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Adaptive robust control of a class of nonlinear systems in semi-strict feedback
form with non-uniformly detectable unmeasured internal states
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SUMMARY

This paper proposes a novel control method for a special class of nonlinear systems in semi-strict feedback form. The main
characteristic of this class of systems is that the unmeasured internal states are non-uniformly detectable, which means
that no observer for these states can be designed to make the observation error exponentially converge to zero. In view
of this, a projection-based adaptive robust control law is developed in this paper for this kind of system. This method
uses a projection-type adaptation algorithm for the estimation of both the unknown parameters and the internal states.
Robust feedback term is synthesized to make the system robust to uncertain nonlinearities and disturbances. Although the
estimation error for both the unknown parameters and the internal states may not converge to zero, the tracking error of the
closed-loop system is proved to converge to zero asymptotically if the system has only parametric uncertainties. Furthermore,
it is theoretically proved that all the signals are bounded, and the control algorithm is robust to bounded disturbances and
uncertain nonlinearities with guaranteed output tracking transient performance and steady-state accuracy in general. The class
of system considered here has wide engineering applications, and a practical example—control of mechanical systems with
dynamic friction—is used as a case study. Simulation results are obtained to demonstrate the applicability of the proposed
control methodology. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The control of nonlinear systems with various kinds of uncertainties is receiving more and more attention these years.
Typically, the uncertainties of the system fall into two categories: (i) repeatable and constant unknown uncertainties
such as unknown physical parameters, (ii) non-repeatable uncertainties such as external disturbances and the
imprecise modeling of some terms in the system dynamics. To deal with these uncertainties, two nonlinear control
methods, the deterministic robust control (DRC) [1–3] and the adaptive control (AC) [4, 5], have been developed.
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The deterministic robust controllers are able to guarantee transient performance and final tracking accuracy in the
presence of various kinds of uncertainties. However, some problems like switching [1] or infinite-gain [3] feedback
will happen, which are undesirable for industrial application. In contrast, the adaptive controllers [4, 5] are able to
achieve asymptotic tracking in the presence of parametric uncertainties without using discontinuous or infinite-gain
feedback. However, this approach may result in unstable closed-loop system in the presence of external disturbances.
To remedy, a modification method called robust adaptive control (RAC) [4] has been developed to robust the system.
But some trade offs have to be made, since the property of asymptotic tracking may be lost using this technique.
In [6, 7], an adaptive robust control (ARC) algorithm has been proposed, which incorporates the design methods of
DRC and AC effectively. The resulting ARC controllers have the advantages of both DRC and AC while overcoming
their practical limitations. The proposed ARC algorithm has been successfully applied to various systems such as
electro-mechanical systems [8, 9] and electro-hydraulic systems [10].

Besides parametric uncertainties and uncertain nonlinearities, some systems may be further subjected to dynamic
uncertainties. This kind of system has exogenous dynamic systems whose states cannot be measured. The control
of this kind of system has received more and more attention in the recent years not only because there are few
previous results available, but also due to the many practical applications of this kind of system, e.g. dynamic
friction model in [11, 12] and the control of eccentric rotor in [13, 14]. In [13], an adaptive controller was designed
for a class of extended strict feedback nonlinear systems in which the unmeasured states enter the systems in a
linear affine fashion. However, it is unclear how the approach can be made robust to uncertain nonlinearities and
disturbances. In [15], Jiang and Praly proposed a modified RAC procedure [16] for a class of uncertain nonlinear
systems subject to dynamic uncertainties satisfying certain conditions. However, since this method does not explicitly
use the structural information of the original system, it does not have some desirable properties like asymptotic
tracking in the presence of parametric uncertainties. In [17, 18], an observer-based ARC algorithm was proposed.
Robustness and asymptotic tracking can both be achieved using this algorithm. However, the original system is
assumed to be uniformly detectable. This assumption limits the application of this method because some systems,
e.g. the mechanical systems with dynamic friction, does not satisfy the assumed detectability condition.

In this paper, we propose a novel ARC algorithm for the control of a class of nonlinear systems in semi-strict
feedback form whose unmeasured internal states are bounded by known bounds but are not uniformly detectable. For
this kind of system, no observer can be designed to make the observation error converge to zero. Instead, we design
a projection-type adaptation algorithm to give the state estimation. It is theoretically proved that with the proposed
control law, the closed-loop system is robust to nonlinear uncertainties and disturbances and has guaranteed output
tracking transient performances and steady-state tracking accuracy. Furthermore, in the presence of parametric
uncertainties only, asymptotic output tracking can be achieved. These two characteristics combine the good merits
of DRC and AC while naturally overcoming their performance limitations. To illustrate the applicability of the
proposed approach, we take a practical system—the control of linear motor systems with dynamic frictions—as a
case study. This system satisfies all the assumptions made in the paper, mainly the unmeasured internal states are
bounded but are not uniformly detectable. The simulation results show that our proposed control method achieves the
claimed control performances for this kind of system with non-uniformly detectable internal states, demonstrating
the applicability of the proposed method in practical applications.

2. PROBLEM FORMULATION

In this paper, we consider the following class of nonlinear systems:

�̇ = F�(x)�+G�(x)�+H�(x)+��(x,�,u, t),

ẋi = xi+1+�T��i (x̄i )+hi(x̄i )+�i (x,�,u, t), 1�i�l−1,
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ẋl = u+�T��l(x)+�T
�l(x)�+hl(x)+�l(x,�,u, t),

y = x1,
(1)

where x=[x1, . . ., xl]T∈ Rl is the vector of measurable states. x̄i =[x1, . . ., xi ]T∈ Ri is the vector of first i measurable
states. u and y are the control input and output, respectively. �∈ Rm is the vector of unmeasured internal states. �∈ Rp

is the vector of unknown constant parameters. F� ∈ Rm×p , G� ∈ Rm×m , H� ∈ Rm , ��i ∈ Rp , hi ∈ R and ��l ∈ Rm

are matrices, vectors or scalars of known smooth functions. �� and �i represent the lumped unknown nonlinear
functions such as disturbances and modeling errors.

