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Abstract

Adaptive robust control schemes are developed for the trajectory
tracking control of robot manipulators. The schemes utilize a
dynamic sliding mode and achieve a guaranteed transient perfor-
mance and �nal tracking accuracy in the presence of both para-
metric uncertainties and uncertain nonlinearities. In the absence
of uncertain nonlinearities, the schemes also achieve asymptotic
tracking. In addition, three conceptually di�erent adaptive and
robust control schemes | a very simple nonlinear PID type ro-
bust control, a gain-based nonlinear PID type adaptive control,
and a combined parameter and gain based adaptive robust con-
trol | are derived for comparison. All algorithms, as well as two
benchmark adaptive schemes, are implemented and compared on
a two-link direct-drive robot. Comparative experimental results
show the importance of using both proper controller structure
and parameter adaptation in designing high performance con-
trollers. It is observed that in these experiments, the proposed
scheme improves tracking performance without increasing control
e�ort.

I. Introduction

Trajectory tracking control of robot manipulators is of practical
signi�cance and is the simplest but most fundamental task in
robot control [1, 2]. Practically, parameters of the system such
as gravitational load vary from a task to another, and, may not
be precisely known in advance. The system may also be subjected
to uncertain nonlinearities such as external disturbances and joint
friction. On the whole, a good control strategy should take into
account both parametric uncertainties and uncertain nonlineari-
ties. During the past decade, numerous robust control algorithms
have been proposed, such as adaptive control [3, 4, 5], determinis-
tic robust control (SMC) or sliding mode control (SMC) [6, 7, 8],
and, recently, adaptive robust control [9, 10, 11, 12, 13].

The adaptive robust control (ARC) [9, 10, 11, 12, 13] pro-
posed by Yao and Tomizuka e�ectively combines adaptive con-
trol with deterministic robust control (DRC). It uses both means
| proper controller structure and parameter adaptation | to
reduce tracking errors. Departing from the model-based adaptive
control, the approach puts emphasis on the selection of controller
structure as in DRC to attenuate the e�ect of model uncertainties
as much as possible. Thus, the main practical problem of adaptive
control [14]{unknown transient performance and non-robustness
to uncertain nonlinearities{can be solved painlessly and a guaran-
teed transient performance can be obtained. Contrary to DRC,
the approach discriminates the di�erence between parametric un-
certainties and uncertain nonlinearities and uses parameter adap-
tation to reduce the model uncertainties. As a result, an improved
performance can be obtained{asymptotic tracking is achieved
without using discontinuous or in�nite-gain feedback [15] in the
presence of parametric uncertainties. The approach di�ers fun-
damentally from the existing robust adaptive control approaches
[14, 16, 17] in that it emphasizes robust performance in addition
to robust stability and the selection of controller structure. In re-
turn, a much stronger performance robustness{guaranteed tran-

sient and �nal tracking accuracy in the presence of both paramet-
ric uncertainties and uncertain nonlinearities{can be achieved; in
robust adaptive control schemes [14, 16, 17], steady state track-
ing error can be shown to stay within an unknown ball whose size
depends on the disturbances only and nothing can be said about
the transient performance.

There are also some adaptive schemes [18, 19, 20] called
performance-based (or direct) adaptive control [21], in which
adaptation laws are used to adjust controller gains instead of
physical parameters. These gain-based schemes are claimed to
be simple, computationally e�cient and require very little model
information. Robustness to bounded disturbances is also guar-
anteed. However, they can only guarantee tracking errors within
certain bounds even when the system is subject to parametric un-
certainties only. Asymptotic stability is lost and the system may
exhibit relatively larger �nal tracking errors as in DRC.

Some comparative experiments were carried out in [22] to test
some of the model-based (or parameter-based) adaptive algo-
rithms. However, the tested algorithms belonged to the same
class. Facing so many algorithms and so many qualitatively dif-
ferent approaches, one has di�culty in choosing a suitable one for
a particular application since each algorithm has its own claim.
Thus, it is of practical signi�cance to test qualitatively di�erent
approaches on the same machine to understand their fundamental
advantages and drawbacks.

