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Abstract

A variable structure control scheme is developed for impedance
control of robot manipulators in the presence of both parametric
uncertainties and extemal disturbances. The specification of the
impedance is given in terms of a desired motion trajectory, a desired
interaction force trajectory, and a desired second-order impedance
function between motion errors and interaction force errors. Using
variable structure model reaching control, the desired impedance is
achieved in the sliding mode with robust performance. Furthermore,
the reaching transient response is guaranteed with prescribed quality.
Force tracking control can also be achieved with some special envi-
ronment constraints. To illustrate the method, simulation results are
given.
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1. Introduction

When a robot interacts with an environment, interaction
forces are generated that have to be accommodated rather
than rejected. In addition to position control, force control
is required to accomplish this task.

A number of force control schemes have been pro-
posed in recent years. Whitney [1] surveyed the bulk
of these approaches and gave a historical perspective of
the field. Despite the diversity of approaches, there are
two basic methods, hybrid position/force control [2-5] and
impedance control [6-16].

Impedance control was first proposed by Hogan [6]. In
this method, motion is commanded and controlled, and the
response for deviation from that motion owing to interac-
tion force is given in the form of an impedance. By proper
choice of the desired impedance, dynamic interaction may
be controlled to obtain the proper force response [6].

Robust implementation of impedance control by us-
ing adaptive control is discussed in [13-15]. As pointed
out in [13], an assumption is made that the rate of change
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of the system parameters is much lower than the rate of
adjustment of the controller gain. This limits the rate at
which the arm can maneuver [13]. In [14], the adaptive mo-
tion control schemes of a rigid robot [15, 17] are extended
to achieve robust impedance control against parametric
uncertainties of the robot by introducing a compensation
controller for motion control. Nevertheless, the transient
analysis of adaptive systems is still in its infancy, and few
significant results are available [18].

Variable structure control (VSC) as an alternative ro-
bust approach was first applied to trajectory control of
robot manipulators by Young [19]. In [20], a variable
structure model reaching control (VSMRC) strategy was
proposed. Model-reaching is realized by employing a dy-
namic sliding mode in the framework of VSC strategy.
This concept can be considered an extension of the dy-
namic compensation in linear control strategy. A dynamic
compensator is introduced in the sliding mode such that
its dimension is made equal to that of the system. The
resultant sliding mode can then be identified with the de-
sired model. By the use of VSC, the expanded system
is maintained in the sliding mode and model reaching is
realized [20, 21].

In this article, we present a novel robust impedance
control of robot manipulators in the presence of both para-
metric uncertainties and external disturbancces by using
VSMRC. The specification of the desired impedance dif-
fers from the one previously used [13, 14] in that the de-
sired interaction force trajectory is included in the desired
impedance in such a way that force tracking control is
made available with some special environment constraints.
Based on the VSMRC, the desired impedance is achieved
in the sliding mode in finite time. Furthermore, the reach-
ing transient response is also guaranteed with prescribed
quality. Simulation results of the robot moving on a ver-
tical surface are given to illustrate the proposed method.

This article is organized as follows. Section 2 gives the
robot manipulator model and its main properties. The
specification of the desired impedance and the proposed
VSC impedance controller are given in Section 3. Simula-
tion results are presented in Section 4, and a brief conclu-
sion is given in Section 5.

2. Dynamic Equation of Robot Manipulator

The dynamic equation of a general rigid-link manipulator
having n degrees of freedom can be written as

M(9)i+C(0,9)i+G@+IJT@F +fit)y=7 (1)

where ¢ is the n x 1 joint displacement vector, 7 is the
applied joint torque, M(q) is the inertia matrix, C(g, §)¢
is the Coriolis and centrifugal vector, G(g) is the gravi-
tational vector, F' is the interaction forces/ moments vec-
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tor on the environment exerted by the robot at the end-
effector, f(t) is the external disturbance, and J(q) is the
manipulator Jacobin matrix, which is assumed to be non-
singular in workspace 2 given by

10 =252 @

where z is the position and orientation vector of the end-
effector frame in the world space.