Remark 1
The nonlinear systems considered in this paper are different from the system in [17] in that the internal states only
appear in the dynamic equation directly related to input u here. But in [17], the internal states can appear from lth
to nth dynamic equations. The reason we do this simplification is because our design method in this paper uses
discontinuous projection algorithm to estimate the non-uniformly detectable internal states, and the discontinuous
projection algorithm for the state estimation is neither continuously differentiable nor compensatory via large enough
feedback gain as can be done for the discontinuous projection algorithm for the estimation of � in [17]. Thus,
in order to use discontinuous projection algorithm for the internal state estimation, we have to restrict the class
of system we are dealing with such that the internal states appear only in the last dynamic equation, which is
directly related to input u. Otherwise, the non-differentiability of the discontinuous projection algorithm will make
it impossible to design virtual control laws for xl+2, . . ., xn .

It is, however, possible to use continuous or smooth projection algorithm instead of discontinuous one as in [19].
With projection algorithm that is continuous up to n−l+1th order, the class of systems that can be handled with
the proposed method can be extended to the same one as in [17], i.e. the internal states can appear from lth to nth
dynamic equation. Since the notations and deductions are very complicated in these cases, and the focus of this
paper is on how to deal with non-uniformly detectable internal states, without loss of generality, only the class of
systems in (1) are considered. Later in Remark 3, the continuous-projection laws for �̂ and �0 will be given and
compared with the discontinuous one used in this paper in detail.

Now some practical assumptions are made as follows:

Assumption 1
The extents of parametric uncertainties are known. Also the uncertain nonlinearities are bounded by known functions.
More precisely, parametric uncertainties and uncertain nonlinearities are assumed to satisfy

�∈�� � {� : �min����max},
�i ∈��i � {�i : |�i (x,�,u, t)|��i (x̄i)}.

(2)

Assumption 2
The � dynamics is bounded-input–bounded-state stable with known bound. In other words, �∈��(t), where ��(t)
is a known time-varying convex set as a function of x(�), �∈[0, t], such that if x(t)∈ Ll∞[0 ∞), then ��(t) is
uniformly bounded for all t .

Remark 2
This assumption is different from the uniform detectability assumption made in [17, 18]. In [17, 18], the pair
(�T

�l, G�) is assumed to satisfy the uniform detectability condition, i.e. there exists an �(x)=[�1(x), . . .,�m(x)]T,
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such that the unperturbed system ε̇= A(x)ε is exponentially stable, where A(x)=G�(x)−(��/�xl)�T
�l . But for

some practical systems, e.g. mechanical systems with dynamic friction, this condition cannot be satisfied. In this
paper, we will deal with the systems where (�T

�l , G�) may not be uniformly detectable, but the internal states are
bounded by known time-varying bounds.

Assumption 3
There exists a positive-definite matrix �� ∈ Rm×m such that �−1

� G�(x)+GT
� (x)�−1

� �0, ∀ x ∈ Rl .

The following assumption is made on how the parametric uncertainties affect the dynamics of unmeasured internal
states:

Assumption 4
Let F� j (x) be the j th column of F�(x). Then dynamic systems �̇ j = F� j (x)+G�(x)� j (1� j�p) with the input
x and states [�1, . . .,�p] are bounded-input–bounded-state stable in the sense that for every x(t)∈ Ll∞[0 ∞), the

solution [�1, . . .,�p] starting from any initial condition is bounded, i.e. [�1(t), . . .,�p(t)]∈ Lm×p∞ [0 ∞).

Let yd(t) be the desired motion trajectory, which is assumed to be known, bounded, with bounded derivatives up
to lth order. The objective is to synthesize a bounded control input u such that output y= x1 tracks yd(t) as closely
as possible in spite of various model uncertainties and unmeasured states.

3. DISCONTINUOUS PROJECTION-BASED ARC BACKSTEPPING DESIGN

3.1. Parameter projection

Let �̂ denote the estimate of � and �̃ the estimation error, i.e. �̃= �̂−�. A discontinuous projection-based ARC
design will be constructed to solve the tracking control problem for (1). Specifically, under Assumption 1, the
parameter estimate �̂ is updated through a parameter adaptation law with the form

˙̂�=Proj�̂(����), (3)

where �� is a symmetric positive-definite (s.p.d.) diagonal adaptation rate matrix, �� is an adaptation function to
be synthesized later. Proj�̂ =[Proj�̂1(•1), . . .,Proj�̂p

(•p)]T where each projection function is defined as

Proj�̂i (•)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if �̂i��imax and •>0,

0 if �̂i��imin and •<0,

• otherwise.

(4)

It can be shown that for any adaptation function ��, the projection mapping guarantees

P1 �̂∈�� ={�̂ : �min��̂ � �max}

P2 �̃
T
(�−1

� Proj�̂(����)−��) � 0
(5)
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3.2. State estimation

The estimation of unmeasured states � forms the core part of this paper. Since the pair (�T
�l, G�) is not assumed to

be uniformly detectable, which is detailed in Remark 2, the observer-based approach such as those used in [17, 18]
cannot be applied to this case any more. In [17, 18], using the detectability condition, the estimation error ε is
proved to converge to zero exponentially; thus, the effect of ε will ’diminish’ as seen in the proof of Theorem 1 of
[17]. It is impossible, however, to make the estimation error converge to zero without the detectability condition.
Instead, we will use a technique similar to parameter adaptation algorithm in ARC theory, i.e. to add an adaptation
function to the state estimator and apply the projection algorithm. With this approach, although the estimation error
may not converge to zero, the output tracking error will converge but in the presence of parametric uncertainties
only, as will be proved later in this paper. Furthermore, the boundedness of the estimation signals is guaranteed
with the projection algorithm, which will also be used later to synthesize the robust feedback term to guarantee
transient performance and steady-state tracking accuracy in general.

