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ABSTRACT

In this paper we present an output feedback based Adap-

tive Robust Fault Tolerant Control (ARFTC) strategy to solve the

problem of output tracking in presence of actuator failures, dis-

turbances and modeling uncertainties for a class of nonlinear

systems. The class of faults addressed here include stuck actua-

tors, actuator loss of efficiency or a combination of the two. We

assume no a priori information regarding the instant of failure,

failure pattern or fault size. The ARFTC combines the robustness

of sliding mode controllers with the online learning capabilities

of adaptive control to accommodate sudden changes in system

parameters due to actuator faults. Comparative simulation stud-

ies are carried out on a nonlinear hypersonic aircraft model,

which shows the effectiveness of the proposed scheme over back-

stepping based robust adaptive fault-tolerant control.

INTRODUCTION

Reliability and performance are twin objectives of many

complex systems like chemical plants, nuclear plants, flight con-

trol system etc., and one cannot be sacrificed for the other. For

such systems, it is desirable to have a certain degree of fault tol-

erance with respect to various faults. In this work, we focus on

the problem of fault accommodation for unknown actuator fail-

ures for a class of nonlinear systems with unknown parameters

and uncertain nonlinearities. We address two types of fault sce-

narios: actuator loss in efficiency and stuck actuators. We do

not assume the knowledge of failed actuators or failure pattern

in the present work. Fortunately, adaptive schemes, by virtue of

its on-line learning capability can bypass this problem. Conse-

quently, many adaptive schemes have been developed to solve

this problem.

Tao et al. proposed a model reference adaptive control

(MRAC) based direct scheme to solve the problem of actuator

fault-accommodation for linear system in [1]. Such approaches

are inherently limited as they rely on conventional MRAC, which

suffers from poor transients during the learning phase and offers

difficulty in checking stability and robustness bounds in presence

of exogenous disturbances. They also addressed various classes

of nonlinear systems using backstepping based adaptive control

in [2] and [3]. Robust Adaptive backstepping based fault com-

pensation scheme for a class of nonlinear systems was proposed

in [4]. Note that even when robustness modifications are made to

backstepping based adaptive control, there is still no transparent

way to attenuate the effect of disturbances and modeling uncer-

tainties on the transient response and steady-state tracking error.

Robust control based schemes, on the other hand, can handle

such disturbances and unstructured uncertainties with guaranteed

transient performance and attenuate their effect on the steady-

state error. LMI based fault-tolerant control was proposed in [5]

and sliding mode control based approaches were used in [6].

But, in presence of large parametric uncertainties, the robust con-

trol based direct fault-accommodation schemes can result in in-

put chattering or large steady-state errors when smoothing tech-

niques are used. Thus, both adaptive and robust control based

schemes can solve one part of the problem, but cannot address

all the issues associated with actuator faults, viz., desired tran-

sient response and small steady-state tracking error in presence

of parametric and non-parametric uncertainties.

In spite of the inherent limitations of adaptive control based

techniques, it has been realized that adaptation is of key impor-

tance in dealing with large parametric uncertainties introduced

due to actuator faults in safety-critical missions like flight con-

trol systems. Consequently, the idea of safe adaptive control is

coming to forefront, which ensures certain stability properties

even without adaptation [7, 8]. In this respect, we would like
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to point out that ARC based schemes have already resolved this

issue [9, 10] and may be classified as the so-called safe adap-

tive control. Switching the adaptation off at any instant con-

verts the adaptive robust controller into a deterministic robust

controller with guaranteed transient performance. Moreover, the

design procedure allows us to calculate explicit upper bound for

tracking errors over the entire time history in terms of certain

controller parameters and achieve prespecified final tracking ac-

curacy. Thus, ARC based schemes are natural choices for safety

sensitive systems over conventional adaptive and robust schemes.

In the present work, we develop an output feedback ARC

based scheme for accommodation of unknown actuator faults.

