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This paper presents an integrated direct/indirect adaptive robust contouring controller (DIARC) for
an industrial biaxial high-speed gantry that achieves not only excellent contouring performance but
also accurate parameter estimations for secondary purposes such as machine health monitoring and
prognosis. Contouring control problem is first formulated in a task coordinate frame. A physical model-
based indirect-type parameter estimation algorithm is then developed to obtain accurate on-line
estimates of unknown model parameters. A DIARC controller possessing dynamic-compensation-like fast
adaptation is subsequently constructed to preserve the excellent transient and steady-state contouring
performance of the direct adaptive robust controller (DARC) designs. The proposed DIARC along with
previously developed DARC contouring controllers are implemented on a high-speed industrial biaxial
gantry to test their achievable performance in practice. Comparative experimental results verify the
improved contouring performance and the accurate physical parameter estimates of the proposed DIARC

Robust control algorithm.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

To have a higher productivity and a better quality of the
product produced, modern mechanical systems in manufacturing
applications are often required to follow certain desired contours
precisely with high speeds. The degradation of contouring
performance (Li, 1999) could be due to either the lack of
coordination among multi-axes motions (Chiu & Tomizuka, 2001)
or the effects of model uncertainties/disturbances such as the
change of payload inertia, friction (Lu, Yao, Wang, & Chen, 2009;
Xu & Yao, 2008), and ripple forces (Lu, Chen, Yao, & Wang,
2008). The former is referred to as the coordinated contouring
control problem (Koren, 1980) and the later as the disturbance
rejection/compensation. Both problems have been extensively
studied in the literature. Specifically, earlier researches on the
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coordinated contouring control use the cross-coupled control
(CCQ) strategy (Koren, 1980). Later on, the contouring control
problem is formulated in a task coordinate frame by using either
(i) the concept of generalized curvilinear coordinates introduced
in Yao, Chan, and Wang (1994), as done in Chiu and Yao (1997)
and Xu and Yao (2000), or (ii) the locally defined coordinates
“attached” to the desired contour proposed in Chiu and Tomizuka
(2001). Since then many contouring control schemes based on
task coordinate approaches have been reported (Cheng & Lee,
2007; Chen & Lin, 2008). However, all these latest publications
on coordinated control techniques cannot explicitly deal with
parametric uncertainties and uncertain nonlinearities. As a result,
they are often insufficient when stringent contouring performance
is of concern as actual systems are always subjected to certain
model uncertainties and disturbances.

During the past decade, an adaptive robust control (ARC) frame-
work has been developed in Yao (1997) and Yao and Tomizuka
(1996, 2001) to provide a rigorous theoretic framework for the pre-
cision motion control of systems with both parametric uncertain-
ties and uncertain nonlinearities. The desired compensation ARC
(DCARC) strategy has also been proposed in Yao (1998) to reduce
the effect of measurement noises. In Xu and Yao (2001a,b), the pro-
posed ARC strategy is experimentally tested on an epoxy core linear
motor. Global stability is also guaranteed even in the presence of
actuator saturation and short duration of very large disturbances
(Hong & Yao, 2007).

In Hy, Yao, and Wang (in press-a), the ARC strategy (Yao, 1997)
and the task coordinate frame approach in Chiu and Tomizuka
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(2001) have been integrated to develop a high performance
contouring controller for high-speed machines. The effect of
cogging forces and velocity measurement noises is also carefully
addressed in Hu, Yao, and Wang (in press-b) with excellent
contouring performance seen in implementation. However, as
other direct ARC controllers (Hong & Yao, 2007; Lu et al., 2008;
Xu & Yao, 2001a,b), the parameter estimates in experiments
rarely approach to their true values, even when the persistent
exciting condition is satisfied sometimes. Though sufficient for
some applications, they are not well suited for applications which
demand not only good output tracking performance but also
accurate on-line parameter estimations for secondary purposes
such as machine component health monitoring and prognosis. To
meet the needs of these applications, in this paper, the integrated
direct/indirect adaptive robust control (DIARC) strategy proposed
in Yao (2003) will be applied to synthesize coordinated contouring
controllers that not only achieve high performance but also possess
accurate on-line parameter estimations in implementation.

