots in Figure 9 shows that the state estimate does not converge,
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Figure 5. Parameter estimation in the absence of uncertain nonlinearities.
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¢ estimation in the absence of uncertain nonlinearities.

but it is robust with respect to the disturbances.

In this paper, an observer-based adaptive robust control (ARC) scheme is presented for a class of
nonlinear systems in an extended semi-strict feedback form, in which the unmeasured states enter
the system equations in an affine fashion. The form allows for parametric uncertainties, uncertain
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Figure 7. Tracking errors in the presence of various model uncertainties.
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Figure 8. Control inputs in the presence of various model uncertainties.
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Figure 9. State estimation in the presence of various model uncertainties.
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nonlinearities, and dynamic uncertainties due to the unmeasured states. In contrast to other
existing robust adaptive control (RAC) schemes, the proposed ARC scheme utilizes the structural
information of the unmeasured state dynamics to construct a nonlinear observer to recover the
unmeasured states. By doing so, in the absence of uncertain nonlinearities, the effect of dynamic
uncertainties associated with the unmeasured states is eliminated and an improved performance
is obtained—asymptotic output tracking is achieved in the presence of both parametric uncer-
tainties and the unmeasured states. In addition, the state estimation errors and uncertain
nonlinearities are handled effectively via certain robust feedback to achieve a guaranteed robust
performance.
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APPENDIX

Proof of Theorem 1. Noting z,,; = 0, from (49), (30), (38) and (46)
. » Oot; 2
Vv, <Y {_<gj+’#1cej
=
Oo

+z,.(<xj52—§T¢j—¢§s+z,.)—z,.ﬁé} (A1)

0
anz < > (A2)

Noting that Cg;' and T are diagonal matrices, from (25) and (26), we have

+ |C¢jr¢jlz + Cei¢j|2>zf

By completion of square

60(1_1

CQJZ+

7(Coi*0

n

n . n n n 2
Y 1Cet 012 = Y |Co;t Proja(Tn)> < Y, |Gy ' TP < Y. (Z |C;,.11“q>kzk|>
ji=2 = k=1

j=2 i=2 ji=2

"y < » |c;,-1r¢k|2z,%> (A3)
i=2 \k=1

Thus, if Cy; and Cy satisfy the conditions in the theorem, from (A2) and (A3),

! 0oi_q & " Oa; n & _
- X a5 0 Z( 5 100, Z+7 2 |ce,~1r¢>k|2z,%>
j=2 j=2 k=1
S| 0ot
<) 20 CG] z; + Z |CouLprl? 22 (Ad)
j=2
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From (A4) and (46)(i), (A1) becomes,
Vo< Y {—gizd+ej+€;p*0) < — AV + € +€p?() (A5)
ji=1

which leads to (54) and (55). The boundedness of zy, ..., z, is thus proved. Using the standard
arguments in the backstepping designs [5, 12], it can be proved that all internal signals in the first
1 — 1 steps are globally uniformly bounded. Furthermore, from x; = z; + o;_ 1, it follows that x; is
bounded. The boundedness of signals x, ... , x;, together with the bounded-input-bounded-state
Assumption 2 for the n dynamics and Assumption 3 for the observer error dynamics, implies that
1, &, and r are bounded. Thus, all filter states {,, { will be bounded. Thus, recursively using the fact
that x; = z; + «;_ 4, it is easy to verify that all intermediate control functions «; and states x; are
bounded. From (52) and (45), the boundedness of u is apparent. Theorem 1(A) is thus proved.

In the absence of uncertain nonlinearities, i.e. A = 0 and A; = 0, noting condition (ii) of (30), (38)
and (46), from (A1) and (A4)

Vi< X (=977 = coldPzi = 07 djz; — 207 e) (A6)
j=1
Define a new p.s.d. function Vj as
Vo=V, +30"0710 (A7)
Noting P2 of (27), from (A6), the derivative of V, satisfies

Vo< S { —g;2% — colPj 222 — z9Te} — 0Tc + 07T 10
j=1
< Y { =977 — ol 27 + Izl lel} (A8)
ji=1

" n
< - izd 4+ — ¢g?
j;l g] J 4C9
By B of Assumption 3, &(t) exponentially converges to zero, and thus &(t) € %, [0, co). From (A8), it
is easy to prove that z;(t) € #,[0, o). It is also easy to check that £ and Z; are bounded. Hence, by
the Barbalat’s lemma, z — 0 as t —» oo, which leads to Theorem (B).
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