This paper serves for two purposes: one is to further improve
performance of robot control systems and the other is to test
qualitatively di�erent algorithms experimentally to set up a stan-
dard with which various controllers can be compared. To achieve
the �rst purpose, the adaptive robust control (ARC) scheme pro-
posed by Yao and Tomizuka [23] is revisited and generalized, in
which the regressor is calculated by reference trajectory informa-
tion only, and thus the resulting adaptation law is less sensitive
to noisy velocity signals and has a better robustness in addition
to largely reduced on-line computation. The idea of using the de-
sired compensation adaptation law was proposed by Sadegh and
Horowitz [4] and was experimentally demonstrated by Whitcomb,
et al. [22] that it achieves a superior tracking performance among
existing adaptive schemes. Theoretically, the main di�erence be-
tween the proposed approach and the desired compensation adap-
tive algorithm (DCAL) in [4] is that the proposed approach can
guarantee a prescribed precision and transient performance even
in the presence of uncertain nonlinearities. To serve for the sec-
ond purpose, a very simple nonlinear PID scheme proposed by
Yao and Tomizuka in [24] is revisited, which can guarantee sta-
bility and requires little model information. By adjusting feedback
gains on-line, a simple gain-based adaptive control [24] is also sug-
gested to remove the requirements in choosing feedback gains in
the nonlinear PID scheme. By combining the design techniques of
the gain-based adaptive control and the model-based ARC, a new
adaptive robust scheme [24] is also proposed to remove the condi-
tions on the selection of the controller gains. Finally, all schemes,
as well as two benchmark adaptive control schemes [3, 4], are
implemented and compared. Experimental results are presented
to show the advantages and the drawbacks of each method.
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II. Dynamic Model

A dynamic equation of a general rigid link manipulator having n
degrees of freedom in free space can be written as [2]

M(q; �)�q + C(q; _q; �) _q +G(q; �) + ~f(q; _q; t) = u (1)

where � 2 Rp is the vector of a suitably selected set of the robot
parameters and ~f(q; _q; t) 2 Rn is the vector of unknown nonlinear
functions such as external disturbances and unmodeled joint fric-
tion. The following standard properties [2] for a robot dynamics
are used in the controller design: Property 1 M(q; �) is a sym-
metric positive de�nite (s.p.d.) matrix, and there exists km > 0
such that kmIn�n � M(q; �). Furthermore, for the robot
with all joints revolute or prisma, there exists kM > 0 so that
M(q; �) � kMIn�n. For a general robot, M(q; �) � kMIn�n
is valid for any �nite workspace 
q = fq : kq � q0k � qmaxg
where q0 and qmax are some constants; Property 2 The ma-
trix N = _M � 2C is a skew-symmetric matrix; Property 3
M(q; �); C(q; _q; �), and G(q; �) can be linearly parametrized in
terms of �. Therefore, we can write

M �qr + C _qr +G = f0(q; _q; _qr; �qr) + Y (q; _q; _qr; �qr)� (2)

where Y 2 Rn�l� , _qr and �qr are any reference vectors.
Assumption 1: � lies in a known bounded set 
� and

k ~f(q; _q; t)k can be bounded by a known function, i.e.,

� 2 
�
�
= f� : �min < � < �max g

k ~f(q; _q; t)k � hf (q; _q; t)
(3)

where �min; �max, and hf (q; _q; t) are known (operation < for
vectors is de�ned elementwise and k�k denotes a norm of � which
is a vector or a matrix).

We can now formulate the trajectory tracking control of robot
manipulators as follows: Suppose qd(t) 2 Rn is given as the
desired joint motion trajectory. Let e = q(t) � qd(t) 2 Rn be
the motion tracking error. For the robot manipulator described
by (1), under the Assumption 1, design a control law u so that
the system is stable and q tracks qd(t) as close as possible.

