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Neural network adaptive robust control with application to
precision motion control of linear motors
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SUMMARY

In this paper, neural networks (NNs) and adaptive robust control (ARC) design philosophy are integrated to
design performance-oriented control laws for a class of single-input-single-output (SISO) nth-order non-
linear systems. Both repeatable (or state dependent) unknown non-linearities and non-repeatable unknown
non-linearities such as external disturbances are considered. In addition, unknown non-linearities can exist
in the control input channel as well. All unknown but repeatable non-linear functions are approximated by
outputs of multi-layer neural networks to achieve a better model compensation for an improved perfor-
mance. All NN weights are tuned on-line with no prior training needed. In order to avoid the possible
divergence of the on-line tuning of neural network, discontinuous projection method with fictitious bounds
is used in the NN weight adjusting laws to make sure that all NN weights are tuned within a prescribed
range. By doing so, even in the presence of approximation error and non-repeatable non-linearities such as
disturbances, a controlled learning is achieved and the possible destabilizing effect of on-line tuning of NN
weights is avoided. Certain robust control terms are constructed to attenuate various model uncertainties
effectively for a guaranteed output tracking transient performance and a guaranteed final tracking accuracy
in general. In addition, if the unknown repeatable model uncertainties are in the functional range of the
neural networks and the ideal weights fall within the prescribed range, asymptotic output tracking is also
achieved to retain the perfect learning capability of neural networks in the ideal situation. The proposed
neural network adaptive control (NNARC) strategy is then applied to the precision motion control of
a linear motor drive system to help to realize the high-performance potential of such a drive technology. NN
is employed to compensate for the effects of the lumped unknown non-linearities due to the position
dependent friction and electro-magnetic ripple forces. Comparative experiments verify the high-performance
nature of the proposed NNARC. With an encoder resolution of 1 um, for a low-speed back-and-forth
movement, the position tracking error is kept within + 2 um during the most execution time while the
maximum tracking error during the entire run is kept within 4 5.6 um. Copyright © 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Non-linearities in physical systems may appear in various forms. In general, it is difficult to treat
various non-linearities under a unified framework. In some situations, due to the limited
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knowledge about certain non-linear physical phenomena (e.g. friction, force ripple in a linear
motor system), it is also impossible to precisely describe the non-linearities that can be used to
capture those physical phenomena. These factors make it difficult to design high-performance
controllers for non-linear systems.

The appearance of neural networks (NN) helps us advancing the design of high-performance
controllers for general uncertain non-linear systems considerably. Theoretically, as long as
a sufficient number of neurons are employed, a neural network can approximate a continuous
function to an arbitrary accuracy on any compact set [1-5]. It was shown in Reference [2] that
the standard multi-layer feedforward networks with only a single hidden layer and arbitrary
bounded and non-constant activation function are universal approximators with respect to L?(u)
performance criteria, for arbitrary finite input environment measure u, provided that a sufficient
number of hidden neurons are available. In practice, the activation functions should be chosen
based on different applications although sigmoidal type of functions and radial basis function
(RBF) are usually used. The approximation capabilities of networks with sigmoidal function
being activation function are discussed in Reference [3] while RBF networks are considered in
References [4,5]. Due to their universal approximation capability, neural networks can be used to
model certain complex non-linear physical phenomena effectively. It is thus of practical signifi-
cance to use neural networks in the design of controller for uncertain non-linear systems.

In the research field of neural networks itself, focus is on the investigation of various NN
characteristics, such as network structure, stability, convergence, and uniqueness of weights, etc.
In fact, many works have been done on the stability analyses of a variety of neural networks
[6-10] and the evolution of the weights of neural networks [11,12]. In all these papers, in order to
guarantee the stability of neural networks and/or the uniqueness of the weights, the NN weights
have to satisfy some restrictive conditions, which may limit the approximation capability of
neural networks since weights can only be tuned in a relatively small region. Hence, researchers
are still keeping on looking for NN structures with less restrictive conditions for the convergence
of NN weights. Fortunately, when neural networks are used for control design purposes, the main
focus is on the performance of the closed-loop system in terms of output tracking as long as all
signals are bounded. Whether or not the NN weights converge to their ideal values may not be
the key issue. As such, the NN weights can be tuned in a relatively larger region. Consequently,
the approximation range of a neural network becomes larger, which is helpful in the control of
non-linear systems when little is known about the non-linearities in the system. Thus, in this
paper, not much attention will be paid to the convergence of weights of neural networks, and only
the boundednesses of all the signals in neural networks are guaranteed.

Neural networks have been applied to the control field recently [13] and various results have
been achieved [14-21]. A survey of the application of neural networks to control field was given
in Reference [13], where modeling, identification, and control of non-linear systems via neural
networks were discussed. The applications of NN to the control of robotic manipulators were
detailed in Reference [14]. Two main issues have to be dealt with in the use of neural networks for
non-linear control design. Firstly, the ideal weights of a neural network for approximating an
unknown non-linear function are usually unknown. Certain algorithms have to be derived to
tune these unknown NN weights on-line if NN is used to deal with various unknown non-linear
functions. In terms of control terminology, adaptation laws are needed. Secondly, the ideal NN
weights for the neutral network to reconstruct an unknown non-linear function exactly may not
exist, i.e. the unknown non-linear function to be approximated may not be in the functional range
of the neural network. The approximation error between the ideal output of a neural network and
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the true non-linear function cannot be assumed to be zero in general although it may be very
small within a compact set. Thus, the issue of robustness to the approximation errors needs to be
considered when certain on-line tuning rules are derived for the NN weights. In Reference [15],
based on the assumption that both the input-hidden weights and the bounds of the hidden-output
weights are known, backpropagation neural networks were used to design a robust adaptive
controller (RAC) for multi-link rigid robots. In Reference [16], with the g-modification type
weight-tuning law, adaptive neural network control schemes were proposed for non-linear
systems with uncertainties not satisfying matching conditions, where the input-hidden weights
are also assumed to be known. Backstepping method was used in Reference [17] to design
a neural network controller to guarantee the semi-global stability of the closed system. RBF
networks were used in Reference [18] to adaptively compensate for the plant non-linearities, and
the resulting adaptive controller achieves global stability and the final tracking accuracy. All
these works are based on the assumption that the input-hidden weights of neural networks are
known. It may be beneficial if this assumption can be relaxed so that one can fully explore the
generality and flexibility of neural networks. In References [19,20], by using an NN controller to
approximate the control law derived in the ideal case and introducing certain robust term, both
transient performance and final tracking accuracy can be guaranteed in certain compact set. By
using the same technique, the case of output feedback control was further discussed in Reference
[21] with the aid of high-gain observer. Since the g-modification type weight tuning method is
used in References [15,16,19-21], asymptotic output tracking cannot be achieved even when the
unknown non-linear function is in the functional range of the neural network. In other words, the
ideal perfect learning capability of neural networks is lost. In addition, in References [15-17],
transient tracking performance is in general not known. Transient period may be long and large
transient tracking errors may exhibit.