Let � j ∈ Rm (0� j�p) be the estimated variables with the estimation law as

�̇0 = Proj�0(G��0+H�+����),

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
I −��

n�0n
T
�0

nT�0��n�0

)
(G��0+H�+����),

if �0∈���0 and nT�0(G��0+H�+����)>0,

G��0+H�+���� otherwise,

�̇ j = G�� j +F� j , 1� j�p,

(6)

where �� ∈ Rm×m is a positive-definite matrix satisfying Assumption 2. �� is any function to be synthesized later.
��0 denotes the time-varying convex set that �0 lies in (sometimes we drop the notation ‘t’ for simplicity), ���0 is
its boundary. n�0 represents the outward unit normal vector at �0∈���0 . ��0 is derived as follows:

��0(t) =
{
a+b :a∈��(t), |b|�sup

t>0

[
p∑

j=1
max(|�max j |, |�min j |)|� j (t)|

]}
, (7)

where supt>0(•) function denotes the supremum of all •(t) from the beginning to the current time. Since ��(t) is
convex, it can be easily checked that ��0 is also convex.

Now put � j , 1� j�p, into a matrix �=[�1 . . . �p]. We have �̇=G��+F�. Defining the estimation error to be
ε=�0+��−�, then we have the following lemma:

Lemma 1
For any function ��,

(i) If �0(0)∈��0(0), then �0(t)∈��0(t).
(ii)

εT�−1
� [Proj�0(G��0+H�+����)−G��0−H�−����]�0. (8)
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Proof 1
At any time, if �0 touches the bound, i.e. �0∈���0 , then according to (6),

nT�0 Proj�0(G��0+H�+����) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nT�0

(
I −��

n�0n
T
�0

nT�0��n�0

)
(G��0+H�+����),

if nT�0(G��0+H�+����)>0,

nT�0(G��0+H�+����) otherwise,

=
⎧⎨
⎩
0, if nT�0(G��0+H�+����)>0,

nT�0(G��0+H�+����) otherwise

� 0 (9)

Thus, the derivative of �0 always points inward or to the tangential direction of current ��0 at the point �0. From
(7), ��0(t) is monotonically expanding. Hence, we conclude that �0(t)∈��0(t) if �0(0)∈��0(0).

For (ii), we see that
Case 1: If either �0∈���0 or nT�0(G��0+H�+����)>0 is not true, then Proj�0(G��0+H�+����)=G��0+

H�+����, (ii) is obviously true.
Case 2: If �0∈���0 and nT�0(G��0+H�+����)>0, then �0 is on the boundary of ��0 . From (7), �−��∈��0 ,

since ��0 is convex, nT�0ε=nT�0(�0−(�−��))�0. Then, a simple mathematical deduction leads to (ii).

Lemma 1 is important. Although the proposed state estimator may not guarantee that the estimation error ε

converges to zero, with Lemma 1, we still can construct a Lyapunov function different from those used in [17, 18]
to prove asymptotic output tracking in the presence of parametric uncertainties as done later in the proof of part B
of Theorem 1.

Remark 3
The parameter adaptation law and state estimation law proposed above are discontinuous, i.e. the differential
equations (3) and (6) have discontinuous right-hand side with respect to �̂ and �0. As the only known sufficient
condition for a differential equation described by ẋ = f (t, x) to have the local existence and uniqueness of its
solution is that the function f (t, x) is locally Lipschitz in x (i.e. continuous in x at least), one may raise the issue
of the existence and the uniqueness of the solutions of the proposed discontinuous projection-based ARC designs.
Such a concern can be addressed in the following two distinct ways:

S1. The first way is simply to use the continuous or the smooth projection instead of the discontinuous projection to
avoid any potential mathematical flaws, as done in the earlier publications on the proposed ARC; these include
the continuous or smooth projections used for systems with matching [6] or extended matching uncertainties
[19] and the smooth projections with backstepping designs for systems with unmatched uncertainties in
[7, 20]. For example, if the continuous-projections are to be used, the parameter adaptation law (3) and the
state estimation law (6) would become as

˙̂� = ����+l�(�̂), �̂(0)∈��,

�̇0 = G��0+H�+����+l�0(�0), �0(0)∈��0(0),
(10)
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in which l�(�̂) and l�0(�0) represent the additional nonlinear damping terms to make the parameter adaptation
and state estimation robust to unstructured uncertainties. As in [6], it can be shown that, in order to achieve the
required robust performance results without losing the excellent steady-state performance result of asymptotic
output tracking under parametric uncertainties, the damping terms l�(�̂) and l�0(�0) are only required to
satisfy the following three conditions:

(i) l�(�̂)=0 if �̂∈�� and l�0(�0)=0 if �0∈��0 .

(ii) �̃
T
l�(�̂)�0 if �̂ /∈�� and εTl�0(�0)�0 if �0 /∈��0 .

(iii) The nonlinear damping terms l�(�̂) and l�0(�0) should be chosen in such a way that the parameter

estimate �̂ and the state estimate �0 belong to some known sets ��̂0
(t) and ��̂(t); these known sets are

required to be bounded when the measured state x(t) is guaranteed to be bounded.

In other words, the damping terms should be chosen such that the parameter adaptation law satisfies the
properties similar to (5), and the state estimation law satisfies the properties similar to those in Lemma 1.
A specific example of the continuous damping terms in the parameter adaptation and state estimation laws
satisfying the above conditions is given by

l�(�̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |�̂− �̂(0)|���,

−	�
|�̂− �̂(0)|−��

ε�
(�̂− �̂(0)) if ���|�̂− �̂(0)|���+ε�,

−	�(�̂− �̂(0)) if |�̂− �̂(0)|���+ε�,

(11)

l�0(�0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |�0−�0(0)|���0(t),

−	�0

|�0−�0(0)|−��0

ε�0
(�0−�0(0)) if ��0(t)�|�0−�0(0)|���0(t)+ε�0,

−	�0(�0−�0(0)) if |�0−�0(0)|���0(t)+ε�0,

(12)

where �� is the smallest positive number such that �� ⊂{p : |p− �̂(0)|���}, ��0(t) is the smallest positive
number such that��0(t)⊂{p : |p−�0(0)|���0(t)}, ε� and ε�0 are positive numbers that represent the thickness

of the boundary layer in which the nonlinear damping terms continuously change from 0 to −	�(�̂− �̂(0)) for
�̂ and from 0 to −	�0(�0−�0(0)) for �0, respectively, and 	� and 	�0 are some positive scalars representing
the damping coefficients of the nonlinear damping terms at large. Noting the bounded-input–bounded-output
assumption of the internal dynamics (Assumptions 2 and 4) and the definition of ��0(t), we know that if
x(t) is bounded, ��0(t) is contained in a bounded set for all t>0. Then, the same as in [6], it is easy to