The technique used here is a combination of adaptive backstep-

ping [11] and discontinuous projection based ARC proposed in

[10] and differs significantly from the techniques presented in [4]

and [2] which relies on backstepping based direct adaptive con-

trol. The fundamental difference between the two schemes is due

to the fact that ARC uses robust filter structures as the baseline

controller, and adaptation is used only as a means to reduce the

extent of parametric uncertainties. This is the reason that switch-

ing the adaptation off at any instant converts the ARC controller

to a deterministic robust controller with guaranteed performance.

On the other hand, in direct adaptive designs, adaptation is the

underlying mechanism which makes the controller work. Fur-

thermore, in backstepping based adaptive designs, tuning func-

tions are used to compensate the for parameter-estimation error

dynamics. But, as discontinuous projection is used in our ap-

proach, tuning functions cannot be used. In order to compensate

for the effects of parameter-estimation error dynamics, the robust

component of the control law is strengthened in ARC. In order

to show the superior performance of the proposed scheme, com-

parative studies are performed using a hypersonic aircraft model.

PROBLEM STATEMENT

We will consider systems in the following form

ẋ1 = x2 + ϕ0,1(y)+
p

∑
j=1

a jϕ1, j + ∆1(x,t)

...

ẋρ−1 = xρ + ϕ0,ρ−1(y)+
p

∑
j=1

a jϕρ−1, j + ∆ρ−1(x,t)

ẋρ = xρ+1 + ϕ0,ρ(y)+
p

∑
j=1

a jϕρ, j

+
q

∑
j=1

bm, jβ j(y)u j(t)+ ∆ρ(x,t)

...

ẋn = ϕ0,n(y)+
p

∑
j=1

a jϕn, j +
q

∑
j=1

b0, jβ j(y)u j(t)+ ∆n(x,t) (1)

where ρ = n − m is the relative degree, u j is the control in-

put, y = x1 is the measured output, ϕ0,i(y) and β j(y) are known

smooth functions of y and β j(y) 6= 0 for any y. ∆i(x,t) represents

uncertain nonlinearities and ai, bi, j are unknown constants such

that sign of the high frequency gain (sgn(bm, j)) is known. We

will make the following realistic assumptions regarding the un-

certainties present in the system

A1 The extent of parametric uncertainties and uncertain nonlin-

earities satisfy

ai ∈ Ωa , {ai : (ai)min < ai < (ai)max}

bi, j ∈ Ωb , {bi, j : (bi, j)min < bi, j < (bi, j)max}

∆i ∈ Ω∆ , {∆i : |∆i(x,t)| ≤ δi(t)} (2)

where (ai)min, (ai)max, (bi, j)min, (bi, j)max are known and δi(t) is

a bounded but unknown function.

In this work, we will consider faults which can be modeled

as

u j(t) =

{

ū j if stuck actuator and t ≥ Tf

η j ju j(t) if loss of efficiency and t ≥ Tf
(3)

where Tf is the unknown instant of failure, ū j is an unknown

constant value at which the actuator gets stuck, and η j j ∈
[(η j j)min,1] represents actuator loss in efficiency. Without actu-

ator redundancy and sufficient control authority, actuator faults

cannot be accommodated and the same is stated formally in the

following assumption

A2 System (1) is such that the desired control objective can be

fulfilled with up to m−1 stuck actuators and any number of ac-

tuators with loss in efficiency.

We will make another standard assumption which guaran-

tees stability of the zero dynamics

A3 The polynomials B j(s) = bm, js
m + bm−1, js

m−1 + . . . + b0, j,

j = 1,2, ..,q are stable.

The problem we attempt to solve in this paper can now be

stated as follows. For the uncertain nonlinear system (1), sub-

jected to faults (3) the goal is to design an output feedback based

control strategy such that the output tracking error converges ex-

ponentially to a prespecified bound and has a guaranteed tran-

sient performance.