III. Adaptive Sliding Mode Control

In this section, the smooth adaptive sliding mode control scheme
[9] is modi�ed in the way that the resulting control law is more
general and revealing. The results will also be utilized in the fol-
lowing sections' design. The scheme combines SMC with adaptive
control to take advantages of the two methods while overcom-
ing their drawbacks. A dynamic sliding mode is employed to
eliminate the unpleasant reaching transient and to enhance the
dynamic response of the system in sliding mode 1

Let a dynamic compensator be

_z = Azz +Bze; z 2 Rnc ; Az 2 Rnc�nc

yz = Czz +Dze; yz 2 Rn; Cz 2 Rn�nc (4)

where (Az ; Bz ; Cz; Dz) is controllable and observable. De�ne a
switching-function-like term as

� = _e+ yz = _q � _qr; _qr
�
= _qd(t) � yz (5)

Transfer function from � to e is

e = G�1
�

(s)�; G�(s) = sIn +Gc(s) (6)

where Gc(s) = Cz(sInc � Az)�1Bz +Dz is the dynamic com-
pensator transfer function. It was shown in [9] that by suitably
choosing Gc(s), the resulting dynamic sliding mode f� = 0g,
i.e., free response of transfer function G�1

�
(s), can be arbitrarily

shaped to possess any exponentially fast converging rate. In ad-
dition, when Cz is of full column rank, the initial value z(0) of
the dynamic compensator (4) can be chosen to satisfy

Czz(0) = � _e(0) �Dze(0) (7)

then �(0) = 0. It is shown in [9] that choosing the initial value
z(0) in such a way guarantees that the system is maintained in the
sliding mode all the time and the reaching transient is eliminated
when ideal sliding mode control is applied.

1Due to space limitation, only the main sketch of all the
controller designs will be given. The detailed controller designs
and stability proofs can be found in [13]

Let �̂� be the smooth projection of �̂, the estimate of � (The

smooth projection is de�ned in [10, 11]). Then �̂� 2 

�̂
= f�̂ :

�min � "� � �̂ � �max + "�g where "� is a known constant
which can be arbitrarily small. Let h� be a bounding function
satisfying

kY (q; _q; _qr; �qr) ~��k � h�(q; _q; _qr; �qr); 8�̂� 2 

�̂

(8)

where ~�� = �̂� � �. For example, choose h� =
kY (q; _q; _qr; �qr)k �M where �M = k�max � �min + "�k. De-
�ne

hs(q; _q; _qr; �qr; t) = hf (q; _q; t) + h�(q; _q; _qr; �qr) (9)

De�nition 1 For any discontinuous vector like �h �
k�k

where h is

a positive scalar function and � is a vector of functions, its contin-
uous approximation, �h(�h �

k�k
), with an approximation error "(t)

is de�ned to be a vector of functions that satis�es the following
two conditions:

i. �T �h(�h �
k�k

) � 0

ii. hk � k+ �T �h(�h �
k�k

) � "(t)
(10)

Continuous and smooth examples of the approximation func-
tion �h are given in [13, 9].

Theorem 1 Choose a continuous control law as

u = ua + us

ua = f0(q; _q; _qr; �qr) + Y (q; _q; _qr; �qr)�̂� �K��

us = �h(�hs
�
k�k

)
(11)

where K� is any s.p.d. matrix, �h(�hs
�
k�k

) is any continuous

approximation of the ideal SMC control, �hs
�
k�k

, with an ap-

proximation error "(t), and �̂ is updated by

_̂
� = ���[l�(�̂) + Y (q; _q; _qr; �qr)T �] (12)

where l�(�̂) is any vector of modi�cation functions 2 that satis-
�es the following conditions

i. l�(�̂) = 0 if �̂ 2 
�
ii. ~�T� l�(�̂) � 0 if �̂ 62 
�

(13)

Then, the following results hold:

A. In general, all the signals in the system remain bounded and
tracking errors, e and _e, exponentially converge to some
balls with size proportional to ". Furthermore, the tracking
error � is bounded by

k�(t)k2 �
2

km
[exp(��V t)V (0)+

Z t

0

exp(��V (t��))"(�)d�]

(14)
where �V =

2�min(K�)

kM
, and V is a positive semi-de�nite

(p.s.d.) function given by

V = 1
2
�TM(q; �)� (15)

In addition, if (7) is satis�ed, then V (0) = 0 in (14).