Recently, the adaptive robust control (ARC) approach has been proposed in References
[22-25] for non-linear systems in the presence of both parametric uncertainties and non-
repeatable uncertain non-linearities such as disturbances. The resulting ARC controllers achieve
a guaranteed output tracking transient performance and final tracking accuracy in general. In
addition, in the presence of parametric uncertainties only, asymptotic output tracking is achieved.
These strong performance results achieved by ARC controllers motivate us to investigate whether
the essence of ARC approach can be extended to the NN-based controller designs to further
improve the achievable performance of NN-based controllers. At the same time, since only
a special class of unknown non-linear functions—a linear combination of known basis functions
with unknown weights—have been considered in References [22-25], such an extension is also of
significant theoretical values since a more general class of unknown functions can be dealt with
via neural networks.

In this paper, neural networks and ARC design philosophy will be integrated to design
a performance oriented control law, i.e. NNARC, for nth-order single-input-single-output (SISO)
non-linear systems. Unknown non-linearities can exist in both system model and input channel,
and could include non-repeatable non-linearities such as external disturbances as well. All
unknown but repeatable non-linear functions (i.e. non-linear functions that depend on state only)
will be approximated by the outputs of multi-layer neural networks to achieve a better model
compensation for an improved performance. All NN weights are tuned on-line with no prior
training needed. Discontinuous projection method with fictitious bounds [26] will be used to
make sure that all NN weights are tuned within a prescribed range. By doing so, even in the
presence of approximation error and non-repeatable non-linearities such as disturbances, a
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controlled learning is achieved to avoid the possible destabilizing effect of on-line tuning of NN
weights. Certain robust control terms are constructed to attenuate various model uncertainties
effectively for a guaranteed output tracking transient performance and a guaranteed final
tracking accuracy in general—a transient tracking performance that existing NN-based robust
adaptive controllers [15-18] cannot achieve. In addition, if the unknown non-linear function is in
the functional range of the neural network and the ideal weights fall within the prescribed range,
asymptotic output tracking is also achieved to retain the perfect learning capability of neural
networks in the ideal situation—a performance that existing NN based robust adaptive control-
lers [15-21] cannot have.

The proposed NNARC is then applied to the precision motion control of linear motor drive
systems. Linear motors offer several advantages over their rotary counterparts in many
applications requiring linear motion. Usually, linear motions are realized by rotary motors
with mechanical transmission mechanisms such as reduction gears and lead screw. Such
mechanical transmissions not only significantly reduce linear motion speed and dynamic re-
sponse, but also introduce backlash, large frictional and inertial loads, and structural flexibility.
Backlash and structural flexibility physically limit the accuracy that any control system can
achieve. As an alternative, direct drive linear motors, which eliminate the use of mechanical
transmissions, show promise for widespread use in high-speed/high-accuracy positioning systems
[27-29].

Although linear motors gain their high-performance potential by eliminating mechanical
transmissions, it also loses the advantage of using mechanical transmissions—gear reduction
reduces the effect of model uncertainties such as parameter variations (e.g. uncertain payloads)
and external disturbances (e.g. cutting forces in machining). Furthermore, certain types of linear
motors such as the iron core have significant uncertain non-linearities due to electro-magnetic
force ripple and magnetic cogging force [29]. These uncertain non-linearities are directly
transmitted to the load and thus have significant effect on the motion of the load. Thus, to realize
the high-performance potential of a linear motor system, a controller which can achieve the
required high accuracy in spite of various parametric uncertainties and uncertain non-linear
effects, has to be employed.

A great deal of effort has been devoted to solving the difficulties in controlling linear motors
[27-32]. In Reference [27], Alter and Tsao presents a comprehensive design approach for the
control of linear motor driven machine tool axes. H,,, optimal feedback control is used to provide
high dynamic stiffness to external disturbances (e.g. cutting forces in machining). Feedforward is
also introduced in Reference [28] to improve tracking performance. Practically, H,, design may
be conservative for high-speed/high-accuracy tracking control and there is no systematic way to
translate practical information about plant uncertainty and modelling inaccuracy into quantitat-
ive terms that allow the application of H,, techniques. In Reference [30], a disturbance compen-
sation method based on disturbance observer (DOB) [33,31] was proposed to make the linear
motor system robust to model uncertainties. It was shown both theoretically and experimentally
in Reference [34] that DOB design may not handle discontinuous disturbances such as Coulomb
friction well and cannot deal with large extent of parametric uncertainties. To reduce the
non-linear effect of force ripple and cogging force, in Reference [29], feedforward compensation
terms, which are based on an off-line experimentally identified model of first-order approxima-
tion of ripple force, were added to the position controller. Since neither all magnets in a linear
motor nor all linear motors of the same type are identical, feedforward compensation based on
off-line identification model may be too sensitive and costly to be useful.
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Figure 1. Experimental setup.

To overcome the shortcomings in the above controller designs, in this paper, under the
proposed NNARC strategy, NN is used to adaptively compensate for the lumped effect of various
unknown non-linearities on-line. Furthermore, particular structure of the major non-linearities
associated with the linear motor drive system is fully explored to construct a low-dimensional NN
with three types of hidden neurons for a tractable and yet effective NN implementation.
Experimental results on the control of an epoxy core linear motor show that the proposed NN is
able to compensate for the effect of various non-linearities in the system very quickly and
accurately; both transient and final tracking errors are in the same order as the encoder resolution
level of 1 pm.

The rest of the paper is organized as follows. The linear motor model is presented in Section 2
to provide a motivation for the class of SISO non-linear systems considered in the paper. The
proposed NNARC is detailed in Section 3. Comparative experimental studies are carried out on
the control of an epoxy core linear motor in Section 4 to illustrate the effectiveness of the
proposed NNARC strategy. Conclusions are drawn in Section 5.

2. LINEAR MOTOR MODEL AND PROBLEM FORMULATION

Linear servo motors essentially work the same as rotary motors, only opened up and laid out flat
as shown in Figure 1. Each motor is made of two parts—a permanent magnet assembly and a coil
assembly. The coil assembly encapsulates copper windings within a core material (e.g. epoxy,
steel). The copper windings conduct current. The magnet assembly consists of rare earth magnets,
mounted in alternating polarity on a steel plate, which generates magnetic flux density. By
applying a three-phase current to the coil assembly, a sequence of attracting and repelling forces
between the poles and the permanent magnets will be generated. This results in a thrust force
being experienced by the coil assembly. Ideally, this force is linear in phase currents and
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independent of position. However, in practice, the fluctuations of the field distribution and the
armature MMF, which depend on the current waveform and motor structure, give rise to
position-dependent force ripple [29,32,35].