It is assumed that measurement of position, veloc-
ity, and force is available. Equation (1) has the following
properties that we will use

Property 1[17, 18]: For any finite workspace Q, M(g) is a
symmetric positive definite matrix. Moreover, there exist
k¥ > 0 and k" > 0 such that

KI< M(g)<k'I VgeQ 3)

Property 2[17, 18]: The matrix N(q, §) = M(g) —2C(g, 9)
is a skew-symmetric matrix.

Assume that the available values of M(g), C(g, 9), G (9)
are M(q),C(q,4),G(g), and the modeling errors are
bounded as

|AM(q)| < §M(g) AM(g) = M(q) — M(q)
|AC(q,§)| < 6C(g,4) AC(g,4) = C(q,4) — C(a,9)
|AG(q)| < 6G(g) AG(g) = G(q) - G(g)
|F (1)) < 8£(2) 4)

where |A| < B is true in elements, ie., |4;j| < Bij (in
the following, the operation of matrix is understood in the
same way). The modeling errors account for parametric
uncertainties of the robot and terms that are neglected
owing to computation efficiency.

In the world space, the dynamic equation of the robot
is given [3] by

M(z)i + C(z,2)z + G(z)+ F+ F(z,t) =T (5)
where
M(z) = J"T(9)M(9)I " (9)
C(z,2) = I7T(9)C(g, )T~ (a)
- I T (@M(9)T (@) ()T X(a)
G(z)=JT(q)G(9) F(z,t) =T T(9)f(t)
T=J"(gr (6)

From (6), the estimated values of M(z),C(z,z),G(z) can
be calculated by

M(z)=J"TM(g)J !
C(z,2)=J"TC(q,§) - T TMIJJ !
G(z)=J"TG(q)

and the modeling errors are bounded as

(")

221

|AM(z)| < 6M(=)
|AC(=, 2)| < 6C(z, %)

§M(z) = |J~T|sM(g)|7 7"
8C(z,2) = |J~T|6C(q, 1T
+ | T|IsM(g)|J 1T Y
§G(z) = |7-T|6G(q)
§F(z,t) = |- T|65()

|AG(2)] < 6G(=)

|F(z,0)| < §F(=,1) (8)

Equation (5) has the following properties
Property 3: For any finite workspace Q in which J(q) is

nonsingular, M(z) is a symmetric positive definite matrix
with

E.I<M(z)<k,I VgeQ 9)
where
kl k//
r 5 g T
L= M=y
¢ = r&a‘)z([amax(l (@)] c2= l;grlll[d min(J(0))] (10)

and o(J) means singular value of matrix J.

Proof: From (6), we have

Y M(z)y=("'9)TM()(J"'y) VyeR"

From property 1, then

KyT(I-TI )y <y"M(z)y < kK'yT (T TT )y

Ko (I y < y"M(z)y < Kol (T vy
/ "

— Ty < y"M(z)y < 5—=y7
A VSV M Z T
This leads to (9).

Property 4 [17): The matrix N(z,%) = M(z) —2C(z, %) is
a skew-symmetric matrix.

3. VSC Impedance Controller

The desired impedance is specified as

e=a(f)—24t) ¢ =FO—-Fat) (1)

where My, Bm, K are the desired inertia, damping, and
stiffness; z4(t) is the desired motion trajectory in the world
space; and Fy(t) is the desired interaction force trajectory.
Usually, M, Bm, Km, K are chosen as diagonal matrices
to obtain decoupled response.

Remark 1: The specification of the desired impedance usu-
ally consists of a desired motion trajectory, and a desired
dynamic relationship between the motion errors and the
interaction forces [6, 13, 14]. The regulation of interaction
force is indirectly achieved by proper choice of the desired



impedance. Here, if we set K; = I, Fy(t) = 0, the desired
impedance will be the same as the one used in [13, 14].
The desired interaction force Fy(t) is introduced such that
interaction force can be directly controlled with some spe-
cial environment constraints. The reason for introducing
K is that when we set K; = 0, robust motion control is
achieved against bounded interaction force such as friction
force.