B. If after a �nite time, ~f = 0, then, � �! 0; e �! 0; _e �! 0
when t �! 1 i.e., the robot follows the desired motion
trajectories asymptotically. 4

Remark 1 Note that, comparing to the adaptive control algo-
rithms [25, 3, 4, 5, 26, 27, 22], the above theorem guarantees
transient performance and �nal tracking accuracy even in the
presence of uncertain nonlinearities (Results in A). Comparing to
deterministic robust control [7], the method achieves asymptotic
tracking or zero �nal tracking error in the presence of parametric
uncertainties (Results in B). 2

Remark 2 By setting us = 0 in (11), without using parameter
projection and any modi�cation to the adaptation law, and taking
o� the dynamic compensator (i.e., letting Cz = 0; Az = 0; Bz =
0;Dz > 0 in (4)), the control law (11) reduces to Slotine and
Li's well-known adaptive algorithm (SLAC), which is also tested
later for comparison. }

2Examples of l� are given in [13, 9, 10]



IV. Desired Compensation Adaptive

Robust Control (DCARC)

As in section III, the desired compensation adaptive robust control
(DCARC) in [23] will be generalized in this section.

The state space realization of (6) is

_x� = A�x� + B��; y� = C�x� (16)

where x� = [zT ; eT ]T 2 Rnc+n. Then, there exists an s.p.d.
solution P� for any s.p.d. matrix Q� for the following Lyapunov
equation [23],

AT
�
P� + P�A� = �Q� (17)

It can be shown [23] that there are known non-negative
bounded scalars 
1, 
2, 
3, and 
4, which depend on the ref-
erence trajectory and A� only, such that the following inequality
is satis�ed

kf0(q; _q; _qr; �qr) + Y (q; _q; _qr; �qr)� � f0d(t) � Yd(t)�k
� 
1kx�k+ 
2k�k+ 
3k�kkx�k+ 
4kx�k

2 (18)

where f0d = f0(qd; _qd; _qd; �qd) and Yd = Y (qd; _qd; _qd; �qd).
Similar to (8) and (9), there exists a known scalar function
h�(qd; _qd; �qd) such that

kYd(t) ~��k � h�(qd; _qd; �qd); 8�̂� 2 

�̂

(19)

and de�ne hs(q; _q; t) = hf + h�(qd; _qd; �qd)

Theorem 2 Choose a continuous control law as

u = ua + us

ua = f0d + Yd�̂� �K�� �Kxx� � 
5kx�k
2�

us = �h(�hs
�
k�k

)
(20)

where K� > 0 is an s.p.d. matrix, 
5 is a positive scalar,

Kx = BT
�
P�, in which P� is determined by (17), �h is a con-

tinuous approximation of �hs
�
k�k

with an approximation error ",

and �̂ is updated by

_̂
� = ��[l�(�̂) + Y T

d
�] (21)

If controller parameters K�; Q�, and 
5 are large enough such
that

�min(K�) � "3 + 
2 + 
6 + 
8
�min(Q�) � 2("3 + 
7 + 
10)

5 � 
9 + 
11

(22)

where "3 is any positive scalar, and 
6; 
7; 
8; 
9; 
10, and 
11
are any positive scalars satisfying


6
7 = 1
4

21 ; 
8
9 = 1

4

23 ; 
10
11 = 1

4

24 (23)

then, the following results hold:

A. In general, all signals in the system remain bounded and
tracking errors, e and _e, exponentially converge to some
balls with size proportional to ". Furthermore, the p.s.d
function V de�ned by

V = 1
2
�TM(q; �)� + 1

2
xT� P�x� (24)

is bounded by

V � exp(��V t)V (0)+

Z t

0

exp(��V (t��))"(�)d�] (25)

where �V is a positive scalar which can be arbitrarily large
and satis�es

�V �
2"3

maxfkM ; �max(P�)g
(26)

B. If after a �nite time, ~f = 0, then the same results as in B of
Theorem 1 can be obtained. 4

Remark 3 By setting us = 0 in (20), without using parameter
projection and any modi�cation to the adaptation law, and taking
o� the dynamic compensator (i.e., letting Cz = 0; Az = 0; Bz =
0; Dz > 0 in (4)), the control law (20) reduces to the well-
known desired compensation adaptation law (DCAL) by Sadegh
and Horowitz [4], which is also implemented for comparison. }

V. Nonlinear PID Robust Control

In this section, a simple robust control with nonlinear PID feed-
back structure is designed. The following simple control structure
is suggested

u = fc � (K�(t) + 
5kx�k
2)� �Kxx� (27)

where fc is any constant vector that is used to cancel the low
frequency component, K� > 0 is an s.p.d. matrix, 
5 is a positive

scalar, and Kx = BT
�
P� , in which P� is determined by (17).