2. Problem formulation

Since accurate calculation of contouring error often leads to
an intensive computation task which is hard to be realized in
practice, various approximations have been used in the contouring
controls instead. In this paper, the approximation of contouring
error in Chen and Lin (2008) and Hu et al. (in press-a) will be
used. Specifically, let X and Y, respectively, denote the horizontal
and the vertical axes of a biaxial gantry system which also forms
a Cartesian coordinate system. At any time instant t, let q4(t) =
[x4(t), va(O)]" and q = [x(t), y(t)]" be the position vector of the
reference trajectory describing the desired contour and the actual
position vector of the system in the Cartesian coordinate frame,
respectively. Let e, and e, be the axial tracking errors of X and Y
axes, i.e. ey = x — x4(t) and ey = y — yq(t), and e = [e, ey]T
the position tracking error vector in the Cartesian frame. Define a
task coordinate frame using the tangential and normal directions
of the desired contour at the point q4(t) and let &€ = [&,, &:]" be the
position tracking error vector expressed in such a task coordinated
frame. Then ¢ is related to e through a unitary transformation
matrix T by

—sina

e = Te, T:|:
cos o

coso
sin o ] ’ (1)
where o denotes the angle between the tangential line of desired
contour and the horizontal X-axis. Note that T" = Tand T™! =T
for all values of «. With this definition of task coordinate frame,
the actual contouring error &.(t), the shortest distance between
the desired contour and the actual contour at the point q(t), can
be approximated reasonably well by ¢, i.e., & = ¢&,, when the
axial tracking errors are comparatively small to the curvature of the
desired contour. The dynamics of the biaxial linear-motor-driven
gantry can be described by (Xu & Yao, 2001a)

Mq + Bq + F.(q) =u—+d, (2)

where M = diag[M;, M,] and B = diag[B;, B,] are the
2 x 2 diagonal inertia and viscous friction coefficient matrices,
respectively. F.(q) is the 2 x 1 vector of Coulomb friction
which is modeled by As;S;(q), where Ay = diag[As, Ap2] is
the unknown diagonal Coulomb friction coefficient matrix, and
S (@) = [S;(%), Sf(]" is a known vector-valued smooth function
used to approximate the traditional discontinuous sign function
sgn(q) in the traditional Coulomb friction modeling for effective
friction compensation in implementation (Xu & Yao, 2001a). u =
[uq, uz]" is the vector of control inputs and d is the lumped
unknown nonlinear functions due to external disturbances and
other modeling errors.

Denote d; as the lumped modeling errors and disturbances in
(2),ie,d; = d + AsS;(q) — F.(q). Let dy = [dn1, dn]" be the

nominal value of d; and d= d; — dy the time-varying portion of

d,. The system dynamics then become as

Mé + Bé + A;S;(q) + Mijy + Bgy =u+d =u+dy+d. (3)

From (1),

é = Té + 2Té + Te. (4)

The system dynamics in the task coordinate frame can thus be

obtained as

M;é + B;& + 2C;é + D& + lxlqéjd + B,qq
+qusf(él) =u+d; + A,

é=Té +Te,

(5)

where
M, = TMT, B, = TBT, C, = TMT, B
D; = TMT + TBT, u; = Tu, d; = Tdy, A = Td, (6)

M, = TM, B, = TB, A, = TAy.

It is straightforward to verify that the Eq. (5) has the following
properties' (Yao et al., 1994): (P1) M; is a symmetric positive
definite (s.p.d.) matrix with 41 < M; < puoI where pq and
o are two positive scalars; (P2) the matrix N, = M; — 2C;
is a skew-symmetric matrix. In other words, s'TN;s = 0, Vs;
(P3) M;, B;, C;, d, My, By, Ay and d; in (5) can be linearly
parameterized by a set of unknown parameters defined as 0 =
[91, ey 98]T = [M], Mz, B1, Bz, Afl, Afz, dN], sz]T. In general,
the parameter vector & cannot be known exactly. For example,
the payload of the biaxial gantry depends on tasks. However,
the extent of parametric uncertainties can be predicted and the
following practical assumption can be made.

Assumption 1. Extent of parametric uncertainties and uncertain
nonlinearities is known. More precisely,

QG 20 2 {‘9~ OminNS 0 < Omax} (7)
Ae,2{A: |A] <64,

where Qmin = [Glminv ) 98min]T‘ and emax = [leax, B 98max]T

are known constant vectors and § 4 is a known function.

3. Direct adaptive robust control (DARC)

In this section, the DARC contouring law in Hu et al. (in press-
a, in press-b) is briefly reviewed and will be compared with the
proposed DIARC later. Let § denote the estimate of 6 and 6 denote
the estimation error (i.e., # = 6 — 6). In view of (7), the following
adaptation law with discontinuous projection modification can be
used

0 = Proj;(I'7), (8)
where I' > 0 is a diagonal matrix, T is an adaptation function

to be synthesized later. The projection mapping Projj(e) =
[Projg, (e1), . . ., Projg, (e5)]" is defined as

0 iff; = Oynax and e; > 0O
Proj; () = 10  if6; = O and e; < 0 (9)
e; otherwise

which has the following properties (Yao & Tomizuka, 1996)

(P4)§ € 99 £ {/é Gimin = ’6\ =< eimwc}

(P5)6" (I 'Projy(I't) — 1) <0, Vr. (10)