The robust impedance control problem can be stated
as that of designing a controller so that the desired
impedance (11) is achieved under the modeling errors (4).
For this purpose, we will use the VSMRC method. First,
a dynamic compensator is introduced:

where z is the n-dimensional state vector of the compen-
sator, A is any semi-negative definite matrix, and Ky,
Kyz, Ky, are specified to shape the dynamic sliding mode
so that the desired impedance is achieved. The compen-
sator is employed in forming the switching function

s(e,é,2) = ¢+ Fie + Fyz (13)
where F3 is any nonsingular matrix. The resultant sliding
mode {s =0, $ = 0} is described by

z=—F;Y(é+ Fie)
z=—F;7Y(é+ Fé) (14)

Substituting (12) into the sliding mode equation (14), we
have

€+ (F1 — P AF; ' + 3Ky, )6 + (F2 Ky, — FoAFS 1 Fy)e

= -—Fsz,e! (15)

Comparing (15) with (11), we see that, if Kp,, K., K,
are chosen as

Ky: = F; Y (M;' By — Fy + FAF;Y)
K, = F; Y (M K., + F,AF; ' Fy)
K;. = F; MUK, (16)

the sliding mode equation (15) will be identical with
the desired impedance (11). That is to say, the desired
impedance is achieved in the sliding mode.

The control torque can be determined so that the sys-
tem reaches the sliding mode in finite time and has pre-
scribed reaching transient response.

Theorem 1: For the robot manipulator (5) with the mod-
eling errors (8), the system achieves the desired impedance
(11) if the following control torque is applied:

T = M(z)ieq+Clz, &)&eq+G(z) — Ty— Ds — esgn(s)+ F
(17)
where

Eeq = 24(t) — Fre — Fyz
Zeq = £4(t) — F1€ — F3(Az + Kpse + Kozé + Ky )
Ts = [(Ta)s, - -, (Ta)n]"
(Ta)i = (6T )isgn(s;) i=1,...,n
8T = 5M(2)|&eq| + 6C(2,8)|dcq| + 6G(z) + 6F (2, t)
€>0 sgn(s) = [sgn(s1),...,s9n(sn)]T (18)

D is any positive definite matrix and sgn(.) is the sign
function. Moreover, the reaching time ¢, in which the
system reaches the sliding mode is

2 c3 />
tr Stmax lmax = 'c;]‘n(l + i VO) (19)

where
o = 2Amin(D) —e 2
3 = ———k'z' 4 = k7

1 .
‘/0 = §Sg‘M(Zo)$o Sg = S(CO’eO)ZO)

and the reaching transient response is shaped by

lsll < [ [(VVo + Lyexp=3 =] (20)
k; C3 C3

where Amin(D) means minimum eigenvalue of the ma-
trix D.

Proof: For the robot manipulator (5), we choose a Lya-
punov function as

1
V= EsTM(z)s (21)

From property 3, we have
1 1
ghellsll <V < SEZ]lslf? (22)

Differentiating V' with respect to time yields

V =sTMs + %STMS
=5T M(& — £¢q) + 57 C(z, £)s
=" [T — M., — Ct.q — G(z) — F — F(t)] (23)

where property 4 has been used to eliminate the term
1/25sT M s owing to the time nature of inertia matrix. Sub-
stituting control torque (17) into (23) and noticing (22),
we have

V=-sTDs— csngn(s) -sTTy
~ sT[AMé.q + ACz,q + AG + F]

n
<-sTDs— cz Isi| — sTTy + |s|T6T
i=1
< = Amin(D)|ls]|> ~ €lls]|
s —C3V—C4\/-‘; (24)
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So

VW< (VW + i‘l-)exp_%“—‘-ci
C3 C3

(25)
which means that in finite time V = 0, i.e., s = 0. More-
over, from (22), the reaching transient response is shaped
by (20). The upper limit ¢max of the reaching time ¢, is
solved by setting the right side of (25) equal to zero, which
is given by (19). Hence, the theorem is proved. QED.