Theorem 3 If controller parameters K� and 
5 in (27), and Q�

in (17) are large enough such that

�min(K�) � "3 + 
2 + 
6 + 
8 +
c2
0

4"(t)

�min(Q�) � 2("3 + 
7 + 
10)

5 � 
9 + 
11

(28)

where "3 is any positive scalar, 
6; 
7; 
8; 
9; 
10, and 
11 are
de�ned in Theorem 2, and

c0 = kfc � f0d � Yd�k+ hf (29)

then, the control law (27) guarantees that all signals in the system
remain bounded and tracking errors, e(t) and _e(t), exponentially
converge to some balls, the sizes of which are proportional to ".
Furthermore, V de�ned by (24) is bounded by (25). }

Remark 4 By choosing the dynamic compensator as an integra-

tor, x� consists of e and
R t
0
e; thus, control law (27) may be

considered as a nonlinear PID feedback control, which is quite
easy to implement since it does not require any model informa-
tion, except some bounds in choosing controller parameters. }

VI. Nonlinear PID Adaptive Control

Feedback gains in the nonlinear PID robust controller are required
to satisfy the condition (28), in which the lower bounds are not
quite straightforward to calculate. Although analytic formula ex-
ist to calculate them, as given in the above development, often
the calculated lower bounds are so conservative and so large that
they actually may not be used in implementation because of the
limited bandwidth of physical systems. Also, the constant feed-
forward control term fc may not quite match the low frequency
component of the feedforward term because of parametric un-
certainties. In this section, a gain-based nonlinear PID adaptive
controller is proposed to solve these di�culties. We assume that
only bounded disturbances appear | i.e., hf in (3) is a constant
instead of a function of states.

First, choose any Q� > 2"3I and determine Kx = BT
�
P� by

(17). There exist 
7 and 
10 satisfying (28), and 
6 and 
11
satisfying (23). Thus there exist constant �K� and �
5 such that
(28) is satis�ed. In the following, we do not need to calculate
�K� and �
5, but only need to know their existence. The following
control law is suggested:

u = f̂c � (K̂� + 
̂5kx�k
2)� �Kxx� (30)

Let �K be the independent components of K�. For example, if
we want a diagonal K�, �K consists of the n diagonal elements

only. �̂K represents its estimate. Then we can write

�K�� = YK(�) ��K ; K̂�� = YK(�)�̂K
~K�� = (K̂� � �K�)� = YK(�) ~�K ; ~�K = �̂K � ��K

(31)

where YK(�) is a matrix of known functions. The gain adaptation
law is chosen as

_̂
fc = �0f [��

00
f (f̂c � fc0)� �]

_̂
�K = �0

�K
[��00

�K
(�̂K � �K0) + YK(�)T �]

_̂
5 = �0
 [��
00

(
̂5 � 
50) + kx�k

2k�k2]

(32)

where �0f ;�
00
f ;�

0
�K ;�

00
�K ;�

0

 , and �

00

 are any constant s.p.d. ma-

trices or scalars; fc0; �K0, and 
50 are the corresponding initial
estimates. Choose a p.s.d. function as

Va = V +
1

2
~fTc �0f

�1 ~fc +
1

2
~�TK�0�K

�1 ~�K +
1

2
~
T5 �

0


�1

~
5 (33)

where ~fc = f̂c � fc; ~
5 = 
̂5 � �
5, and V is de�ned by (24).



Theorem 4 If the control law (30) with the gain adaptation law
(32) is applied, then

A . In general, all signals in the system remain bounded.