OUTPUT FEEDBACK BASED ARFTC

As in [3], we will design a control law such that β j(y)u j(t) =
u∗(t). With fault model (3) and the chosen actuation scheme, we

can rewrite the control inputs as follows,

u j(t) =
η j j

β j(y)
(1−σ j j)u

∗(t)+ σ j jū j, j = 0,1, . . . ,m (4)
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where σ j j = 1 corresponds to stuck actuators, σ j j = 0, (η j j)min ≥
η j j ≤ 1 represents actuator loss of efficiency and σ j j = 0, η j j = 1

corresponds to healthy actuators.

With this, we can rewrite the system as follows

ẋi = xi+1 + ϕ0,i(y)+
p

∑
j=1

a jϕi, j + ∆i(x,t), i = 1,2, ..,ρ−1

ẋρ = xρ+1 + ϕ0,ρ(y)+
p

∑
j=1

a jϕρ, j

+
q

∑
j=1

κmu∗(t)+
q

∑
j=1

µm, jβ j(y)+ ∆ρ(x,t)

...

ẋn = ϕ0,n(y)+
p

∑
j=1

a jϕn, j

+
q

∑
j=1

κ0u∗(t)+
q

∑
j=1

µ0, jβ j(y)+ ∆n(x,t) (5)

where κi = ∑
q
j=1 η j j(1 − σ j j)bi, j and µi, j = σ j jū jbi, j, i =

0,1, ..,m, j = 1,2, ..,q. Note that assumption A3 implies

κmsm + κm−1sm−1 + . . .+ κ0 is a stable polynomial, irrespective

of the failure pattern.

State Estimation

We need to construct state-estimator for

ẋ = A0x + k̄y + ϕ0(y)+ Φ(y)a

+
m

∑
i=0

en−iκiu
∗ +

q

∑
j=1

m

∑
i=0

en−iµi, jβ j(y)+ ∆ (6)

where k is the observer gain and A0 is the observer matrix such

that A = A0 + kcT and satisfies

PA0 + AT
0 P = −I, P = PT > 0

We will define the following set of filters for the purpose of state-

estimation,

ξ̇0 = A0ξ0 + ky + ϕ0(y), ξ0 ∈ R
n×1

ξ̇ = A0ξ+ Φ(y), ξ ∈ R
n×p

ϑ̇i = A0ϑi + en−iu
∗, ϑi ∈ R

n×1

ψ̇i, j = A0ψi, j + en−iβ j(y), ψi, j ∈ R
n×1 (7)

where i = 0,1, ..,m and j = 1,2, ..,q. Due to the special structure

of A0, the order of K-filters can be reduced by using the following

two filters

λ̇ = A0λ + enu∗

ζ̇ j = A0ζ j + enβ j, j = 1,2, ..,q (8)

and the following algebraic equations

ϑi = Ai
0λ

ψi, j = Ai
0ζ j, i = 0,1, ..,m (9)

Also, it can be easily verified from the algebraic equations that

ϑi, j = [∗,∗, ....,∗,1]







λ1

...

λi+ j







ψi, j,k = [∗,∗, ....,∗,1]







ζ j,1
...

ζ j,i+k






(10)

The estimated state can be written as

x̂ = ξ0 + ξa +
m

∑
i=0

κiϑi +
q

∑
j=1

m

∑
i=0

µi, jψi, j (11)

Let ε = x− x̂ be the estimation error. Then, the state-estimation

error dynamics is given by

ε̇ = A0ε+ ∆ (12)

Now, noting the fact from assumption A1 that |∆i(x,t)| ≤ δi(t)
and that A0 is stable, we can conclude that the estimation remains

in a residual ball whose radius depends on δi(t) and the gain

matrix i.e.,

ε ∈ Ωε , {ε : |ε(t)| ≤ δε(t)} (13)