In motion control, force ripple is a major source of uncertainty which varies with the coil
assembly position, thus causing tracking error. At very high speeds, they are of high frequency
and are usually filtered out by the system inertia. But at low speeds, they produce noticeable
effects that may not be tolerable [29,32]. Another major source of uncertainty which may degrade
the performance of any motion control system is friction force, which includes stiction, Coulomb
friction, Stribeck effect and viscous friction.

The system considered here is a linear positioning stage driven by a current-controlled
three-phase epoxy core linear motor supported by recirculating bearings. Since the system has
a much faster electrical response in comparison to the mechanical response, the current dynamics
are neglected. The mathematical model of the system can thus be described by

M%=u—F, —F(x,%) + F; 1)

where x represents the position of the inertia load, M is the normalized* mass of the inertia load
plus the coil assembly, u is the input voltage to the motor, F, is the normalized friction,
F, represents the normalized electro-magnetic force ripple, and F; represents the normalized
external disturbance force (e.g. cutting force in machining). While there have been many friction
models proposed [36], a simple and often adequate approach is to regard friction force as a static
non-linear function of the velocity

Fy(X) = Bx + Fy,(%) @

where B is the equivalent viscous friction coefficient of the system, and Fy, is the non-linear
friction term modelled as [36,37]

Fp(%) = [fe + (fy = fo)e™¥*"Isgn(%) ©)

in which f; represents the level of static friction, f, is the Coulomb friction, and X, and ¢ are
empirical parameters used to describe the Stribeck effect. In practice, due to the inaccuracy of the
positioning stage and ball bearings, the friction force may depend on the position x also, which is
verified by the experimental results shown later. With this position-dependent friction force in
mind, noting (2), the linear motor system (1) can be rewritten as

B 1 1
.. . L) v
X = ——Mx——M F,(x, X) +—Mu + A(x, X, t) “4)

where F, 2 F;,(x, X) + F(x, X) is the lumped non-linear force which depends on the state only,
and A4 (1/M)F, is the equivalent external disturbance, which may be state dependent and
time-varying.

3. NNARC DESIGN

As discussed in Section 2, it is difficult to obtain a precise model of the lumped non-linear force
F,. Therefore, NN will be employed to estimate this unknown non-linearity. However, the

#Normalized with respect to the unit input voltage.
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conventional NN designs may have a slow on-line tuning speed and may be sensitive to
disturbances and modelling errors, which usually results in a poor transient performance and
final tracking accuracy that could not meet the high precision requirements of modern drive
technologies. In viewing the excellent tracking performance achieved by the ARC design
[22,23,34], it is natural for us to investigate whether the ARC design methodology can be
integrated with the universal approximation capability of NN to maximize the achievable
performance of a controlled system. Such an integrated design is presented in this section for
a class of SISO nth-order non-linear systems in normal form [38].

3.1. Problem formulation

In order to make the results applicable for a broader class of systems motivated by the linear
motor model (4), the following nth-order SISO non-linear system is considered [18,38]

X® = $T(x, 00 + £(x) + bx)u(t) + A, 1) ()

where x is the system output, x = [x,x), ...,x"""]T is the state variable vector with
x® denoting the ith time derivative of the output x, ¢(x, t) = [@(X, 1), ..., ¢,(x, t)]" is the vector
of known basis functions, 8 = [0, ...,0,]" is the constant unknown parameter vector, ¢"(x, )0
denotes the structured non-linearity [26], f(x) represents the unstructured state-dependent (or
repeatable) unknown non-linearity, b(x) is the unknown non-linear input gain, u(t) is the system

input, and A(x, t) represents the lumped non-repeatable (or time-dependent) non-linearities such as
disturbances.

Remark 1
It is seen that the linear motor model (4) is in the form of (5) with n = 2, ¢(x, t) = x, 0 = — B/M,
S(x) = —(1/M)E, b(x) = 1/M, and A(x, t) = A(x, X, t).

Since f(x) is not assumed to possess any special form, a neural network will be employed to
approximate it for a better performance. Thus, the following assumption is made:

Assumption 1

The NN approximation error associated with the non-linear function f(x) is assumed to be
bounded [2], i.e.

|f(x) — wrg,(Vrx,)| <ds(x), VxeR" (©

where d(x) > 0 is the approximation error, x, = [x", — 1]"is the augmented input vector to the
neural network ( —1 term denotes the input bias), w; = [w,y,...,wy, ]" is the hidden-output
weight vector, V; =[V/y,...,V;,, ]7e 7 "D s the input-hidden weight matrix with
v € R D1 r . is the number of hidden neurons and g,(V,X,) = [g,1(Vf1Xa), -, 9sr, (Vir, Xa)]"
is the activation function vector.

Remark 2

From the theorems in References [1,2], non-linearity f(x) can be approximated by the output
of a multi-layer neural network to an arbitrarily accuracy on a compact set </, provided that the
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number of neurons is sufficiently large, i.e.

|f(x) — wig,(Vex,) <np, Vxed, U

where 7, is an arbitrarily small positive number, and &/, is a compact subset of #". Correspond-
ingly, in Assumption 1, d, can be arbitrarily small when x € &/,. Outside the compact set &/, the
difference between the output of the neural network and the true value of the non-linear function
may not be made arbitrarily small. It is however reasonable to expect that the approximation
error outside the compact set &/, is bounded by a known non-linear function as assumed in
Assumption 1.

Since 0 is constant, the following trivial assumption is made.

Assumption 2

The elements of the system parameter vector 6 are bounded although their bounds may not be
known, i.e.

Pue; < ei < Pu,0,> i= 1, 29 [ & (8)

where p;; and p,; represents the lower and upper bound of 0;, respectively, which may be
unknown.

Remark 3

As a matter of fact, the structured non-linearity ¢'(x, t)0 can be viewed as the output of
a two-layer (i.e. no hidden-layer) neural network with x, ¢ being the inputs, ¢ being the activation
function vector, and 0 being the weight vector. However, since ¢"(x, t) may explicitly depend on
time ¢, the structured non-linearity ¢(x, )0 is separated from the unstructured non-linearity f(x),
which depends on the states only.

In general, the form of the input gain b(x) may not be known. However, it is practical to assume
that b(x) has a known sign. Thus, the following assumption is made:

Assumption 3
The input gain b(x) is non-zero with known sign. Thus, without loss of generality, assume
b(x)=b, >0, Vxe&" )

where b, is a known positive constant.