B . In addition, if the initial estimates �K0 and 
50 are large
enough such that the condition (28) is satis�ed for fc =
fc0, then, tracking errors exponentially converge to some
balls whose sizes are proportional to controller parameter
". 4

Remark 5 The above adaptive controller does not require any
model information and has a simple nonlinear PID feedback struc-
ture. Thus, it can be easily implemented and costs little compu-
tation time, however, bounded disturbances are assumed in the
development, and asymptotic stability is not guaranteed even in
the presence of parameter uncertainties only. Also, when the ini-
tial estimates do not satisfy the condition (28), the error bound
is not guaranteed to be reduced by suitably choosing controller
gains and theoretical performance may thus not be guaranteed.
}

VII. Desired Compensation ARC with

Adjustable Gains

The DCARC scheme in section IV requires that feedback gains
satisfy condition (22), which has the same drawback as the non-
linear PID robust control (NPID) scheme, as pointed out in
the above section. In this section, by incorporating the gain-
based adaptive control synthesis technique into the design of the
DCARC scheme, a new adaptive robust controller is proposed to
overcome this di�culty.

As in the above section, since �K� and �
5 are unknown, instead
of using constant feedback gains K� and 
5 in (20), they will be
adjusted on-line as in the above gain-based adaptive control. The
resulting control law is given by

u = ua + �h(�hs
�
k�k

)

ua = f0d + Yd�̂� � K̂�� �Kxx� � 
̂5kx�k
2�

(34)

in which the parameter adaptation law for � is the same as in
DCARC, and the gain adaptation laws are suggested as

_̂
�K = �0

�K
[��00

�K
(�̂K � �K0) + YK(�)T �]

_̂
5 = �0
 [��
00

(
̂5 � 
50) + kx�k

2k�k2]
(35)

Choose a positive de�nite (p.d.) function as

Vp = V +
1

2
~�TK�0�K

�1 ~�K +
1

2
~
T5 �

0


�1

~
5 (36)

where V is de�ned by (24).

Theorem 5 If the control law (34) with adaptation laws (21) and
(35) is applied,

A. In general, all signals in the system remain bounded and the
bounds of the tracking error can be found in [13].

B. In addition, if the initial estimates �K0 and 
50 are large
enough such that the condition (22) is satis�ed, then

a). Tracking errors exponentially converge to some balls
whose sizes are proportional to the controller pa-
rameter ".

b). If after a �nite time, ~f = 0 (no uncertain nonlineari-
ties), asymptotic tracking is also achieved. 4

VIII. Experimental Results

All schemes presented before are implemented and compared.
In addition, Slotine and Li's adaptive algorithm (SLAC) [3] and
Sadegh and Horowitz's DCAL [4] are also implemented for com-
parison.

Experiments are conducted on the planar UCB/NSK two axis
SCARA direct drive manipulator system. The details of the exper-
imental setup can be found in [9, 13]. The friction term Ff (q; _q)

is lumped into ~f(q; _q; t) and is bounded by (3), where hf = 9.
In the experiment, only payload mass mp is unknown with the
maximum payload, mpmax = 10kg. Thus, letting � = mp and

� = ( �0:00001; mpmax+0:00001), (2) can be formed. Since
all the controllers are supposed to deal with model uncertainties,
the initial estimate of the payload is set to 9kg, with an actual
value in experiments being around 0:7kg. All experiments are
conducted with a sampling time �T = 1ms.

A. Performance Indexes

Since we are interested in tracking performance, sinusoidal tra-
jectories with a smoothed initial starting phase are adopted for
each joint. In this experiment, the desired joint trajectories are
qd = [1:5(1:181�0:3343exp(�5t)� cos(�t�0:561)) ; 1:3045�
0:538exp(�5t)�cos( 4

3
�t�0:697))]T (rad), which are reasonably

fast. Zero initial tracking errors are used and each experiment is
run for ten seconds, i.e, Tf = 10s.

Commonly used performance measures, such as the rising
time, damping and steady state error, are not adequate for non-
linear systems like robots. In [22], the scalar valued L2 norm

given by L2[e(t)] = ( 1
Tf

R Tf
0

ke(t)k2dt)1=2 is used as an ob-

jective numerical measure of tracking performance for an entire
error curve e(t). However, it is an average measure, and large er-
rors during the initial transient stage cannot be predicted. Thus,
the sum of the maximal absolute value of tracking error of each
joint, eM = e1M + e2M , is used as an index of measure of
transient performance, in which eiM = maxt2[0;Tf ]fjei(t)jg.

The maximal absolute value and the average tracking error of
each joint during the last three seconds are de�ned by eiF =

maxt2[Tf�3;Tf ]
fjei(t)jg and L[eif ] = 1

3

R Tf
Tf�3

jeijdt respec-

tively. Then, eF = e1F + e2F and L[ef ] = L[e1f ] + L[e2f ]
are used as indexes to measure the steady state tracking error.

