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ABSTRACT 
An adaptive robust control (ARC) algorithm is developed 

for a class of nonlinear dynamic system with unknown input 

backlash, parametric uncertainties and uncertain disturbances. 

Due to the non-smooth dynamic nonlinear nature of backlash, 

existing robust adaptive control methods mainly focus on using 

approximate inversion of backlash by on-line parameter 

adaptation. But experimental results show that a linear 

controller alone can perform better than a controller including 

the selected backlash inverter with a correctly estimated or 

overestimated backlash gap. Unlike many existing control 

schemes, the backlash inverse is not constructed in this paper. 

A new linearly parameterized model for backlash is presented. 

The backlash nonlinearity is linearly parameterized globally 

with bounded model error. The proposed adaptive robust 

control law ensure that all closed-loop signals are bounded and 

achieves the tracking within the desired precision. Simulations 

results illustrate the performance of the ARC. 

INTRODUCTION 
Backlash characteristics is common in control systems 

such as servomechanisms, electronic relay circuits and 

electromagnetic devices with hysteresis. It severely limits 

systems performance in such manners as giving rise to 

undesirable inaccuracies or oscillation, which can even lead to 

instability. Control of system with backlash nonlinearity is an 

important area of control system research and typically 

challenging. For systems with backlash, linear controllers have 

been investigated, including PID controllers, high-order linear 

controllers, state feedback controllers [1]. Recently, inverse 

compensations of backlash are designed widely. An adaptive 

inverse was construct to cancel the effect of backlash 

nonlinearity in [2][3] with the strict initial condition. A smooth 

inverse was also developed to compensation the effect of 

backlash with back-stepping approach in [4], where the 

derivation of the control was used to get the controller, which 

maybe unavailable. Backlash compensation using neural 

network [5][6] or fuzzy logic [7] has been used in feedback 

control system. For those compensations, neural networks or 

fuzzy logic were mainly used for cancellation of the inversion 

error by their excellent nonlinearity approximation ability. The 

common feature of these inverse schemes is that they rely on 

the construction of an inverse backlash to mitigate the effect of 

the backlash nonlinearity. Experiments by [8] show that a linear 

controller alone performed better than a controller including the 

selected backlash inverter with a correctly estimated or 

overestimated backlash gap, the reason being that measurement 

noise induced chattering in the inverter. It was noted that the 

linear controller alone also traverses the backlash gap rapidly 

since only the motor moment of inertia (and not the load) is 

driven inside the backlash gap.  

In this paper, a new approach for adaptive robust control 

(ARC) of nonlinear systems with backlash is introduced 

without constructing the backlash inverse. Based only on the 

intuitive concept and piece-wise description of backlash, the 

unknown backlash nonlinearity is linearly parameterized 

globally with bounded model error. The ARC controller is 

consist of three parts: one is the usual model compensation 

with the physical parameter estimates; For the second part, a 
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simple proportional feedback part is used to stabilize the 

nominal system; The last one is a robust feedback term used to 

attenuate the effect of various model uncertainties. The ARC 

control law ensures a global stability of the entire adaptive 

system and achieves the tracking within a desired precision. 

Computer simulations were carried out to illustrate the 

effectiveness of the approaches. 

This paper is organized as follows: Section II states the 

problem of this note, where the linear model of backlash is 

introduced. In section III, the proposed ARC schemes is 

presented. In section IV, simulation results obtained on an 

uncertain nonlinear system are presented to illustrate the 

effectiveness of the proposed approach. In section V, 

conclusions are drawn. 

PROBLEM STATEMENT 

System Model 
The following same class of nonlinear system as in [9][10] 

proceeded by unknown input backlash is considered: 
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where piYi ,,2,1,   are known continuous nonlinear 

functions, parameter ia  and control gain b presents 

unknown constants. It is a common assumption that the sign of 

b is known. From this point onward, without losing generality, 

we shall assume 0b . )(tu  is the output from the 

controller, )(tw is the actual input to the plant, and )(ty is the 

output from the plant. The actuator nonlinearity )(uBw  is 

described as a backlash characteristic. ),( tx represents the 

lumped uncertain nonlinearity including external disturbances.  

The control objective is to design a control law for )(tu  to 

ensure that the plant state vector Tnxxx ],,,[ )1(  x follows 

a specified desired trajectory Tn

dddd xxx ],,,[ )1(  x ,i.e. 

dxx within a desired accuracy as t . 
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Assumption 2: The uncertain nonlinearity can be bounded 

by 

0),( Btx   

where B0 is a known positive constant. 

Backlash Characteristic 
A backlash nonlinearity is shown as Fig.1  
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FIG 1.  BACKLASH MODEL 

Traditionally, it can be described by: 
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where m is the constant slope of the lines, lr BB , are constant 

parameters. )( tw means no change occurs in )(tw . 

For the development of control law, the following 

assumptions are made: 

Assumption 3: The backlash parameters 
lr BBm ,, are 

unknown, but their signs are known. In general, let ,0m  

0,0  lr mBmB . 

Assumption 4: The backlash parameters are within the 

known bounds: 
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Assumption 5: The backlash output )(tw is not available for 

measurement. 

From the above, we can rewrite the backlash model (2) as 

))(()()()( tudtmuuBtw b          (3) 

Where ))(( tudb
 is model error from linearly parameterized of 

backlash and it can be calculated by (2) as 
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Lemma 1: with (2) (4) and assumption 4, ))(( tudb is bounded, 

and satisfies 
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))(( tudb                    (5) 

where  is the upper-bound, which can be chosen as 

})(,)max{( minmax lr mBmB   

Combing (1) and (3), the system (1) can be rewritten as 
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Define a constant cd and time-varying )(* t such that 

),()()(* txtbdtd bc             (7) 

Conceptually, (7) divides the backlash modeling error bd  and 

the original system uncertain nonlinearity ),( tx  into the 

static component (or low frequency component in reality) cd  

and the high frequency component )(* t . By Assumption 1 

and Assumption 2 and lemma 1, one obtains 

}:{)(

}:{

***

 







t

ddd dccdcc

           (8) 

where d and   are known. 