Remark 2: In the above theorem, the role of the discontin-
uous torque T} is to overcome the modeling errors so that
the system reaches the sliding mode in finite time. Intro-
ducing the discontinuous term esgn(s) enhances this effect
and enables us to explicitly control the reaching transient.
As can be seen from (19), the larger € and Amin(D) are,
the smaller ¢, will be, i.e., the reaching transient will be
shorter. However, if € is large, in practice a strong chat-
tering would probably appear, owing to its discontinuity.
Therefore, the better choice is to take small € and large
Amin(D), so that the reaching transient is rapid enough
and at the same time the chattering is relatively small [22].

Remark 3: In contrast with [13, 14], in which the system
response asymptotically follows the desired impedance,
here the desired impedance is achieved in finite time and
the reaching transient response is also guaranteed.

Remark 4: The 2n-dimensional robot manipulator equa-
tion (5) incorporating the n-dimensional dynamic compen-
sator (12) forms a new 3n-dimensional system. The dy-
namic sliding mode equation are 2n-dimensional motion,
which can be selected to be identified with the desired
model (here, the desired impedance). This is the main
characteristic of the VSMRC strategy.

For real-time implementation, the control torque
should be converted into the joint space.

Theorem 2: For the robot manipulator (1) with the mod-

eling errors (4), the system achieves the desired impedance
(11) if the following control torque is implemented:

T= M(Q)q'cq + é(q; ‘i)q.eq + G(Q)

—JT (T4 + Ds + esgn(s)) + JTF (26)
where
q.eq = J-I-i'cq
eq = J_l(i'eq - jdeq) (27)

Remark 5: The control law (26) is discontinuous across
sliding surface. Such a control law leads to control chat-
tering in practice. Chattering is undesirable because it
involves high control activity and may excite the high-
frequency dynamics neglected in the course of modeling.
We can use the concept of boundary layer [23] to eliminate
the phenomenon, that is, replacing sgn(s;) by saturation
function sat (s;/A;) where A; is the boundary layer thick-
ness. This leads to the system response within a guaran-

M

teed precision as shown in the simulation.

From the above theorem, by application of the con-
trol torque (26), the controlled robot will behave according
to the desired impedance (11) in a finite time. The over-
all stability of the system is then equal to the closed-loop
system stability of the desired impedance (11) and the in-
teractive environment dynamics. It is assumed that the
desired impedance has been specified in such a way that
when it is combined with the environment dynamics, the
resulted closed-loop system is stable. Thus the overall sta-
bility of the suggested method can be guaranteed.

Since the specification of the desired impedance to
achieve the closed-loop system stability depends on the
environment dynamics, we do not discuss it in general. We
use one example to illustrate it. Without loss of generality,
suppose that the environment has the following dynamics

M.i+ Bt + K. (z —z.)=F (28)

where z. is the equilibrium position, M., B., K. are the
inertia, damping, and stiffness of the environment respec-
tively, and are assumed to be semi-positive definite matri-
ces. Combining (28) with (11), the closed-loop system is
expressed as

(M, + Ky M,)z + (Bm + Ky B.)z + (Km + K,K,);;

= MnZi+ Bnza+ Knza+ K;Fg+ KiK.z, (29)

Let Ky = I, and Mp,, B, K in the desired impedance
be positive definite matrices; the closed-loop system (29)
is stable.

‘We now show that the proposed controller can achieve
force tracking control with some special environment con-
straints.

3.1 Robust Hybrid Position and Force Control

When the robot comes in contact with the environment,
in the normal of the contact surfaces, contact force needs
to be controlled, while along the tangent of the contact
surfaces, motion control is needed [2, 3].