Parameter Projection
Let θ̂ denote the estimate of θ and θ̃ = θ̂−θ denote the esti-

mation error. It is well known fact that gradient based parameter

estimation algorithms suffer from parameter drift in presence of

disturbances, and can result in system states growing unbound-

edly. We use discontinuous parameter projection to deal with this

problem. The update law and the projection mapping used here

have the following form,

˙̂θ = Projθ̂(Γτ) (14)

Projθ̂i
=







0 if θ̂i = θi,max and •i > 0

0 if θ̂i = θi,min and •i < 0

•i otherwise

(15)
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where Γ > 0 is a diagonal matrix, and τ is any adaptation func-

tion. The projection mapping guarantees that the following two

properties are always satisfied,

P1 θ̂ ∈ Ωθ = {θ̂ : θmin ≤ θ̂ ≤ θmax} (16)

P2 θ̃T (Γ−1Projθ̂(Γτ)− τ) ≤ 0, ∀τ (17)

Controller Design
The controller design presented here combines the adaptive

backstepping [11] and discontinuous projection based ARC pro-

posed in [10]. The main idea is to synthesize a virtual control law

which will drive the error to a small residual ball. But, as in this

case only a single state is available for measurement, the syn-

thesized virtual control law will replace the reconstructed state

at each step, and the state estimation error will be dealt with via

robust feedback. Also, it should be noted that the use of dis-

continuous projection implies a tuning function based backstep-

ping cannot be used, and hence a stronger robust control law is

needed to negate the effects of parameter estimation transients.

For advantages of discontinuous projection based technique over

smooth modifications of adaptive law like smooth projection, and

other details regarding the controller design presented here, the

reader is referred to [10].

Step 1: The derivative of the output tracking error z1 = y−yd

is given by,

ż1 = ẏ− ẏd

= x2 + ϕ0,1(y)+
p

∑
j=1

a jϕ1, j − ẏd + ∆1(x,t)

= x̂2 + ϕ0,1(y)+
p

∑
j=1

a jϕ1, j − ẏd + ∆̄1(x,t)

= ω0 + ωT θ+ ∆̄1(x,t)

= κmϑm,2 + ω0 + ω̄T θ+ ∆̄1(x,t) (18)

where

ω0 = [ξ0,2 + ϕ0,1],

ω = [ξ(2) + Φ(1),ϑm,2,ϑm−1,2, ..,ϑ0,2,

ψm,1(2), ..,ψm,q(2), ..,ψ0,1(2), ..,ψ0,q(2)]
T

ω̄ = ω− e∗p+1ϑm,2

θ = [a1,a2, ..,ap,κm, ..,κ0,

µm,1, ..,µm,q, ..,µ0,1, ..,µ0,q]
T (19)

and e∗k is the kth basis vector in R
p+m+qm+1. If ϑm,2 were the

input, we would synthesize a virtual control law α1 to make z1

as small as possible

α1(y,ξ0,ξ, λ̄m+1,ψi, j,2, θ̂,t) = α1a + α1s

α1a = −
1

κ̂m

{ω0 + ω̄T θ− ẏd} (20)

where α1a represents the model compensation component of the

control law. Substituting (20) into (18), we get

ż1 = κm(z1 + α1s)− θ̃φ1 + ∆̄1 (21)

The robust component is designed to compensate for the poten-

tial destabilizing effect of the uncertainties on the right hand side

of (21) as follows

α1s = α1s1 + α1s2 + α1s3, α1s1 = −
1

κm,min
k1sz1 (22)

where k1s is a nonlinear gain, such that

k1s = g1 + ||Cφ1
Γφ1||

2, g1 ≥ 0 (23)

in which Cφ1
is a positive definite constant diagonal matrix do be

specified later. Substituting (23) in (21), we obtain

ż1 = κmz2 −
κm

κm,min

k1sz1 + κm(α1s2 + α1s3)− θ̃T φ1 + ∆̄1 (24)

Define a positive semi-definite (p.s.d) function V1 = 1
2
z2

1. Its

derivative is given by

V̇1 ≤ κmz1z2 − k1sz
2
1 + z1(κmα1s2 − θ̃T φ1)