verify that these choices of l�(�̂) and l�0(�0) satisfy conditions (i), (ii), (iii).
In the cases of using the backstepping design procedure for systems of ‘relative degree’ of l, the projection

laws may need to be lth order continuously differentiable. For these cases, one can use sufficiently smooth
functions to replace the values of damping terms in the boundary layer ���|�̂− �̂(0)|���+ε� and ��0(t)�|�0−
�0(0)|���0(t)+ε�0 , just as done in a recent publication [21] on sufficiently smooth projection. In this sense,
the continuous-projection laws (11) and (12) can be used as a typical example for all continuous or sufficiently
smooth projections when comparing the designs using continuous or sufficiently smooth projections and the
proposed discontinuous projection-based ARC designs. Hence in the following, only the essential differences
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between the design using the continuous-projections (11) and (12) and the proposed discontinuous projection-
based ARC design are detailed, but the conclusions are valid for the use of smooth projections in general
as well.
Combining the bounded state estimation design and the ARC design procedures in [6, 19], an ARC

controller using the continuous-projections (11) and (12) instead of the discontinuous projections (3) and (6)
can be easily worked out as well, which would have no formal mathematical flaws in terms of the existence
and the uniqueness of the solutions.

S2. Though the continuous or the smooth projections as described above may be preferred by pure theoreticians,
the resulting controller cannot achieve the same level of performance in implementation as the proposed
discontinuous projection-based ARC design as detailed below:

(1) Nowadays almost all advanced nonlinear control laws have to be implemented approximately by a
digital computer as there is no suitable hardware to truthfully implement complex nonlinear control
laws in continuous time-domain. The essential treat of a digital computer lies in its ability to imple-
ment complex logic decisions in a straightforward way. In comparison, calculating values of complex
nonlinear functions may need significant computation time, and, aside from the computation time issue,
implementing a controller described by a set of differential equations having stiff nonlinearities in the
right hand may have the issue of significant numerical approximation error problem. From this point
of view, implementing the discontinuous projection-based controllers using a digital computer is rather
straightforward and better conditioned in some sense than the continuous or smooth projection-based
controllers. To see this, let us take a closer look at how the two classes of controllers are actually
implemented by a digital computer. When the continuous-projections such as the ones in (11) and (12)
are used in the parameter adaptation law and state estimation law in (10), the resulting controller would
be described by a set of differential equations in which the right-hand side contains the continuous or
smooth modification terms l�(�̂) and l�0(�0). Aside from the complexity of these modification terms
in terms of real-time computation time needed§ , these modification terms tend to be very stiff during
the transition periods when the parameter estimates are going out of their known ranges of ��, as
the thicknesses of the boundary layers for the smoothing, ε� and ε�0 , have to be very small for a
better theoretically guaranteed control performance in general. The resulting controller is thus normally
described by a set of differential equations having stiff nonlinearities in the right-hand side. It is well
known that these classes of systems are hardly implemented well numerically by a digital computer.
For example, when the Euler discretization method is used (normally done in actual implementation
due to the much less online computation time needed), the parameter adaptation law (1) would be
implemented as

�̂((k+1)T )= �̂(kT )+[����+l�(�̂)]|t=kT T, (13)

where T is the sampling period, �̂((k+1)T ) and �̂(kT ) are the values of parameter estimates at the
sampling instances (k+1)T and kT , respectively, and •|t=kT represents the value of • at the sampling
instance kT . As mentioned previously, when the parameter estimates start going out of the known
bounded ranges of �� (i.e. wrong parameter adaptation in reality), the modification term l�(�̂) is stiff in
the sense that �l�̂/��̂ is quite large due to the use of very small boundary layer thickness ε� for a better
theoretically guaranteed control performance. Owing to the capacity limitation of hardware, the sampling
period T in implementation cannot be chosen arbitrarily small. With this in mind, the moments when

§The sufficiently smooth projection in [21] is much more mathematically complex than the continuous modification in (11).
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these modification terms start acting, significant larger amount of numerical approximation errors of the
parameter adaptation law (10) by the discretized version (13) in implementation could exist. This could
easily lead to the undesirable chattering problem of parameter estimates at the boundary when the modi-
fication term l�(�̂) starts acting (i.e. when |�̂− �̂(0)|=�� in (11)). Furthermore, there is no guarantee that
the resulting parameter estimates will actually lie within the pre-specified ranges that the original contin-
uous or smooth modifications to the parameter adaptation law in continuous time-domain are supposed to
achieve.

On the other hand, the digital implementation of the proposed discontinuous projection law is carried
out by a combination of the usual approximation of differential equations having no stiff nonlinearities
in the right-hand side and the logic operations that the discontinuous projection modification is supposed
to achieve in continuous time-domain. As such it does not have the chattering problem of parameter
estimates at the boundary and the resulting parameter estimates are kept within the pre-specified ranges
of �̄� precisely. Specifically, noting that the real reason for the use of modifications to the parameter
adaptation law is to keep the resulting parameter estimates within the known range of �̄� when the

parameter estimates using the unmodified parameter adaptation law (i.e. ˙̂�=����) tends to go out of
the known range of ��, the proposed discontinuous projection-based parameter adaptation law (10) is
implemented digitally by

�̂u((k+1)T ) = �̂(kT )+[����]|t=kT T

�̂i ((k+1)T ) =

⎧⎪⎪⎨
⎪⎪⎩

�imax if �̂iu((k+1)T )>�imax,

�imin if �̂iu((k+1)T )<�imin,

�̂iu((k+1)T ) otherwise

i =1, . . ., p,
(14)

where �̂u =[�̂1u , . . ., �̂pu]T. This implementation not only precisely guarantees that �̂∈ �̄�, but also is
free of the chattering problem of parameter estimates at the boundary when a stiff continuous or smooth
modification term is used. In addition, much reduced online computation time is needed due to the avoid
of the explicit calculation of the complex continuous or smooth modification terms.