Here, we will consider a special case of this problem.
The normal directions are assumed along some coordinate
axes that are denoted as the z; subspace, and the tan-
gent directions are along other coordinate axes that are
denoted as the r, subspace. Suppose that in the con-
strained subspace z;, the environment is assumed to be an
elastic model with known stiffness K, (either from force
sensor or from the environment). Then, the interaction
force F is

F= [ﬁi] Fy = K.zy (30)
where F, is tangential friction force. =~ The desired
impedance (11) is now specified as

My . B . Ko _ I
(31)



= [ 248] o= ")

where M, Bmi, Kmi are any positive definite matrix,
z,4(t) is the desired motion trajectory in the tangent, and
Fy4(t) is the desired normal contact force. The desired
trajectory zs4(t) is specified as

zfd(t) = K:lFfd(t) (32)

The compensator (12) is calculated by (16) and the control
torque is given by (26) so that the desired impedance (31)
is achieved. Then, substituting (30) and (32) into (31),
the closed-loop equation is given by

Mmiéz, + Bmiés, + (Km1 + Kc)ez, =0

Mm2éz, + Bmzéz, + szez, =0 (33)

from which we obtain

ez, =0 e;,—0 er, =K. €5, —0

Hence, in the constrained subspace, the system exerts the
desired contact force Fy4(t) on the environment, while in
the unconstrained subspace z,, the system follows the de-
sired motion z,4(t) against friction force F, of the envi-
ronment.

3.2 Robust Constrained Motion Control

When the robot is in contact with rigid surfaces, kinematic
constraints are imposed on the manipulator motion [4, 5].
Supposing that the constraint surfaces are described as

B(z)=0 &(z)=[¢:(2),...,dm(z)]T (34)

Then in the absence of friction force, the generalized con-
strained force [4, 5] is given by

T
9% _

where Fy is a vector of generalized multipliers associated
with the constraints. In this case, the motion on the con-
straint surface (34) and the generalized constrained force
F, or the generalized multipliers vector Fy, have to be
controlled. The problem has been extensively studied
in recent years as a singular system of differential equa-
tion [4, 5].

We now consider a particular case of the problem
where the constraint surfaces are assumed along some co-
ordinate axes, that is,

z;=0 z;:[zl,...,zm]T (36)

The motion on the constraint surface (34) is then com-
pletely described by the z, = [Zm41,...,Zn] subspace.
The interaction force F' is given by

_ | Fr
where friction force F), is also considered.
The desired impedance is specified as

N N P S

(37
_| 0 _ | Fra(®)

where M1, Bm2, Km2 are any positive definite matrix.
The compensator (12) is calculated by (16) and the control
torque is given by (26) so that the desired impedance (37)
is achieved. On the constraint surfaces (36), from (37), we
have '

F, f— F fd(t) =0
MmZEs, + Bmzé::, + KmZCz, =0 (38)
That is, the robot exerts the desired generalized con-
strained force Fy4(t) on the environment. In the uncon-

strained subspace z,, clearly, the robot follows the desired
motion zp4(t).

4. Simulation

Figure 1 shows a two-link robot manipulator moving on a
vertical surface S. The dynamic equation of the robot is
given by

Figure 1. Configuration of the robot.

M(9)i+C(0,9)§+G@)+JIT(QF =7  (39)

where
myl? +ma(L +12, maLylca cos gz
M= +I) + I + 2maLylea cos gz +mal + I
maLileacosqz + malZy + I, malZ + 1



. _ | =m2L1lc2g2singy
Cle,9) = [ mg L1lc2q1 sin qa

—m3yL1le2(41 + ¢2) sin Qz]
0

G(g) = [(mllcl + myLy)g cos g1 + malcag cos(q: + ¢2)
maleag cos(q1 + ¢2)

J(g) = [“Ll sing; — Lasin(q + ¢q2)

L; cosqy + Lz cos(q1 + ¢q2)

—Lysin(gq; + ¢2)
L cos(q1 + q2)

Actual parameter values of the robot are

Li=1m Ly;=05m l,=05m I5=025m

I = 2kgm? I, =2kgm® m;=10kg my=10kg d=1m

The exact values of my, I are assumed to be unknown with
their estimated values and parameter boundaries given as

g =bkg I, =1kgm® 6my=>5kg 6I, = lkgm?