DESIGN OF ADAPTIVE ROBUST CONTROLLER 
In this section, the ARC strategy [11] will be designed for 

system (6). As in [12][13], the first step is to use a projection 

type adaptation law structure to achieve a controlled learning or 

adaptation process. 

Projection Type Adaptation Law 

Let ̂ denote the estimation of   and 
~

be the estimation 

error  ˆ~
 . The following projection-type parameter 

adaption law[14] is used 
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where  is a diagonal matrix of adaption rates and  is an 

adaption function to be synthesized further on. Such a 

parameter adaption law has the following desirable properties. 

At any time instant, i.e., t : 

(P1)   )(ˆ t  

(P2)   0))(Pr(
~

ˆ
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ARC Law 
With the use of the above projection type adaptation law, 

the parameter estimates are bounded. In the following, this 

property will be used to synthesize an adaptive robust control 

for the system (6) which achieves a guaranteed transient and 

steady-state output tracking accuracy. 

Define 
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Combing (6) (7) and (10), we get 
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where： ])1(,,)1(,,0[ 21    nn nnT
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The following ARC is proposed to design u as follows:  
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In (13), au represents the usual model compensation with 

the physical parameter estimates̂ ,which is updated by using 

an on-line adaptation projection algorithm. su  represents the   

robust control term in which 1su is a simple proportional 

feedback to stabilize the nominal system and 2su is a robust 

feedback term used to attenuate the effect of various model 

uncertainties for guaranteed robust control performance in 

general. 

Substituting (13) into (12), one obtains 
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   Noting Assumption 1-4, and P(1), there exists a 2su  such 

that the following two conditions are satisfied： 

(i) 
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where    is design parameters which can be arbitrarily small. 

Essential,(17) shows that 2su is synthesized to dominate the 

model uncertainties coming from both parametric uncertainties 

and uncertain nonlinearities. And (16) is to make sure that 

2su is dissipative in nature so that it doesn’t interfere with the 

functionality of the adaptive control part au . 

Remark 1: One example of 2su  satisfying (16) and (17) can 

be chosen as:  
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It can be easily to show that the above choice of 2su  does 

satisfy (16) and (17). 

The condition (i) is easily to satisfied by the control law 

(16). For condition (ii), we can get 
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Thus: 
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So the condition (ii) is also satisfied. 

Theorem1: Consider the system (1) consisting of the adaptive 

robust controller given by (13) and the projection type 

parameters adaptation law (14), all signals in the resulting 

closed loop system are bounded, and the output tracking is 

guaranteed to have a prescribed transient performance and final 

tracking accuracy in the sense that the tracking error index s is 

bounded by: 
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Consider the following Lyapunov function: 
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Thus: 
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Then: 
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Then (19) is true. The theorem shows that the output tracking 

precision is guaranteed by setting   and 1sk  respectively. 

Theorem2:Consider the system (1) consisting of the parameters 

and the adaptive robust controller given (13)(14), In the 

absence of uncertain nonlinearities(i.e., assuming 0)(  t ), 

asymptotic position tracking is also achieved. 

Proof: Consider the following Lyapunov function: 
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   By the Barbalat’s lemma, it follows that 0)(lim  tst , 

which implies that 0)(lim  txet . 

   Theorem 2 indicates that the asymptotic position tracking 

can be achieved if the system works only on the single slope 

side of the backlash (i.e., )(tdb is constant as rb mbtd )(  

or lb mbtd )( ). 

SIMULATIONS 
The proposed algorithms is applied to the following 

nonlinear system: 
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where )(tw is the output of a backlash described by: 
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    The actual values of physical parameters are set as 

11 a , 22 a , 1b  and the bounds of them are chosen 

as ]5.1,5.0[1 a , ]1,3[2 a , ]5.1,5.0[b .The actual 

backlash parameters of 2.1m , 6.0rmB and  

96.0lmB  are assumed not known but within the known 

range of ]8.1,5.0[m , ]2.1,1.0[rmB , and 

]5.0,5.1[ lmB  respectively. The disturbance is chosen as 

)sin(05.0),( ttx  , which is within [-0.05,0.05]. The 

control objective is to let the system follow the desired 

trajectory: 

)]5.3sin()7.2sin()6.1sin()[sin(5.0)( tttttyd   

   The initial values are chosen as
Tx ]1,1.0[)0(  , 0)0( u , 

1)0(ˆ m , 310I , 81 sk , 01.0 . 

    Assuming a sampling period T=0.001sec, the simulation 

results are shown in figures 2-4. Fig.2 shows the position 

tracking performance of ARC. Fig.3 shows the corresponding 

tracking error and Fig.4 shows the output of the ARC controller.  
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FIG 2.  TRACKING PERFORMANCE 
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FIG 3.  OUTPUT TRACKING ERROR 
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FIG. 4.  CONTROL SIGNAL u(t)  
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CONCLUSIONS 
In this paper, an adaptive robust control (ARC) scheme has 

been developed for a class of uncertain nonlinear system 

preceded by non-smooth backlash nonlinearity. By using a new 

linear description of backlash, this adaptive robust control 

scheme is developed without constructing a backlash inverse. 

The control law ensures all closed-loop signals are bounded 

and the tracking precision within any desired precision.  
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