Similar to Assumption 1, a neural network will be used to approximate the non-linear input
gain b(x). Thus, the following assumption is made:

Assumption 4

The non-linear input gain b(x) can be approximated by the output of a multi-layer neural
network with

Ib(x) — Wi gs(VoXa)l < d(x), VxeR" (10)
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where d,(x) is a non-negative function of x, w;, g, and V,, are defined in similar ways as w,, g, and
V, in Assumption 1, respectively. It is assumed that the number of neurons in the hidden-layer is
rp. The dimensions of w,, g, and V,, are decided accordingly. Similar to Remark 2, d,(x) can be
made arbitrarily small on some compact set .<7,.

Although it is usually difficult to predict the type of disturbances that the system is going to
encounter, it is always true that the disturbance is bounded in some ways. Hence, the following
practical assumption is made.

Assumption 5

The non-repeatable non-linearity A is bounded by
|Al < ha(x, 1)d(1) an

where h,(x, t) is a known function and d(t) is an unknown, but bounded positive time-varying
function.

For any sufficiently smooth desired output trajectory x,(t), the desired state trajectory is
x4(t) = [xa, X4, ..., x§~ V™. The control objective is to design a control law for u such that the
system state variable vector x tracks x, as closely as possible. If the tracking error vector is defined
as X(t) = x(t) — x4(t), the control objective is equivalent to make the ‘size’ of X(f) as small as
possible.

In the following derivations, § = [0, ..., 0,]" represents the estimate of the system parameters,
0 = 0 — 0 is the estimation error, w s =[Ws, ooy W,,,]T represents the estimate of the hidden-
output weight vector, W, = W, — w, is the estimation error of the hidden-output weight vector,
V; =[V,...,Vp, 1" is the estimate of the input-hidden weight matrix, V, = ¥, — V, is the
corresponding estimation error matrix, and g; is the shorthand notation for g, (V,x,). Notations
Wy, Wy, V,, V, and g, are defined in a same way.

3.2. Discontinuous projection mapping

Since all the weights in neural networks are constants, it is true that each element of w,, w,, V,
and V, is bounded, i.e.

pl,w,, < Wfi < pu,wﬁ, pl,vf,», < Vysij < pu,vf.,a i= 1’ ---,rf, j= 1a csh + 1 (12)
Pi,wy; < Whi < Pu,wyis pl,vm < Upij < pu,vm’ i= 1’ e Tps ] = 1’ s+ 1 (13)

where the lower and upper bounds p; .., Puw,> Pi.,,, and p,,, may not be known. It is also
reasonable to require that the estimates of the weights should be within the corresponding
bounds. However, due to the fact that these bounds may not be known a priori, certain fictitious
bounds have to be used [26]. Let p, 4, and p, 4, be the fictitious lower and upper bound for %;;,
where % could represent any of the unknown parameter vectors 0, w,, and w,, or matrices V, and
V,, respectively. Based on these fictitious lower and upper bounds, a discontinuous projection
mapping Proj(¢) can be defined as follows [39,40]:

Proj; () = {Proji (i)} (14
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with its ijth element being

0 if ‘;,'j = [A)u,*u and ®ij >0
. o or 15
Proja(*;) = *i; = Prx, and ;<0 (15
o;j otherwise

The discontinuous projection mapping defined above will be used in the construction of
adaptation law for the estimate of *. For simplicity of notations, define
P, = max{|pyx,l|Pux,l}, and denote pu = {Px,} and px = {px,}-

3.3. Approximation properties of neural networks

Since neural networks will be used in control design and their weights will be tuned on-line, it is
beneficial to investigate the approximation properties of neural networks.

For a neural network with X, e #°*! being its input vector, V =[v, ...,v,]"e & *** "
being its input-hidden weight matrix, g being the activation function vector, we £™ "™ being its
hidden-output weight matrix, we have the following theorem [41]:

Theorem 3.1

The output of neural network w'g(Vx(;,) can be approximated by its estimate WTg(Vx{in}) by
the following form:

ng(VX{in}) =Wg—-wig- Q'Vx{m}) - WTQ'vx(in} + dnn (16)
where § = g(Vxyy,), 8 = diag{g), ...,4} with i = gi(VzTX{n%l) = (dgi(2)/dz2)|: =grxpup i =1, 5Tns

and residual term dyy = — W8 Vxgin + W' O(Vx(,) with O(Vxgy,) being the sum of the higher-
order terms.

Proof. Refer to Reference [41]. O

Lemma 3.1
The residual term dyy can be bounded by a linear-in-parameter function [41], i.e.
ldnn| < Y 7

where a is an unknown vector constituting positive elements and the known function vector Y is
defined as follows:

Y = [, Xy l2o IW0e0%gm 25 1V e l1%gony 1217 (18)

where || * ||r denotes the Frobenius norm of a matrix ¢, which is defined as || * |2 = Trace{s"+}.
Proof. Refer to Reference [41]. O

From Theorem 3.1 and Lemma 3.1, the following two equations are obtained:

whe (V,x,) = Wig, — W@, — 8, V,x.) — Wi Vix, + dpnn (19)
W-{g(vaa) = Wlﬁb - Vv{(@» - gﬁvaa) - nggvaa + dynN (20)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2001; 15:837-864



NEURAL NETWORK ADAPTIVE ROBUST CONTROL 847

where the notations are defined in the same way as in Theorem 3.1 and Lemma 3.1 and

ldpwnl < @Yy, Yy =1, [Xallzs [1Wl20%all2s [V lIElIXall2]" @1
Idown| < 05 Yo, Yy = [1, [1Xall2, (Wsll2l1Xall2s [IVslllixall2]" (22)
with || ¢||, being the 2-norm of a vector e. It is noted that || ¢||z = || *||, for a vector e.

3.4. NNARC design

Although it is usually assumed that the input-hidden weights are known [15] and it can be
achieved by off-line training of neural networks, it might be more practical and beneficial if this
assumption can be relaxed and input-hidden weights can be tuned on-line. In the following, for
simplicity, the sigmoid function will be used as activation functions. Other type of activation
functions (e.g. RBF [18], bipolar sigmoid function [15]) can be worked out in the same way as
long as the activation functions and their derivatives are bounded functions.