(2) Aside from the more robust implementation of the proposed discontinuous projection-based adaptation
law, the discontinuous projection-based backstepping ARC controller design is also better conditioned in
implementation than the continuous or smooth projection-based backstepping ARC designs in [6, 7, 20]
or the generalized 
-modification-based backstepping robust adaptive designs in [22]. Specifically, the
backstepping ARC designs [7, 20] or the RAC design [22] are based on the brilliant tuning function-
based adaptive backstepping design proposed in [4], which needs to incorporate the adaptation law in
the design of control functions at each intermediate steps. As a result, the intermediate control functions
involve the explicit calculation of the stiff smooth modification terms l�(�̂) and their higher derivatives,
which will have exactly the same implementation problems as the smooth projection-based parameter
adaptation law mentioned above. In contrast, the discontinuous projection-based ARC designs [23] such
as the one detailed in this paper recognizes the implementation problems associated with the complex
smooth modification terms and explicitly avoids the use of any direct cancellation of the parameter
adaptation law in the design of intermediate control functions. Consequently, the resulting control law
not only becomes simpler, but is also free from the possible numerical approximation errors associated
with the stiff smooth modification terms and their higher derivatives.

(3) The existence and the uniqueness of the solutions of the proposed discontinuous projection-based ARC
design in the implementation is not a significant issue either. As seen from the above explanations on
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the digital implementation of various control laws, there is no difficulty or ambiguity in the calculation
of control output u(kT ) based on the proposed discontinuous projection-based control law at each
sampling instances. With the zero-order hold (ZOH) circuity associated with the digital implementation,
the actual input to the physical system to be controlled thus always exists and is uniquely determined by
u(t)=u(kT ),∀t ∈[KT, (k+1)T ). There should not be any issue on the existence and the uniqueness of
the responses of the physical system to such a control input as well.

In summary, compared with the discontinuous projection-based adaptation laws, the continuous or smooth
projection-based ones spend too much time on the practically not so meaningful smoothing process and get
nothing out of it in the practical implementation except the mathematical completeness of the derivations in
continuous time-domain. Instead of focusing on the practically not so meaningful problem of the existence
and the uniqueness of the solutions, we believe that a control engineer should directly deal with the real
issues in practical implementation and provide practically implementable solutions. In this regard, in this
paper, we will keep using the discontinuous projection in the modification of parameter adaptation law and
the state estimation law. It is also noted that the discontinuous projection-based ARC designs have been
successfully implemented and tested in various applications [8, 10, 24–26].

3.3. ARC controller design

3.3.1. Step 1�i�l−1. To give initial values of the recursive function used in the backstepping design, we denote
�0(t)= yd(t).

At step i (1�i�l−1), let zi be the error between the state xi and the desired control signal �i−1, then zi = xi −�i−1.
Taking its derivative

żi = xi+1+�T��i +hi +�i − �̇i−1. (15)

Noting that

�̇i−1 =
i−1∑
j=1

��i−1

�x j
(x j+1+�T�� j +h j +� j )+ ��i−1

��̂

˙̂�+ ��i−1

�t
, (16)

we have

żi = xi+1+�T��i +hi +�i −
i−1∑
j=1

��i−1

�x j
[x j+1+�T�� j +h j +� j ]− ��i−1

��̂

˙̂�− ��i−1

�t
,

= xi+1+�ic+�iu, (17)

where

�ic = �̂
T
(

��i −
i−1∑
j=1

��i−1

�x j
�� j

)
+hi −

i−1∑
j=1

��i−1

�x j
h j −

i−1∑
j=1

��i−1

�x j
x j+1− ��i−1

�t
,

�iu = −�̃
T
(

��l −
i−1∑
j=1

��i−1

�x j
�� j

)
− ��i−1

��̂
˙̂�+�i −

i−1∑
j=1

��i−1

�x j
� j

(18)

are computable and unknown parts, respectively.
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We construct a control function �i for the virtual input xi+1 such that xi tracks its desired control law �i−1
synthesized at step i−1.

�i (x̄i , �̂, t) = �ia+�is,

�ia = −zi−1−�ic, �is =�is1+�is2, �is1=−kiszi ,

kis � gi +
∣∣∣∣��i−1

��̂
C�i

∣∣∣∣
2

+|C�i���i |2,
(19)

where gi is a positive constant, C�i and C�i are positive constant diagonal matrices. Let zi+1= xi+1−�i denote the
input discrepancy. Substituting (19) into (17) leads to

żi +kls zi = zi+1−zi−1+�is2− �̃
T
�i +�̃i − ��i−1

��̂
˙̂�, (20)

where�i=��i−
∑i−1

j=1(��i−1/�x j )�� j and �̃i=�i−∑i−1
j=1(��i−1/�x j )� j (let �̃1=�1,�1=��1). Choosing Vi=Vi−1

+ 1
2 z

2
i , then its time derivative is

V̇i = zi zi+1+
i∑

j=1

[
−k jsz

2
j +z j (� j s2− �̃

T
� j +�̃ j )− �� j−1

��̂

˙̂�z j
]

. (21)

The ARC design can be applied to synthesize a robust control function �ls2 satisfying the following two conditions:

(i) zi (�is2− �̃
T
�i +�̃i )�
i ,

(ii) zi�is2�0,
(22)

where 
i is a positive design parameter.

3.3.2. Step l. At the last step (step l), the derivative of zl = xl−�l−1 is

żl = u+�T��l +�T
�l�+hl+�l − �̇l−1,

= u+�T��l +�T
�l(�0+��−ε)+hl+�l− �̇l−1,

= u+�T(��l +�T��l)+�T
�l�0+hl− �̇l−1+�l−�T

�lε. (23)

Noting that �̇l−1=∑l−1
j=1(��l−1/�x j )(x j+1+�T�� j +h j +� j )+(��l−1/��̂)

˙̂�+��l−1/�t , we have

żl = u+�T(��l+�T��l)+�T
�l�0+hl+�l−�T

�lε−
l−1∑
j=1

��l−1

�x j
(x j+1+�T�� j +h j +� j )− ��l−1

��̂

˙̂�− ��l−1

�t
,

= u+�lc+�lu , (24)
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where

�lc = �̂
T
(

��l+�T��l−
l−1∑
j=1

��l−1

�x j
�� j

)
+�T

�l�0+hl−
l−1∑
j=1

��l−1

�x j
h j −

l−1∑
j=1

��l−1

�x j
x j+1− ��l−1

�t
,

�lu = −�̃
T
(

��l+�T��l−
l−1∑
j=1

��l−1

�x j
�� j

)
− ��l−1

��̂

˙̂�−�T
�lε+�l −

l−1∑
j=1

��l−1

�x j
� j .