+z1(κmα1s3 + ∆̄1) (25)

From assumption A1,

‖ θ̃T φ1 ‖≤‖ θM ‖‖ φ1 ‖, θM = θmax −θmin (26)

As ‖ θ̃T φ1 ‖ is bounded by a known function, there exists a robust

control function satisfying the following conditions

(a) z1{κmα1s2 − θ̃T φ1} ≤ ε11

(b) z1α1s2 ≤ 0 (27)

Similarly, from assumption A1 and (13), we have

|∆̄1| ≤ |ε2|+ |∆1| = δε2(t)+ δ1(t) ≤ δ̄1(t) (28)

Now, we can follow the same strategy as in (27) to design a ro-

bust control law. But, as δ̄1(t) is unknown, we cannot prespecify

the level of control accuracy. Hence, we seek to achieve the fol-

lowing relaxed conditions

(a) z1{κmα1s3 + ∆̄1(t)} ≤ ε12δ̄2
1

(b) z1α1s2 ≤ 0 (29)
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Remark 1. One smooth example of α1s2 satisfying (27) is

α1s2 = −
h1

4κm,minε11
z1, h1 ≥ ‖θM‖2‖φ1‖

2
(30)

Similarly, an example of α1s3 satisfying (29) is given by

α1s3 = −
1

4κm,minε12
z1 (31)

Step 2: From (8-11) and (18-20), we can obtain the deriva-

tive of α1 as follows

α̇1 = α̇1c + α̇1u

α̇1c =
∂α1

∂y
{ω0 + ωT θ̂}+

∂α1

∂ξ0
{A0ξ0 + ky + ϕ0(y)}

+
∂α1

∂ξ
{A0ξ+ Φ(y)}+

m+1

∑
i=1

∂α1

∂λi

λ̇i

+
q

∑
j=1

m+1

∑
i=1

∂α1

∂ζi, j

ζ̇i, j +
∂α1

∂t
(32)

α̇1u =
∂α1

∂y
(−θ̃T ω+ ∆̄1)+

∂α1

∂θ̂

˙̂θ (33)

α̇1c is calculable and will be used for control function design.

α̇1u, however, is not calculable and will be dealt with via certain

robust terms. From (7), the derivative of z2 = ϑm,2 −α1 is given

by

ż2 = ϑm,3 − k2ϑm,1 − α̇1c − α̇1u (34)

Define a p.s.d function V2 = V1 + 1
2
z2

2. Then, derivative of V2

using (25) and (34) is given by

V̇2 ≤ V̇1|α1
+ z2{κmz1 + ϑm,3 − k2ϑm,1 − α̇1c − α̇1u} (35)

where V̇1|α1
= −k1sz

2
1 + z1(κmα1s2 − θ̃T φ1) + z1(κmα1s3 + ∆̄1).

Similar to (20), we can now define α2 for ϑm,3 as follows

α2(y,ξ0,ξ, λ̄m+2,ψi, j,3, θ̂,t) = α2a + α2s

α2a = −κ̂mz1 + k2ϑm,1 + α̇1c

α2s = α2s1 + α2s2 + α2s3, α2s1 = −k2sz2

k2s ≥ g2 +‖
∂α1

∂θ̂
Cθ2‖+‖Cφ2Γφ2 ‖

2 (36)

where g2 ≥ 0 is a constant, Cθ2 and Cφ2 are positive definite con-

stant diagonal matrices, α2s2 and α2s3 are robust control func-

tions to be synthesized later. Substituting (36) in (35), we obtain

V̇2 ≤ V̇1|α1
+ z2z3 − k2sz

2
2 + z2(α2s2 − θ̃T φ2)

z2(α2s3 + ∆̄2)− z2
∂α1

∂θ̂

˙̂θ (37)

where z3 = ϑm,3 −α2 represents the input discrepancy and

φ2 = e∗n+1z1 −
∂α1

∂y
ω, ∆̄2 = −

∂α1

∂y
∆̄1 (38)