Since the control objective is to force x to track x,, a concise tracking error metric can be
defined as [18]:

s(t) = (d% + A)n_ 1x(f) with 4> 0 23)

where A is a positive constant. (23) can be rewritten as s(t) = AT%(t) with the ith element of vector

4 being given by CiZ41A""F = ((n — 1)!}/(n — i)l(i — 1)!))A" . The equation s(t) = 0 defines a time-

varying hyperplane in 2" on which the tracking error vector decays exponentially to zero. Thus,

the perfect tracking can be asymptotically achieved by maintaining this condition [42].
Consider the control law [38]

U=u, + U (24)
with
1 T ~
U, = — ——[a,(t) + ¢7(x, )0 + wig
AT L0 + 6700 00 + wig,]
1 1
Us = Ugy + Ugp, Uy = — B— ks — b_ [&fo + &IYb'ual] sgn(s) (25)
1 1

where k > 0, a,(t) = Aok — xP with AT = [0,A"~%, ...,CiZ3A" "1 | ,(n — 1)A] and u,, is a ro-
bust term to be synthesized later.
Using control law (24), the following error equation can be obtained:

§=x" 4 q,(t)
= ¢"(x, )0 + [f(x) + a,(t)] + b(X)u, + b(x)u; + A
= [¢"(x, 0)0-¢"(x, 901 + [f(x) — wig,] + [wig, — Wig,]
+ [b(x) — wygsJu, + [Wigs — WoBs1u, + A + b(X)uy; + b(X)ug
= —¢"(x, 00 + [f(x) — wig, + dpn] + [ V7@, — 85V ,xa) — 978,V ,x,]
+ {[b(x) — wigs + donn] + [ — W3(@s — 85 Voxa) — W38V, X T}u,
b(x)  bx)

~ ( )
S Pk v’ P i A~ __bx
k 1 s , arY, sgn(s) z

where Equations (19) and (20) are used in the derivation of the fourth equality.

&3 Yplualsgn(s) + b(X)us, + A (26)
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In viewing the fourth equality of (26), by using the discontinuous projection mapping in Section
3.2, the following adaptation laws are constructed [38]:

8 = Proja(Tesd(x, 1) (27)
Wy = Proj,(Frs(@r — 8 Vrx.)) (28)
V; = Projg, [(T;,X,s%} 8/)"] 29)
& = Proj; (I, |s|Y,) (30)
W, = Projy, (T, [u.s(@, — 8, Vox,)1} @1
Vs = Proj, {[Tvs,X,5%18, 17} (32)
&, = Projs, {T,[Is] Y, [ua[1} (33)

where I’s are diagonal positive-definite adaptation rate matrices. In (30) and (33), the lower
fictitious bounds for &,; and dy; are chosen to be zero since a; and a,; are positive from Lemma
3.1. It is also assumed that the fictitious lower and upper bounds p,,, and p,,, used in
projection mapping Projs, {*} for W;, and p,,,, and p,,,, in Proje, {*} for i,;; are chosen in such
a way that W38, > 0, YWy € [Prws Puwsls Vibij €[Pion,> Punw, J; this requirement is reasonable
since the ideal value of w;g, is b(x), which is greater than zero as assumed in Assumption 3.

Using similar arguments as in Reference [22], it can be shown that the above adaptation laws
with projection mapping have the following nice properties [38]:

P1. Each component of parameter estimate is always within its known fictitious bound, i.e.

Pro, <O < Pups i=1,..,r (34)
Prowyy SWpi € Puwys i=1,...,7 (395)
Progy < Pfij S Pupps i=1,..,1p j=1.,n+1 (36)
0< 8y <Pug,r k=1,...,4 (37
Prowy S Wpi < Py, i=1,...,1 (3%)
Pl S Opij < Pupyys i=1,.,m, j=1,...,n+1 (39)
0< oy < Pyay» k=1,...,4 (40)
P2. In addition, if ideal weights actually lie within their fictitious bounds, then
0™(Ts 'Proj(Tye) —+) <0, Ve (41)
W} (L7 Projo, Ty ) —+) <0, Ve 42
Trace {V,([,;* Projg, ([, *) —*)} <0, Ve (43)
8} (L' Projs (T;*) — ) <0, Ve (44)
Wi Proj,(T,5¢) — ) <0, Ve (45)
Trace{V,([; ' Proje,(T»*) —*)} <0, Ve (46)
83(Tp ' Proj;, ([ 9) —¢) <0, Ve 47)
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Remark 4

Through the use of discontinuous projection mappings in the adaptation laws, the weight
estimates are always bounded and stay within the fictitious bounds as seen from Property P1.
Thus, a controlled on-line weight tuning process is achieved and the possible divergence problem
of on-line weight-tuning in the presence of disturbances and approximation errors is avoided.
Furthermore, the bound of the output of a neural network can be predicted to certain degree,
which enables certain robust control terms to be constructed in the design of control law for
a guaranteed transient performance and final tracking accuracy in general as shown later.

The robust control term u,, is synthesized to satisfy the following conditions [38]:

s{¢70 + [f(x) + a,(t)] + b(X)u, + A + b(x)us2} <&, (43)
sus;; <0 49)
where
6 =1+ I(IIPoIIzA— [12oll2)I 281 + ‘1 + I(prflle = 11Dwsll2)| 262 + ll + I(Ilpwbllzﬂ— 1wsll2)I 2:-;3
l15oll2 1wsll2 l1owell2
+ &4 + |ldli%es (50)

in which ¢y, ¢,, &3, &4, and &5 are the positive design constants.

Remark 5
The robust term u,, in (24) may be chosen in the following way. Let
Uy = —ksys (51)
where kg, is a non-linear gain large enough such that ky, > ¥/ h?/4e; in which hy, hy, hy, hy and

hs are any non-linear bounding functions satisfying h, >(1/\/17,)l|¢(x, OOz + 11Pell2),

hy 2 (/BB + 1Busl, s = (U/A/BOIE IR+ 1Bwslitals B > (1/5/bi)dy + |ualds],
and  hs > (1/y/b)ha(x, 1), respectively, [l = /TZ1Ii: g/l = /TZ7NGsl%  and
181l = </ X5=2119s:ll% - The detailed proof of u,, given by (51) satisfying (48) and (49) is given in
Reference [38] and is omitted.