The average control input of each joint, L[ui] =
1
Tf

R Tf
0

juijdt,

is used to evaluate the amount of control e�ort. The average
of control input increments of each joint is de�ned by L[�ui] =

1
10000

P10000

k=1
jui(k�T )�ui((k� 1)�T )j. The sum of the nor-

malized control variations of each joint, cu =
P2

i=1

L[�ui]
L[ui]

, is

used to measure the degree of control chattering.

B. Controller Gains

The choice of feedback gains is crucial to achieve a good track-
ing performance for all controllers. The detailed discussion of
the gain tuning processes for each controller is given in [13]. In
general, the larger the feedback gains (especially, the gain K�),
the smaller the tracking errors. However, if the gains are too big,
the robot will be subject to severe control chattering due to the
measurement noise and the neglected high-frequency dynamics
and a large noisy sound can be heard. After the gains exceed
certain limits, the structural resonance is excited because of se-
vere control chattering and the system goes unstable. Thus, in
order to achieve a fair comparison, we tried to tune gains of each
controller such that the tracking errors of each controller are min-
imized while maintaining the same degree of control chattering
for all controllers.

C. Comparative Experimental Results

As in [22], we �rst test the reliability of the results by running
the same controller several times. It is found that the standard
deviation of the error from di�erent runs is negligible.

The experimental results are shown in the following table (unit
is rad for tracking errors and Nm for control input torques). In
the table, ASMC stands for the adaptive sliding mode control pre-
sented in section III; DCARC for the desired compensation ARC in
section IV; DCRC(I) and DCRC(NI) for the desired compensation
robust control obtained by switching o� parameter adaptation in
DCARC and DCAL respectively; NPID for nonlinear PID robust
control in section V. NPID(I) (or NPID(NI) ) for the case with
(or without ) the dynamic compensator (??) respectively; PIDAC



for the nonlinear PID adaptive control in section VI; and ARCAG
for the controller in section VII.

Table 1: Experimental Results

Controller eM eF L[ef ] L2[e] L[u1] L[u2] cu
ASMC 0.03 0.02 0.006 0.006 32 6 0.54
SLAC 0.05 0.03 0.016 0.013 33 6 0.55
DCARC 0.02 0.01 0.004 0.004 31 6 0.41
DCAL 0.04 0.02 0.009 0.008 30 6 0.43
DCRC(I) 0.03 0.02 0.008 0.008 30 6 0.42
DCRC(NI) 0.07 0.05 0.018 0.021 30 6 0.40
NPID(I) 0.02 0.02 0.007 0.006 31 6 0.41
NPID(NI) 0.04 0.04 0.015 0.015 30 6 0.40
PIDAC 0.07 0.02 0.006 0.007 30 6 0.44
ARCAG 0.04 0.01 0.004 0.005 30 6 0.42

Based on the above experimental data, the following can be
concluded:

a . Parameter Adaptation Improves Tracking Ac-
curacy
If we compare the parameter-based adaptive controllers
with their robust counterparts, i.e., DCARC versus
DCRC(I), DCAL versus DCRC(NI), then we can see that, in
terms of both �nal tracking accuracy (Fig. 2) and average
tracking errors, parameter adaptation reduces the tracking
errors around a factor of 2. The parameter-based adaptive
controllers also have better transient performances (Fig.
1). The improvement comes from the fact that the es-
timated payloads approach their true values (not shown).
This result veri�es the advantage of introducing parameter
adaptation. All controllers use almost the same amount of
control e�ort and have the same degree of control chat-
tering, as seen from the table, and thus the comparison is
fair.

b . Dynamic Compensator Improves Tracking Ac-
curacy
Comparing the controllers having dynamic compensators
with their counterparts not employing dynamic compen-
sators, i.e., DCRC(I) versus DCRC(NI) and NPID(I) versus
NPID(NI), we can see that introducing dynamic compen-
sators reduces the tracking errors by more than a factor
of 2 in terms of all the performance indexes, as shown in
Fig. 1 and Fig. 2. The comparison is fair, as shown by
the control e�ort and the degree of control chattering in
Table 1. This result supports the importance of employing
proper controller structure.