From (28), it follows that ∆̄2 ≤ |∂α1/∂y|δ̄1. Similar to (29) and

(35), the robust control functions α2s2 and α2s3 are chosen to

satisfy

(a) z2(α2s2 − θ̃T φ2) ≤ ε21

(b) z2(α2s3 + ∆̄2) ≤ ε22δ̄2
1

(c) z2α2s2 ≤ 0 , z2α2s3 ≤ 0 (39)

where ε21 and ε22 are positive design parameters. As in (30) and

(31), α2s2 and α2s3 can be chosen as,

α2s2 = −
h2

4ε21
z2 , α2s3 = −

1

4ε21

(

∂α1

∂y

)2

z2 (40)

where h2 is any smooth function satisfying h2 ≥‖ θM ‖2‖ φ2 ‖
2.

From (25) and h2 defined above, the derivative of V2 satisfies

V̇2 ≤ z2z3 −
2

∑
j=1

k jsz2
j + z1(κmα1s2 − θ̃1φ1)+ z1(κmα1s3 + ∆̄1)

+z2(α2s2 − θ̃T φ2)+ z2(α2s3 + ∆̄2)−
∂α1

∂θ̂

˙̂θz2 (41)

Step i (3 ≤ i < ρ): Mathematical induction will be used to prove

the general result for all the intermediate steps. At each step i, the

ARC control function αi will be constructed for virtual control

input ϑm,i+1. For any j ∈ [3, i − 1], let z j = ϑm, j −α j−1 and

recursively design

φ j = −
∂α j−1

∂y
ω , ∆̄ j = −

∂α j−1

∂y
∆̄1 (42)

Lemma 1: At step i, choose the desired ARC control function αi

as

αi(y,ξ0,ξ, λ̄m+i,ψk, j,i+1, θ̂,t) = αia + αis

αia = −zi + kiϑm,i + α̇(i−1)c

αis = αis1 + αis2 + αis3 αis1 = −kiszi

kis ≥ gi+ ‖
∂αi−1

∂θ̂
Cθi ‖ + ‖CφiΓφi ‖

2 (43)

where gi > 0 is a constant, and Cθi and Cφi are positive definite

constant diagonal matrices, αis2 and αis3 are robust control func-

tions satisfying,

(a) zi(αis2 − θ̃T φi) ≤ εi1

(b) zi(αis3 + ∆̄i) ≤ εi2δ̄2
i

(c) ziαis2 ≤ 0 , ziαis3 ≤ 0 (44)
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and

α̇(i−1)c =
∂α1

∂y
{ω0 + ωT θ̂}+

∂α1

∂ξ0
{A0ξ0 + ky + ϕ0(y)}

+
∂α1

∂ξ
{A0ξ+ Φ(y)}+

m+1

∑
i=1

∂α1

∂λi

λ̇i

+
q

∑
j=1

m+1

∑
i=1

∂α1

∂ζi, j

ζ̇i, j +
∂α1

∂t
(45)

Then, the ith error subsystem is

żi = zi+1 − zi−1 − kiszi +(αis2 − θ̃T φi)

+(αis3 + ∆̄i)−
∂αi−1

∂θ̂

˙̂θ (46)

and the derivative of the augmented p.s.d function Vi = Vi−1 +
1/2z2

i satisfies,

V̇i ≤ zizi+1 −
i

∑
j=1

k jsz
2
j + z1(κmα1s2

− θ̃T φ1)+
i

∑
j=2

z j(κmα js2 − θ̃T φ j)+ z1(κmα1s3 + ∆̄1)

+
i

∑
j=2

z j(α js3 + ∆̄ j)−
i

∑
j=2

∂α j−1

∂θ̂

˙̂θz j (47)

The lemma can be easily verified by recursively writing the vari-

ous expressions and substituting the expressions obtained in step

1 and 2.