Usually, the activation functions g;’s and g,;’s are sigmoid functions; hence, || < 1. It is also
clear that ||W/||, < ||pwsll2- Therefore, we can simply choose h, = 2./r;/b;||pusll> in practice.
Similarly, h; can be chosen as hy = 2,/7,/b;||Pwsll2 [Ual-

Theorem 3.2

With NNARC (24) and the adaptation laws (27)-(33), the following results hold:
A. In general, all signals are bounded. Furthermore, the sliding error s(t) exponentially converges
to a small value and is bounded above by

s¥(t) < exp( — 2k0)s*(0) + fki[l — exp( — 2kt)] < exp( — 2kt)s%(0) + % (52)

B. By setting the initial state vector of the system equal to the initial state vector of the desired
trajectory, i.e. x(0) = x4(0), s(0) = 0 can be obtained. Consequently, the actual tracking error is
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“)g(i)”oO < 2i/1i—n+1\/% (53)

C. Iff(x) = wyg,(V,x,), and b(x) = w;g,(V,X,), [3], i.e. the non-linear functions fand b are in the
functional range of the corresponding neural network, respectively, then, in addition to the
results in A and B, asymptotic output tracking is achieved provided that there is no external
disturbance (i.e. A = 0), and all true parameters and weights lie within the fictitious bounds
(e Pro, <O < Pup, Vi=1,..0,7, Pru, S Wi < Puwgs Proy S Vsij S Puyy» Vi=1,..,1p,
V] =1L..,n+1, 0< Ok < ﬁu.a,n k= L....4, ﬁl,w,.- S Wy € ﬁu,w.n ﬁl,v,,u < Upij < ﬁu,vw’
Vi= 1, veesths V_] = 1, s+ 1, 0< pk < ﬁu,a,., k= 1, ,4)

D. When the discontinuous sign function sgn(s) in (25) is dropped or replaced by any continuous
function y(s) satisfying sy(s) = 0, Results A and B still remain valid.

asymptotically bounded by

Proof. See the appendix. O

Remark 6

Results A and B of Theorem 3.2. show that the proposed NNARC achieves a guaranteed
transient performance and final tracking accuracy in general; it is seen that the exponentially
converging rate 2k and the bounds of the final output tracking error (||X||l, < A™""'\/e,/k) are
related to the design parameters k, 4, &5, €3, &4 and &s in a known form, and can be adjusted freely
by suitably choosing those design parameters. These results are thus much stronger than those in

References [15-17]. In all those schemes in References [15-17], transient performance is not
guaranteed.

Remark 7

Result C of Theorem 3.2 shows that the proposed NNARC is able to accomplish its learning
goal (the assumptions in C of Theorem 3.2 represent the ideal situation that a neural network is
intended to be used for). As a result, an improved tracking performance—asymptotic output
tracking—is achieved. It is noted that all previous research [15-21] cannot attain this level of
perfect learning capability.

Remark 8

It is clear that the larger the fictitious parameter ranges chosen in the construction of the
projection mappings (15) are, the wider the approximation range of the resulting NN would be.
Thus, theoretically, if the control input is unlimited as implicitly assumed in the proof of Theorem
3.2, the fictitious parameter ranges should be chosen larger enough so that the resulting NN is
able to approximate the unknown non-linearities well to obtain asymptotic output tracking
performance stated in the Result C of Theorem 3.2. However, the same as in Reference [26], this
should not be overdone when the control input has limited authority and the system may be
occasionally subjected to large disturbances as in most applications; it has been observed in
References [34,26] that using too large fictitious bounds for on-line parameter estimates may
result in phenomenon similar to the usual integration windup problem when the control input is
saturated in the presence of occasional large disturbances. Although the theoretical results have
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not been well established [34,26], it is shown through experiments and simulations that the
integration windup problem may be alleviated by choosing the fictitious bounds appropriately.
Thus, a compromise has to be made between the NN approximation range and the degree of the
robustness to large disturbances and control saturations in practice.

Remark 9

As mentioned in Remark 3, ¢"0 may be viewed as the output of a two-layer neural network
with ¢ being the activation function vector and 0 being the weight vector. From this point of view,
the adaptation law (27) is compatible with (28).

3.5. Trajectory initialization and generation

It is seen from (52) that transient tracking error is affected by the initial value s(0). To further
reduce transient tracking error, the idea of trajectory initialization [22,43] can be utilized.
Namely, instead of simply letting the desired trajectory for the controller be the actual reference
trajectory (i.e. x4(t) = x,(1)), x4(t) is generated using a stable filter. For example, x,(t) can be
generated by the following nth-order stable filter

n—1 n—1
XP+ Y X = x4 Y, fa-ix? (54)
i=0 i=0

with the initial conditions given by x,4(0) = x(0) and B; >0, i=0,...,n — 1. By choosing
B: properly, x, can track x, with any prescribed transient. At the same time, s(0) = 0 is achieved,
and the transient tracking error is reduced.

4. COMPARATIVE EXPERIMENTAL STUDY

4.1. Experimental set-up

To test the proposed NNARC strategy and study fundamental problems associated with high-
speed/high-accuracy motion control of linear motor drive systems, a two-axis X-Y positioning
stage is set up as a test-bed. As shown in Figure 1, the test-bed consists of four major components:
a precision X-Y stage with two integrated linear drive motors, two linear encoders with
a measurement resolution of 1 pm after quadrature, a servo controller, and a host PC. The two
axes of the X-Y stage are mounted orthogonally on a horizontal plane with X-axis on top of
Y-axis. A particular feature of the setup is that the two linear motors are of different type: X-axis
is driven by an Anorad LEM-S-3-S linear motor (epoxy core) and Y-axis is driven by an Anorad
LCK-S-1 linear motor (iron core). They represent the two most commonly used linear motors
and have different characteristics. In the experiments, only X-axis is used.

The control system is implemented using a dSPACE DS1103 controller board. The controller
executes programs at a sampling frequency of f; = 2.5 kHz. Since backward difference of position
measurement is used to obtain velocity, the resolution of velocity feedback is position resolu-
tion/sampling interval = 1076/4 x 10~* = 0.0025 m/s.
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Figure 2. Histories of the input, position, velocity and the lumped non-linear force F, (constant
velocity 0.017 m/s).

4.2. Design of neural network and adaptation law

Off-line system identification reveals that the epoxy core linear motor used in the system can be
adequately described by (4). However, it is observed that it is very hard to obtain the exact form of
the lumped non-linear force F,. As such, F, will be approximated by an NN as follows.
Although it is well known that better performance may be expected with more neurons, longer
computation time results, which is not suitable for real-time implementation. Therefore, in the
following, the particular properties of the linear motor system will be used to construct a low
dimensional neural network for a tractable and yet effective NN implementation. For this
purpose, simple tests are first run to gain some insights on the nature of F, as follows. Specifically,
to find out how F, depends on the position x, a simple velocity-feedback control law is used to try
to maintain a constant velocity movement as shown in Figure 2. Since A = 0, F, can be calculated
from (4) as F, = u — Mx — Bx, in which M = 0.027 and B = 0.273 are the nominal values of
M and B obtained by off-line identification. The resulting F, is shown in Figure 2 and is plotted
versus the position x in Figure 3. As shown, F, depends on the position significantly. The position
dependency of F, may be explained as follows. Firstly, for linear motors, the contacting condition
between the moving coil assembly and the fixed base changes with the position x. Thus, the level
of friction may change slowly with the position, which contributes to the non-periodic low
frequency portion of F, in terms of the position x shown in Figure 3. The high-frequency portion
of F, in terms of the position x is quite periodic with a period of 0.03 m. The period is exactly the
same as the length between the centers of two adjacent permanent magnets of the motor, which
indicates that this high-frequency portion is due to the electro-magnetic force ripple F,.
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Figure 3. F, vs position (constant velocity 0.017 m/s).