(25)

We construct the control input u such that xl tracks its desired ARC control law �l−1 synthesized at step l−1.

u(x,�0,�, �̂, t) = �la +�ls ,

�la = −zl−1−�lc, �ls =�ls1+�ls2, �ls1=−kls zl ,

kls � gl+
∣∣∣∣��l−1

��̂
C�l

∣∣∣∣
2

+|C�l���l |2+c�|�l |2,
(26)

where gl and c� are positive constants, �l =��l , C�l and C�l are positive constant diagonal matrices to be specified
later. Let zl+1= xl+1−�l denote the input discrepancy. Substituting (26) into (24) leads to

żl +kls zl =−zl−1+�ls2− �̃
T
�l −�T

l ε+�̃l− ��l−1

��̂

˙̂�, (27)

where �l =��l +�T��l −
∑l−1

j=1(��l−1/�x j )�� j and �̃l =�l −∑l−1
j=1(��l−1/�x j )� j . Choosing Vl =Vl−1+ 1

2 z
2
l , then

its time derivative is

V̇l =
l∑

j=1

[
−k jsz

2
j +z j (� j s2− �̃

T
� j −�T

j ε+�̃ j )− �� j−1

��̂

˙̂�z j
]
, (28)

where �T
j =0, ∀ j<l. The ARC design can be applied to synthesize a robust control function �ls2 satisfying the

following two conditions:

(i) zl(�ls2− �̃
T
�l−�T

l ε+�̃l)�
l,

(ii) zl�ls2�0.
(29)

Remark 4
One smooth example of �ls2 satisfying (29) can be found in the following way. Let hl be any nth order continuous
function satisfying

hl�|�M ||�l |+|�l ||��0 |+ �̃l, (30)

where �M ��max−�min and �̃l �
∑l−1

j=1 |��l−1/�x j |� j +�l . |��0 | is the length of the set ��0 , i.e. the maximum
distance between any two points in ��0 . Then �ls2 can be chosen as

�ls2=− 1

4
l
h2l zl . (31)

It is easy to verify that this choice of �ls2 satisfies (29).
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3.4. Main results

Theorem 1
Let the parameter estimates be updated by the adaptation law (3) in which �� is chosen as

�� =
l∑

j=1
� j z j (32)

and �� is chosen as

�� =
l∑

j=1
z j� j . (33)

Let c� j i and c�ki be the i th diagonal elements of the diagonal matrices C� j and C�k , respectively. If the controller

parameters C� j and C�k are chosen such that c2�ki�(n/4)
∑l

j=2 1/c
2
� j i , ∀k, i , then, the control law (26) guarantees

that

A. In general, all signals are bounded. Furthermore, the positive-definite function Vl is bounded above by

Vl(t)�e−�l t Vl(0)+
∑l

j=1 
 j

�l
(1−e−�l t ), (34)

where �l =2min{g1, . . .,gl}.
B. If after a finite time t0, there exist parametric uncertainties only (i.e. �� =0 and �i =0, ∀t�t0), then, in

addition to results in A, zero final output tracking error is also achieved, i.e z1−→0 and t−→∞.

Proof 2
For part A, from (19), (26) and (28), we have

V̇l�
l∑

j=1

{(
−g j −

∣∣∣∣�� j−1

��̂
C� j

∣∣∣∣
2

−|C� j��� j |2−c�|� j |2
)
z2j +z j (� j s2− �̃

T
� j −�T

j ε+�̃ j )−z j
�� j−1

��̂

˙̂�
}

. (35)

By completion of square

−
l∑

j=2
z j

�� j−1

��̂

˙̂� �
∣∣∣∣∣

l∑
j=2

|z j |
∣∣∣∣�� j−1

��̂
C� jC

−1
� j

˙̂�
∣∣∣∣
∣∣∣∣∣ �

l∑
j=2

(∣∣∣∣�� j−1

��̂
C� j

∣∣∣∣
2

z2j +
1

4
|C−1

� j
˙̂�|2
)

. (36)

Noting that C−1
� j and �� are diagonal matrices, from (3) and (4), we have

l∑
j=2

|C−1
� j

˙̂�|2 =
l∑

j=2
|C−1

� j Proj�̂(���)|2 �
l∑

j=2
|C−1

� j ���|2,

�
l∑

j=2

(
l∑

k=1
|C−1

� j ���k zk |
)2

� l
l∑

j=2

(
l∑

k=1
|C−1

� j ���k |2z2k
)

. (37)

Thus, if C� j and C�k satisfy the conditions in the theorem, we have

−
l∑

j=2
z j

�� j−1

��̂

˙̂� �
l∑

j=2

(∣∣∣∣�� j−1

��̂
C� j

∣∣∣∣
2

z2j +
l

4

l∑
k=1

|C−1
� j ���k |2z2k

)
,

�
l∑

j=2

∣∣∣∣�� j−1

��̂
C� j

∣∣∣∣
2

z2j +
l∑

k=1
|C−1

�k ���k|2z2k . (38)
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From (35) and the properties of each � j s2, we have

V̇l �
l∑

j=1
(−g j z

2
j +
 j ) � −�l Vl +

l∑
j=1


 j , (39)

which leads to (34). The boundedness of z j is thus proved. Using the standard arguments in the backstepping designs
[4], it can be proved that all internal signals in the first l−1 steps are globally uniformly bounded. Furthermore,
since xl = zl+�l−1, xl is also bounded. Thus, x=[x1, . . ., xl]T are bounded. From the bounded-input–bounded-state
Assumption 4, the projection-type estimation algorithm of �0 and the bounded internal state Assumption 2, �0, �
and � are all bounded. Recursively using the fact that xi = zi +�i−1, it is obvious that �i and xi are bounded. Thus,
the boundedness of u is apparent. This proves part A.