Step ρ: In this final step, the actual control law u∗ will be

synthesized such that ϑm,ρ tracks the desired ARC control func-

tion αρ−1. The derivative of zρ can be obtained as

żρ = ϑm,ρ+1 + u∗− kρϑm,1 − α̇(ρ−1)c

−
∂αρ−1

∂y
(−θ̃T ω+ ∆̄1)−

∂αρ−1

∂θ̂

˙̂θ (48)

If ϑm,ρ+1 + u∗ were the virtual input, (48) would have the same

form as the intermediate step i. Therefore, the general form, (42-

48) applies to step ρ. Since u∗ is the actual control input, it can

be chosen as,

u∗ = αρ −ϑm,ρ+1 (49)

where αρ is given by (47). Then, zρ+1 = u∗ + ϑm,ρ+1 −αρ = 0.

Theorem 1: Let the parameter estimates be updated using

adaptation law (14) in which τ is chosen as

τ =
ρ

∑
j=1

φ jz j (50)

If diagonal controller gain matrices Cθ j and Cφk are chosen such

that c2
φkr ≥

ρ
4 ∑

ρ
j=1 1/c2

θ jr, where cθ jr and cφkr are the rth diagonal

element of Cθ j and Cφk respectively. Then, the control law (49)

guarantees that,

1. In general the control input and all internal signals are

bounded. Furthermore, Vρ is bounded above by,

Vρ(t) ≤ exp(−λρt)Vρ(0)

+
ε̄ρ1 + ε̄ρ2 ‖ δ̄1 ‖

2
∞

λρ
[1− exp(−λρt)] (51)

where λρ = 2min{g1, . . . ,gρ}, ε̄ρ1 = ∑
ρ
j=1 ε j1, ε̄ρ2 =

∑
ρ
j=1 ε j2 and ‖ δ̄1 ‖

2
∞ stands for the infinity norm of δ̄1.

2. If after a finite time t0, ∆̃ = 0 (i.e., in the presence of para-

metric uncertainties only) then, in addition to results in (51),

asymptotic output tracking control is also achieved.

Proof of the theorem has been omitted due to space restrictions,

but can be obtained from the authors upon request and is similar

to one presented in [12].

In context of actuator fault compensation, (51) guarantees

that the jump in parameter values due to failed actuator does not

interfere with the desired transient performance. Furthermore,

the accuracy can be improved by choosing suitable values of ε j1

and ε j2. It may appear that we have neglected the ρ+1 to n states

in the present analysis. But, due to the assumption of stable zero

dynamics (A3) and bounded uncertainties (A1), it can be easily

proved using standard adaptive control arguments that all internal

signals remain bounded and do not interfere with the tracking

performance.

SIMULATION

The proposed scheme is implemented on the reduced order

nonlinear longitudinal model of a hypersonic aircraft, which was

also used in [4] and thus, will provide a uniform platform to

compare the performance of ARFTC and robust adaptive control

(RAC) based fault-tolerant schemes.

ẋ1 = x2 + a1y + a2sin(y)+ a3y2 sin(y)+ a4cos(x3)+ ∆1(x,t)

ẋ2 = a5y2 + a6y +(a7 + a8y + a9y2)x2

+b1u1 + b2u2 + ∆2(x,t)

ẋ3 = a10cos(x3)−a1y−a2sin(y)+ ∆3(x,t) (52)

where y = x1 is the angle of attack, x2 is the pitch rate, x3 is the

flight-path angle, ai and bi are unknown parameters, and ∆i were

introduced to capture the effect of non-parametric uncertainties.

Further details of the model can be found in [13]. The nominal

6 Copyright © 2009 by ASME



parameter values are given by

a1 = −0.0427,a2 = −3.4496×10−4,a3 = 5×10−5,

a4 = 0.0014,a5 = −4.2006,a6 = 1.0821,a7 = −3.6896,

a8 = 0.1637,a9 = −0.1242,a10 = 0.0014,b1 = 0.8,b2 = 0.8

The reference command is given by yd(t) = 0.01sin(0.1t). Two

faults are introduced: at t = 50 seconds the first actuator loses

40% efficiency and at t = 75 seconds, the second actuator gets

stuck at ū2 = 0.1 radians.