Based on the above observations, the NN designed for f(x) = — (1/M)F, should depend on
both position x and velocity x. Hence, the input vector to the NN is [x, X, — 1]”. Three types of
neurons are used in the hidden layer to take into account the particular phenomenon observed
above.

1. Type-I. Five hidden neurons with a conventional sigmoid function g(*) =
(1 — exp( — *))/(1 + exp( — *)) as activation function are used to capture the phenomenon
that F, depends on the velocity (especially, the direction of the velocity) and slowly changes
with position. Since the slope of g(*) around the origin is unknown, the corresponding
input-hidden weights are assumed to be unknown.

2. Type-ITI: Three hidden neurons with sinusoid type of functions (sin(27/0.03x), sin(67/0.03x),
and sin(107/0.03x)) being activation functions are used to compensate for the force ripple,
which is a periodic function of the position. The input-hidden weights is set to be [1,0, 0]"
while the hidden-output weights are unknown.

3. Type-III: One hidden neuron with an identity function g(*) = * as activation function is used
to capture the lumped average effect of all uncertainties including disturbance. Correspond-
ing to the input [x, %, — 1]7, its input-hidden weights are set to be [0,0, 1]7. The hidden-
output weight is unknown. In this case, since g(*) is an identity function, it may also be
viewed that there is no hidden layer neuron.

For clarity, the structure of the above NN is also given in Figure 4. Since the input-hidden weights
are fixed in the last two types of hidden neurons, the corresponding adaptation laws can be
simplified to

‘i'f = Projs, (Fussgy) (35
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Figure 4. NN structure for estimating — F,/M.

where g; = sin((27/0.03)x), sin((67/0.03)x), sin((107/0.03)x), respectively, for Type-II neurons, and
gy = 1 for Type-III neuron.

From (4), it is clear that the input gain 1/M is a constant. This property will be taken into
account to simplify the NN for b(x) by letting g, to be identity function. Consequently, there is no
hidden layer in NN for b(x), and only W, (i.e. b) needs to be adjusted. Correspondingly, adaptation
laws (32) and (33) are not needed, and adaptation law (31) becomes

Wy = b = Projs{Tyu,s} (56)

4.3. DRC and NNARC control laws

Since no hidden layer exists in NN for b(x), the robust control term dj Y,|u,|sgn(s) in (25) is not
needed. Furthermore, as stated in Result D of Theorem 3.2, (2/n)arctan(y,s) can be used to
replace the sign function in (25) to avoid control input chattering. The resulting uy, is

Uy = — bl[ks + —2— 4rY, arctan(t/zas)] (57)

1

in which ¢, = 90 is used in the experiments.
In the experiments, comparative study between a traditional deterministic robust controller
(DRC) and the proposed NNARC is carried out.
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For reference, the NNARC for the linear motor system is given as follows:

. T
Uppare = — a,(t) + 9; +WeB, bi, [ks + % aryY;, arctan(n//,,s)] + Uy, (58)

where u,, assumes the form (51) with k,, = max(3, Y23 h?/4e;).
As in Reference [26], when neither the NN weights nor unknown parameters are adjusted,
a DRC law is obtained. Corresponding to (58), the following DRC is proposed:

__ a0+ 005+ W08,0) _ 1 [ 2 ] fu,

Ugpe = 50) b, ks + - dr(0)Y, arctan(y,s) (59)

Considering the system model (4), under the control law (58), the following dynamic equation is

obtained:
AT
§= —%<B +g>x —%(F,, +w—f—’> + (1 —%)ar(t)

k ks2 &}-‘Yf S
— =+ s ————=sat{— |+ A
<Mb, + M)S Mb, sat " + (60)
where the first three terms on the right-hand side of the equation represent the model compensa-
tion parts.

4.4. Parameters in control laws and adaptation laws

For comparison, the parameters for both controllers are assumed the same if they have the same
meanings. A = 200 is used for the sliding plane and k = 20 is used as the constant gain. The final
tracking accuracy indices are &; = 5000, ¢, = 5000, ¢; = 5000, &, = 5000 and &5 = 5000.

As stated in Remark 8, the fictitious bounds of the NN weights should be chosen based on the
particular properties of the system and the types of weights and neurons used. For Type-I neurons,
large fictitious bounds can be assumed for the input-hidden weights since sigmoidal functions are
always bounded by =+ 1. For other types of neurons, the fictitious bounds of their weights need to
be chosen conservatively to avoid the possible integration windup problem. Under this general
guideline, the following different adaptation rates and fictitious bounds are chosen empirically

1. Type-I: For input-hidden weights, 10* is used as adaptation rate, and the fictitious lower and
upper bounds are — 3 x 10° and 3 x 10°, respectively.
For hidden-output weights, adaptation rate is 10%, and the fictitious lower and upper
bounds are — 20 and 20, respectively.

2. Type-II: Only hidden-output weights are to be adjusted. The adaptation rate is 103. The
fictitious lower and upper bounds are — 20 and 20, respectively.

3. Type-III: Same as Type-II except that the adaptation rate is 2 x 10°.

The initial values of all the weights are zeros.

Since 0.025 < M < 0.1, b, = 10 results. Standard least-squares identification is performed to
obtain the parameters of the system. The nominal values of M is 0.027 V/m/s*. So the nominal
value for b is 1/M = 37.037. Since the true value of b may be unknown, 50) = 20 is used in the
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Figure 5. Position of the desired trajectory.

experiment. The adaptation rate is 5000. The fictitious lower and upper bounds of 8 are assumed
the values of — 11 and 0, the initial value is (0) = — 8.111, and the adaptation rate is 4 x 10*,

4.5. Experimental results

As stated in Section 2, the main non-linearity in the model (4) is F, and the force ripple may
produce noticeable effects when the motor moves at a low speed. In order to investigate how
NNARC deals with this unknown non-linearity, a low speed point-to-point desired trajectory
with a maximum speed of 0.02 m/s is used, whose position and velocity of the initial several
periods are given in Figures 5 and 6, respectively.

As in Section 3.5, a second-order stable filter with f; = 100 and $, = 2500 is used to further
reduce the transient error.