The boundary of the modeling errors (4) is now given by

6m2(L"1’ + 132 6m2(L11¢2| cos QQI
+2L1lc2|cos qa|) + 61, +i%) + 61,
M =
dma(Lyles| cos ga| + 12,) dmal%, + 61,

+01,

_ [ dma2Lilea|g2sings| 6maLiles|(dy + g2)sin g
6C = .
dmaLyl.2|¢; sin g 0

G = | 6m291L1 cos g1 + lea cos(q1 + g2)|
6malcag| cos(q1 + ¢2)|

In the first simulation, the surface S is assumed to
be elastic with the equilibrium position at z = 0. The
interaction force F on the environment is

F= [?:] fn =k¢z ft =/‘|fn|syn(g)

k. =4000N/m p=02 z>0

where u is the coefficient of dry friction between the end-
effector and the surface S. The desired impedance (31) is

chosen as :
Mml(é.z + blé, + kle,) = —eg,
€y + baéy + kaey =0 (40)
where
My =10 by =40 k=0 b3=30 ky=225
which ensure the closed-loop system response (33) is de-

coupled and critically damped. The switching function is
chosen as

225

s(e,é,2) =é+z

(41)

and the dynamic compensator determined by (12) and (16)
is

z=Az+ sze + K, é +Kf,ef

The control torque is calculatedby (26) where sgn (s;) is
replaced by sat (s;/A;) and the parameter values of the
controller used are

1000 . _foos
D‘[ 1000] e=1 A= [0.05]

Simulation results are shown in Figures 2-6. Figures 2 and
4 show the time responses of motion and contact force,
which verify the motion and force tracking control of the
proposed VSC impedance controller. The time response of
the switching function in Figure 5 implies that the desired
impedance is achieved. Robot joint torques of Figure 6
demonstrate the elimination of chattering by use of the
boundary layer technique.

(X

04

0.2

— Actual position y -—— Desired position y

2 25 3 as 4
Time (sec)

o 0.5 1 15

Figure 2. Time response of position y.
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Figure 3. Tracking error of position y.



80

40

201

""" Friction force

15 2 26 3.6 4
Time (sec)

Figure 4. Time response of interaction force.
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Figure 5. Time response of sliding surface.

200
150
100
sol
__________ ——m e T T
e
o
—Jdoint 1 ~——-Joint 2
-850 . A . , A A
o 0.5 15 2 25 3 35 4
Time (sec)

Figure 6. Joint torque of the robot.

In the second simulation, the surface S is assumed to
be rigid. The constraint function (34) is given as

z(t)=0

The interaction force is given by

F= [.%] ft = plfalsgn(y) p=0.2

The switching function is the same as (41). The parameter
values of the desired impedance (40) and the controller are
chosen as

Mm1=100 bl=0 k1=0 b2=30 k2=225

ae[o ] 0

[1000

The simulation results of Figures 7-10 verify the mo-
tion and force tracking control of the proposed impedance
controller in constrained motion control.
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Figure 7. Tracking error of position y.
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Figure 8. Time response of interaction force.
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Figure 9. Time response of sliding surface.
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Figure 10. Joint torque of the robot.




5. Conclusion

In this article, we have considered the applications of VSC
to the impedance control problem of robot manipulators.
The specification of the desired impedance [13, 14] is gener-
alized to include the desired interaction force so that force
tracking control can be achieved with some special envi-
ronment constraints. The motion error and the interaction
force error are related by a second-order impedance func-
tion. Based on VSMRC, the desired impedance is achieved
in the sliding mode in finite time and is robust against both
parametric uncertainties and external disturbances. The
reaching transient can also be guaranteed with prescribed
quality. Simulation results verify the performance of the
proposed controller.
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