In the ARFTC scheme, the unknown parameter vector θ is

θ = [a1,a2,a3,a5,a6,κ0,µ0]
T

and the initial values and bounds for the parameter estimates are

θ̂(0) = [−0.05,−4×10−4,0,−4.0,0.9,1.5,0]

θ̂min = [−0.06,−5×10−4,4×10−4,−5,0.8,0.2,−1]

θ̂max = [−0.03,−2×10−4,7×10−4,−3.5,1.2,2,1]

The gain matrix for parameter estimation is given by Γ =
diag{1,1,1,1,1,5,0.1}. The observer gain matrix is chosen to

be k̄ = [2,1]T . Although, α1s2 and α1s3 can be designed ex-

plicitly in terms of known functions and parameter bounds, the

controller implementation is simplified by choosing a sufficiently

high value of k1s, such that it is robust against θ̃ and ∆̄1. The same

logic is used in the second step of the design as well. The con-

troller gains chosen for simulation are k1s =−60, k2 = 1, k2s =
−90. Details of the RAC based scheme can be obtained from [4].

The proposed scheme is applied to the system in absence of

disturbances and in presence of disturbances. From figure (1),

we see that when the actuators fails i.e., at t = 50 seconds and

t = 75 seconds, the tracking error increases, but quickly settles

down to the desired level. The first set of simulations demon-

strate the effectiveness of the proposed scheme in suppressing

the undesired effects of jump in parameter values on transient

response. The improved transient response of the ARFTC over

RAC based scheme can be attributed to the underlying robust

controller. The robust component of the control law incorporates

the jump in parameter values (αis2 term) and ensures guaranteed

transient response. Furthermore, the adaptation scheme learns

the change in system parameter over time to ensure good model

compensation, leading to small steady-state tracking errors.

In the second case, we add disturbances to the first and sec-

ond channel - ∆1(y,t) = 0.01sin(2t) and ∆2(y,t) = 0.01sin(3t).
Note that in addition to increasing the tracking error, modeling

errors and disturbances can also cause the adaptive scheme to

go unbounded. But, from figure (2), we see that the order of

tracking error remains the same in spite of disturbances. This

can be explained as follows. First, the robust component of the

control law suppresses the effect of disturbances and modeling

errors and second, the discontinuous projection guarantees the

boundedness of all parameter estimates. On the other hand, the

RAC based scheme can guarantee the boundedness of all sig-

nals, but may not be able achieve good transient response and

small steady-state error, as can be seen from figure (2). Thus, the

proposed scheme has desired transient properties and good final

tracking accuracy even in presence of external disturbances and

modeling errors.

1 CONCLUSIONS

In this paper, an adaptive robust output feedback based

scheme is presented for unknown actuator fault accommoda-

tion for a class of uncertain nonlinear system. A fault-tolerant

scheme based on adaptive robust control can address the two

principle issues associated with failing actuators - first, undesir-

able transients following jump in parameter values and second,

large steady-state tracking error. A nonlinear model of hyper-

sonic aircraft is used for comparative simulation studies. The

results prove the effectiveness of the proposed scheme over back-

stepping based robust adaptive control in attenuating the effect of

modeling uncertainties and unknown actuator faults on desired

transient response and steady-state tracking error. The salient

features of the fault accommodation scheme presented in this pa-

per are,

1. capability to handle large parametric uncertainties due to un-

known actuator failures like stuck actuators and actuator loss

in efficiency with guaranteed transient performance

2. guaranteed robust performance when adaptation is switched

off

3. calculable upper bound for tracking error based on controller

parameters and ability to achieve prespecified final tracking

accuracy
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