For part B, when �� =0 and �i =0, from (35) and (38), noting the condition (ii) of (29) and (22), we have

V̇l�
l∑

j=1
(−g j z

2
j −c�|� j |2z2j −z j �̃

T
� j −z j�

T
j ε). (40)

Define a new p.s.d function Va as

Va =Vl+ 1
2 �̃

T
�−1

� �̃+ 1
2ε

T�−1
� ε. (41)

Then

V̇a = V̇l + �̃
T
�−1

�
˙̃�+εT�−1

� ε̇,

�
l∑

j=1
(−g j z

2
j −c�|� j |2z2j −z j �̃

T
� j −z j�

T
j ε)+ �̃

T
�−1

� Proj�̂(����)+εT�−1
� (�̇0+ �̇�− �̇),

=
l∑

j=1
(−g j z

2
j −c�|� j |2z2j −z j �̃

T
� j −z j�

T
j ε)+ �̃

T
�−1

� Proj�̂(����)

+εT�−1
� [Proj�0(G��0+H�+����)+(G��+F�)�−F��−G��−H�],

=
l∑

j=1
(−g j z

2
j −c�|� j |2z2j )− �̃

T
��−εT��+ �̃

T
�−1

� Proj�̂(����)

+εT�−1
� [Proj�0(G��0+H�+����)+G�(ε−�0)−H�],

=
l∑

j=1
(−g j z

2
j −c�|� j |2z2j )+ �̃

T
(�−1 Proj�̂(���)−��)

+εT�−1
� [Proj�0(G��0+H�+����)−G��0−H�−����]+εT�−1

� G�ε. (42)

Since εT�−1
� G�ε= 1

2ε
T(�−1

� G�(x)+GT
� (x)�−1

� )ε, from Assumption 2, εT�−1
� G�ε�0. Using (5) and (8), we have

V̇a�
l∑

j=1
−g j z

2
j , (43)
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from which z j ∈ L2[0, ∞). It is also easy to check that ż j is bounded. Hence, by the Barbalat’s lemma, z→0 as
t→0, which proves part B of Theorem 1.

4. PRACTICAL DESIGN EXAMPLE AND SIMULATION RESULTS

In order to see how the proposed algorithm can be applied, a practical design example is given here. The system
in this practical example has bounded but non-uniformly detectable internal states, which is exactly the type of
nonlinear system we considered in this paper.

4.1. Systems with dynamic friction

Nowadays, the control of mechanical systems with dynamic friction has become increasingly popular. A kind of
friction model called the LuGre model [11] has seen wide application. Now we consider a linear motor-driven
stage with dynamic friction existing between the contact surfaces. With the LuGre model proposed in [11, 12], the
dynamic equation of the system can be written as

ż = ẋ− |ẋ |
g(ẋ)

z+�z, g(ẋ)=�0+�1 e
−(ẋ/vs)2, (44)

mẍ = Ku−
0z−
1h(ẋ)ż−�2 ẋ+�m,

= Ku−
0z−
1h(ẋ)

[
ẋ− |ẋ |

g(ẋ)
z+�z

]
−�2 ẋ+�m, (45)

where m is the mass of the stage, u is the input voltage, K is the gain from voltage to the force applied to the
stage, z represents the unmeasurable internal friction state, 
0, 
1, �2 are unknown friction force parameters that
can be physically explained as the stiffness, the damping coefficient of bristles and the viscous friction coefficient.
x , ẋ are the position and the velocity of linear motor, respectively. The function g(ẋ) is positive and it describes the
Stribeck effect: 
0�0 and 
0(�0+�1) represent the levels of the Coulomb friction and stiction force, respectively,
and vs is the Stribeck velocity. �z and �m represent the modeling errors of dynamic frictions and the disturbances
of the stage, respectively. Let yd(t) be the desired motion trajectory, which is assumed to be known, bounded, with
bounded derivatives up to the second order. We want to design a control law u, such that the output x can track
yd(t) as close as possible, in spite of various uncertainties.

In (45), the dynamic friction Fdyn=−
0z−
1h(ẋ)[ẋ−(|ẋ |/g(ẋ))z+�z] is a complicated nonlinear function of
three unknown variables: z, 
0 and 
1. As such, it is not possible to use an one-dimensional observer to estimate the
internal state z directly as some sorts of adaptation laws are needed to estimate 
0 and 
1 online as well. Noting that
the three unknown variables appear in Fdyn only through 
0z and 
1z, we do not have to separate the estimations of
z, 
0 and 
1 for dynamic friction compensation. Instead, we simply treat 
0z and 
1z as two different variables and
estimate them directly through certain observers. Thus, denote �=[
0z/K 
1z/K ]T as the unmeasured augmented
internal states and �x = (
1h(ẋ)�z+�m)/K as the lumped model uncertainty. Let �=[
0/K 
1/K �2/K �̄x ]T
and �m =m/K be the unknown parameters with known bounds, in which �̄x represents the constant component of
the lumped model uncertainty �x . Denote �̃x as the time-varying portion of �x and define x=[x1 x2]T=[x ẋ]T.
Then the system can be represented by

�̇ = F��+G��+��,

ẋ1 = x2,
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�m ẋ2 = u+�T��+�T
��+�2,

y = x1,
(46)

where

F� =
[
x2 0 0 0

0 x2 0 0

]
, (47)

G� =

⎡
⎢⎢⎢⎣

− |x2|
g(x2)

0

0 − |x2|
g(x2)

⎤
⎥⎥⎥⎦ , (48)

�� = [0 −h(x2)x2 −x2 1]T, (49)

�� =
[
−1

h(x2)|x2|
g(x2)

]T
, (50)

�� = [
0�z 
1�z]T, (51)

�2 = �̃x . (52)

This system is of form (1), except that the unknown parameter �m appears in front of ẋ2. For such a case, we only
need to make slight modifications to the previously proposed algorithm, as shown later in this section. Now, we
will show that this system satisfies all the assumptions made in Section 2 and the internal states are non-uniformly
detectable.