c . Desired Compensation Improves Tracking Ac-
curacy
Comparing the controllers having desired compensation
with their counterparts using actual state in model compen-
sation design, i.e., DCARC versus ASMC and DCAL versus
SLAC, we can see that, in terms of all performance indexes
(Fig. 1 and Fig. 2), the controllers with desired compen-
sation have better tracking performances. They also have
less degrees of control chattering, as shown in Table 1.

d . Gain-based Adaptive Controllers via Fixed-gain
Robust Controllers
If we compare the gain-based adaptive controllers with
their robust counterparts, i.e., PIDAC versus NPID(I) and
ARCAG versus DCARC, we can see that gain-based adap-
tive controllers can have a large stability margin for the
choice of feedback gains since they can use small initial
gain estimates. Because of the small initial estimates, they
have larger initial tracking errors or poorer transient re-
sponse, as seen from Fig. 1. The estimated feedback gains
(e.g., K̂� shown in Fig. 3) increase quickly to some values
that are slightly larger than the �xed feedback gains used

in their robust counterparts (e.g., when t = 10s, K̂�(t) =
diagf180; 12:6g for PIDAC but K� = diagf160; 12g for
NPID(I)). This is the reason that they achieve a slightly
better �nal tracking accuracy. We should keep in mind,
however, that this advantage comes from the slightly in-
creased degree of control chattering, as shown in Table
1. Therefore, in practice, gain-based adaptive controllers
do not o�er much advantage in improving tracking perfor-
mance. They may be used in the initial gain-tuning process
to obtain the lower bound of the stabilizing feedback gains
instead of using a troublesome and conservative theoretical
formula like (28). However, caution should be taken. Large
dampings (e.g., �00�K and �00
 in (32)) should be used; other-

wise, the resulting �nal estimates may be too big that they
may exceed the practical limits and destabilize the system
because of their gain adaptation nature.

Since the proposed DCARC possesses all the desirable good
qualities | parameter adaptation, dynamic compensator, and de-
sired compensation | it is natural that it achieves the best track-
ing performance, as seen from Table 1 (or Fig. 1 and 2), by using
the same amount of control e�ort and control chattering. These
facts show again the importance of using the both means, param-
eter adaptation and proper controller structure, in designing high
performance controllers, which is the main theme of the proposed
ARC. Using either one of them alone is not enough | in fact, in
these experiments, probably because the e�ect of link dynamics
is not so severe and the disturbances and measurement noise are
not so small, the proposed simple NPID robust controller out-
performs DCAL, the adaptive controller that achieves the best
tracking performance among existing adaptive controllers tested.

The tracking errors of DCARC are plotted in Fig. 4. Those
spikes of the tracking errors after the initial transient occur at the
time when the joint velocities change their directions. Thus, they
are mainly caused by the discontinuous Columb friction

IX. Conclusions

In this paper, the proposed adaptive robust control is applied
to the trajectory tracking control of robot manipulators. Two
schemes are developed: ASMC is based on the conventional adap-
tation structure and DCARC is based on the desired compensation
adaptation structure. A dynamic sliding mode is used to enhance
the system response. In addition, several conceptually di�erent
robust and adaptive controllers are also constructed for compari-
son | a simple nonlinear PID type robust control, and a simple
gain-based adaptive control, which requires almost no model in-
formation, and a combined parameter and gain-based adaptive
robust control. All algorithms, as well as two existing adaptive
control algorithms, SLAC and DCAL, are implemented on a two-
link SCARA type robot manipulator to study their advantages
and disadvantages. Comparative experimental results show the
importance of using both proper controller structure and pa-
rameter adaptation in designing high performance controllers,
which is the main feature in the newly developed adaptive ro-
bust control [9, 12, 13]. It is observed that in these experiments,
the proposed DCARC improves tracking performance without in-
creasing control e�ort. Thus, the work in this paper serves for
the two purposes: improving tracking performance of robot con-
trol systems and setting up a standard with which various control
algorithms could be compared.
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Figure 1: Transient Performance
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Figure 2: Final Tracking Accuracy
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Figure 3: Estimated Feedback Gains K̂�
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Figure 4: Joint Tracking Errors