The experimental results under two controllers are given in Figures 7-13. From the result in
Figure 7, a large tracking error exhibits for DRC due to the ‘wrong’ initial values of the parameter
estimates. Comparatively, in Figure 8, the output under NNARC tracks the desired trajectory
very well. In fact, the tracking error mainly stays within + 2 um, except that the appearance of
spikes when the direction of velocity changes. It is not surprise to see these spikes since NN can
only approximate continuous functions to arbitrary accuracy and may not be able to handle
discontinuous non-linearity like Coulomb friction well. However, it can be seen that the magni-
tudes of these spikes keep decreasing until reaching to a small value of + 2.5 um. It is also
observed that the tracking error during the entire run is within + 5.6 um. Based on all these
observations, it can be concluded that a high-precision control of linear motor drive systems is
achieved at low speed.

The time histories of the estimate 0 and b are given in Figure 9. Since the desired trajectory is
not rich enough and the persistent excitation condition cannot be satisfied, the estimates ‘drift
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Figure 7. Position error under DRC.

away’. Fortunately, through the use of projection mappings, the estimates cannot go
unbounded. Both of them are kept within the fictitious bounds. In this sense, a controlled learning
is achieved.
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Figure 9. Estimates of b and 6 under NNARC.

The output of the neural network is given in Figures 10 and 11, respectively. As seen from
Figure 10, the output of NN has a discontinuous-jump-like shape when the velocity changes
directions, which indicates the good approximation of the friction force at the low speed. To gain

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2001; 15:837-864



NEURAL NETWORK ADAPTIVE ROBUST CONTROL 859

output of NN

output of NN

-0.02 0 0.02 0.:.)4_ . 0.|06 O.IOB 0T1
position (m)

0.12

Figure 11. NN output under NNARC (with filter 50/(s + 50)) for the segment of ¢ = 79.9996
92.1780s.

more knowledge about the shape of the NN output, a stable filter with transfer function
50/(s + 50) is used to get rid of the noise effects. The filtered NN output is plotted versus the

position as shown in Figure 11. It can be seen that the filtered NN output tends to have a shape
like the actual one in Figure 3.
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Figure 13. Control input under NNARC.

For completeness, the control inputs for both two controllers are given in Figures 12 and 13,
which reveal that both controllers use almost the same level of control effort.

Overall, the proposed NNARC can have an excellent output tracking performance even with
little knowledge of the system and parameters not converging to their true values.
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5. CONCLUSION

In this paper, motivated by the precision motion control problem of linear motors, performance
oriented NNARC control law has been constructed for a class of nth-order SISO uncertain
non-linear systems. The proposed NNARC law takes full advantages of both neural networks
and adaptive robust control (ARC) designs. The universal approximation capability of neural
networks is utilized to construct multi-layer neural networks to approximate all unknown but
repeatable non-linear functions to achieve a better model compensation for an improved
performance. All NN weights are tuned on-line with no prior training needed. Discontinuous
projection mappings with fictitious bounds are used to achieve a controlled learning even in the
presence of neural network approximation error and non-repeatable non-linearities such as
external disturbances. Certain robust feedback is constructed to attenuate various model uncer-
tainties effectively for a guaranteed output tracking transient performance and a guaranteed final
tracking accuracy in general—a transient tracking performance that existing NN based robust
adaptive controllers cannot achieve. The resulting NNARC has the nice feature that if the
unknown non-linear functions are in the functional ranges of the neural networks and the ideal
weights fall within the prescribed range, asymptotic output tracking is also achieved—a perfor-
mance that existing NN-based robust adaptive controllers cannot have. The proposed NNARC
strategy is also applied to the precision motion control of a linear motor to deal with low speed
control problem caused by the position dependent friction and electro-magnetic force ripples.
Comparative experiments are carried out. Experimental results verify the high performance
nature of the proposed NNARC strategy.

APPENDIX

A. Consider a positive definite function ¥ = $s2. In viewing (9), (26), and (48) as well as the fact
that &;; > 0, and dj; > 0, the time derivative of V is

V=s§=— @sz ~9—(§)&,Yf|s| - M&beMNSI
bl bl bl
+5{¢"0 + [f(x) + a, ()] + b(x)ua + A + b(x)us; }
< —ks? + ¢ (A1)
which leads to (52).
B. Since s(0) = 0, from inequality (53), it is seen that

&g &s

s3(H) < i [1 — exp( — 2k8)] < % (A2)

Hence, the inequality (53) is obtained [44].
C. Consider a positive definite function as follows

=4 [s%t) + 071,10 + WiT, ', + Trace{V, I,/ 'V]} + &}I,;'a,
+ Wal'W,, + Trace{V,I;'V}} + & I, '&,] (A3)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2001; 15:837-864



862 J. Q. GONG AND B. YAO

When f(x) = wyg,, b(X) = wsg, and A = 0, noting (26), the adaptation laws (27)-(33), the time
derivative of V is derived as follows

V =s5+0"T5 0 + Wi, W, + Trace{V,T ,:,‘(7}} + &I,
+ Wil o'W, + Trace{V,T ,,,,‘{’,,} + ;'
- s{ — 67D+ dpuy + [ — W38y — & ¥x,) — w}e'f\"ffxal

+ ugdpyy + [ — Wi@ — 8 Vsxa) — W38 Vix,Ju,

.b% — —I?I%Z‘—)‘fo n(s) — LzGbYl:IuaISgn(s) + b(x)“sz} +0'T, 19

+ val";fﬁ'f + Trace{Vfl",;'f ?,} + &}F;fl&f + Wgr;blwb
+ Trace{V,,l".;,’{’{} + a4

b
x ’s’ T s{dpuy + [ — W@ — &V,%2) — W18, V,%,] + tudw
- W{(ﬁb gbvaa)“a - uawbgbvaa} - b(X)AfYﬂ | — B(EQ&IYH%M

+ W}r;}é’f + Trace{vfl",,'fV}} + &fl";f a; + w,,l";,, ﬁb
+ Trace{V,I'5'VI} + &5 14,

—12

kS + afo|S| + a,,Y,,Iu,,llsI - Q}YfISl - debluaHSI + afl",f oy + abra‘ I&b
ks? (Ad)

in which the properties (41)-(47) have been used.

Since V is positive definite and V is negative semi-definite, V' is bounded. Hence s and all the
estimate errors are bounded. From Equation (26), it can be found that § is bounded. Sub-
sequently, ds?/dt = 2s5 is also a bounded function. Hence, s? is a uniform continuous function.
Furthermore, from inequality V < — ks, it is obtained that [5s(r)*dt < V(0)/k. Hence j'os(t)zdt
is a non-decreasing upper-bounded functlon of time. Consequently, hm,..wj'os (r)dr exists and is
finite. By Barbalat’s lemma [45], s> —» 0 as t > oo, so does s. Therefore, the asymptotic tracking is
achieved.

D. Using the same positive definite function as in A, it can be easily verified that
V < —ks? + ¢, since — sy(s) < 0 holds. Hence, Result A remains valid, so does Result B. [

< -
< -
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