Since the physical meanings of all unknown parameters in (46) are known, it is safe to assume that the unknown
parameters, uncertain nonlinearities and disturbances are bounded by known bounds. Thus Assumption 1 is satisfied.
It can also be seen that the pair (�T

� , G�) is not uniformly detectable. Because at x =[x1 0]T, we have G� =02×2.

Then for any �(x)∈ R2, the matrix

A(x)=G�(x)− ��

�x2
�T

� =

⎡
⎢⎢⎢⎣

��1

�x2
0

��2

�x2
0

⎤
⎥⎥⎥⎦

will always have zeros in the second column. Thus, techniques in [17, 18] do not apply here. However, since z
represents the deflection of bristles between the contact surfaces, z is physically bounded by a fix bound [11]. Then
�=[
0z/K 
1z/K ]T is also bounded. Then it is easy to see that Assumption 2 is satisfied.

Since G�(x) is a diagonal negative semi-definite matrix for all x , for any diagonal matrix �� >0, we have
�−1

� G�(x)+GT
� (x)�−1

� =2�−1
� G�(x)�0, ∀ x ∈ R2. Hence Assumption 3 is satisfied. It can also be easily checked

that Assumption 4 is satisfied. Since all assumptions required for the system are satisfied, we can use the technique
proposed in this paper to design a control law.
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4.2. Control law design

Letting �0= yd(t), and z1= x1−�0 be the tracking error, then, ż1= ẋ1− �̇0= x2− �̇0. Selecting �1=−k1z1+ �̇0 to
be the desired x2, and defining z2= x2−�1, then

�m ż2=u+�T(��+���)+�T
� �0−�T

�ε+�2+k1�m ż1−�m �̈0. (53)

Then the state estimator and the parameter adaptation laws are chosen as

�̇0 = Proj�0(G��0+����z2), �̇=G��+F�,

˙̂� = Proj�̂(��(��+�T��)z2),
˙̂�m =Proj�̂m [	�m (k1 ż1− �̈0)z2].

(54)

In this case, �� is a square set, i.e. �� =[�min1,�max1]×[�min2,�max2]. From the special structure of F� and G�, it
is obvious that only �11 and �22 take effect. With this fact, ��0 =[�0min1,�0max1]×[�0min2,�0max2], where

�0maxi = �maxi +sup
t>0

[max(|�maxi |, |�mini |)|�i i (t)|],

�0mini = �mini −sup
t>0

[max(|�maxi |, |�mini |)|�i i (t)|],
(55)

for i =1,2. �2s1 is chosen as �2s1=−k2z2. For �2s2, we use the form given by (31): �2s2=−(1/4
)h2z2. h is
chosen to be the right side of (30), which is a continuous function with respect to ��, ��, �. The control law is
thus given by

u=−k2z2+�2s2− �̂
T
(��+�T��)−�T

� �0− �̂m(k1 ż1+ �̈0). (56)

4.3. Simulation results

For simulation, we choose the system parameters to be the same as that used in [27], i.e. �m =0.12,
�=[7000 1176 0.166 0]T, g(x2)= (0.1236+0.0861e−|x2/0.0022|)/7000, h(x2)=0.00013/(0.00013+|x2|). The
internal state z is within ±0.00005. In addition, we set the uncertain nonlinearity term �m =0.1sin((2�/0.02)x1)+
0.1cos((2�/0.02)x1)+0.02sin((4�/0.02)x1)+0.02cos((4�/0.02)x1) to simulate the effect of cogging forces on
the linear motor, and �� =n(t)|x2| to represent the modeling error of the internal state dynamics where n(t) is a
uniformly distributed random number between −0.2 and 0.2.

The controller parameters are chosen as �̂m(0)=0.1, �̂(0)=[6000 1100 0.2 0]T, �mmax=0.2, �mmin=0.08,
�max=[10000 1500 0.5 0.5]T, �max=[4000 500 0 −0.5]T, k1=50, k2=10, 
=0.008, 	�m =5×108, �� =diag
{2.5×1011 2.5×109 10 500}, �� =diag{1500 200}, �max=[zmax ·�1max zmax ·�2max]T=[0.5 0.075]T, �min=
[zmin ·�1max zmin ·�2max]T=[−0.5 −0.075]T, �0(0)=[0 0]T and �(0)=02×4.

The design trajectory is chosen as a sinusoidal signal, with the amplitude of 0.002 and the frequency of 1Hz. To
see the transient performances, we set the initial value of the unknown internal state z to be 0.00003. The tracking
error with disturbances added to the system is plotted in Figure 1 and the input is shown in Figure 2. As can
be seen from the plots, the tracking error converges very fast after the first few cycles, showing a good transient
performance and final tracking accuracy. Furthermore, the input signal is bounded, and the tracking error is less
than 0.05% magnitude of the desired trajectory in spite of large disturbances and modeling errors, showing the
robustness and good capability of disturbance rejection of the proposed ARC algorithm.

Then, we keep all parametric uncertainties but remove all the disturbances and unstructured modeling errors,
and use the same trajectory, same initial internal state value and same controller parameters. The tracking error is
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Figure 1. Tracking error, system with disturbances.
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Figure 2. Input, system with disturbances.

plotted in Figure 3 and the input is shown in Figure 4. As can be seen from the plots, in the presence of parameters
uncertainties only, asymptotic output tracking is achieved. All these results demonstrate the applicability of the
proposed theoretical method in practical design cases.
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Figure 3. Tracking error, system without disturbances.
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Figure 4. Input, system without disturbances.

5. CONCLUSION

In this paper, a discontinuous projection-based ARC algorithm has been designed for a class of nonlinear systems
in semi-strict feedback form with bounded but non-uniformly detectable internal states. Specifically, discontinuous
projection algorithm has been used to give the estimation of both the internal states and the unknown parameters.
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This algorithm has been theoretically proved to be robust to disturbances and uncertain nonlinearities with guar-
anteed transient performance while having asymptotic output tracking performance in the presence of parametric
uncertainties only. The class of system considered in this paper has a lot of applications, and a practical example—
control of mechanical systems with dynamic friction—is used for case study. The simulation results demonstrate
the applicability of the proposed control methodology.
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