1 The following nomenclature is used throughout this paper: e, and e, are
the minimum value and maximum value of e respectively, ‘s denotes the estimate
of »,'® = e — e denotes the estimation error, e.g., # = 6 — 0, e; is the ith component
of the vector e, and the operation < for two vectors is performed in terms of the
corresponding elements of the vectors.
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Define a switching-function-like quantity and a positive semi-
definite (p.s.d.) function as

1
s=¢&+ As, V(t) = ESTMts, (11)
where A > 0is a diagonal matrix. From (5),

%

s’ [uf +d + A — My — Byl — ASr (@)
— Bté — Cté‘ - D[S + C[AS + M[Aéil

= s"[u; +¥(q,q 00 + Al, (12)

where (P2) is used to eliminate the term %STM[S in the derivation
of the first equation and (P3) to obtain the expression of 2 x 8
matrix ¥ (q, q, t) of known functions, commonly referred to as the
regressor. The DARC law in Hu et al. (in press-a) has the structure
of

u, = —¥(q, 4, t)0, (13)

where u, is the adjustable model compensation needed to achieve
perfect output tracking and u; is a robust control law consisting of
two terms:

u = ug + ug,

ug = —Ks (14)

in which uy; is a simple proportional feedback to stabilize the
nominal system with K being a symmetric positive definite matrix
for simplicity, and uy, is a feedback used to attenuate the effect
of model uncertainties to a certain level for a guaranteed robust
performance. Specifically, noting Assumption 1 and (P4), there
exists a uy such that the following two robust performance
conditions are satisfied (Yao, 1997; Yao & Tomizuka, 2001):

Ug = Uy + Ugy,

i s'[ugp —¥(q,q,00+A41< 7

.. 15
ii. sTugy <0, (15)

where n is a design parameter quantifying the level of uncertainties
attenuation.

4. Integrated direct/indirect adaptive robust control (DIARC)

In this section, the DIARC control strategy in Yao (2003) is
applied to synthesize a contouring control law for the system
(5). As in DARC in the previous section, the first step is to use a
projection-type adaptation law structure to achieve a controlled
learning or adaptation process. But unlike DARC designs, the
least-squares-type adaptation law will be used to achieve better
convergence of parameter estimations and the adaptation rate
matrix will be time-varying and non-diagonal. As such, the simple
discontinuous projection mapping (9) used in DARC designs
cannot be used theoretically since such a discontinuous projection
mapping is valid only for diagonal adaptation rate matrix I".
Instead, the following standard projection mapping in adaptive
control (Goodwin & Mayne, 1987) should be used to keep the
parameter estimates within the known bounded set £y, the
closure of the set £24:

¢, if0 e 2 or (@e 92 and nf¢ < 0)
T

Projs(¢) = nnl _ 16
rojg (¢) I-Ir—=—L )¢, iff €ds2yandnbs >0 (16)
nzI'ng

where ¢ € RP is any function and I"(t) € RP*P can be any time-
varying positive definite symmetric matrix. In (16), SVZ(, and 082y
denote the interior and the boundary of £2 rgspectively, and ng
represents the outward unit normal vector at & € 9£2y. It can be
verified that the projection-type adaptation law (8) with such a
projection still has the (P4) and (P5)in (10) (Yao & Tomizuka, 1996).

4.1. Integrated DIARC contouring control law synthesis

Through use of the projection-type adaptation law, parameter
estimates are bounded with known bounds, regardless of the
estimation function t to be used. This property will be used in this
subsection to synthesize an integrated DIARC contouring control
law that achieves a guaranteed transient performance and steady-
state contouring accuracy regardless how the physical parameters
will be estimated. Specifically, the proposed DIARC control law has
the following form:

U = ug + U, uaA: Ugp + Ugy, Us = Usy + Ugy,
Ug = _‘II(CL q, t)ev Ugp = _I(S,

where uy is the adjustable model compensation needed for perfect
tracking with 6 being the on-line estimates of physical parameters
to be detailed later, uy,, is a fast dynamic compensation term
synthesized below, and us; and ug, have the same meanings as in
DARC designs. For V given by (11), substituting (17) into (12) and
simplifying the resulting expression lead to

(17)

V =s"lup +u,— ¥(q,q, 00 + 4], (18)
Define a constant d; and time varying function d*(t) such that
Td. + d*(t) = —¥(q, q, )0 + A. (19)

Conceptually, (19) lumps the disturbance and the model uncer-
tainties due to parameter estimation error together and divides
it into the low frequency component d. and the higher frequency
components d*(t), so that the low frequency component d. can be
compensated through the fast dynamic compensation-type adap-
tation as in the previous DARC design as follows. Substituting (19)
into (18),

V = s"[ug + us + Td, + d*(0)]. (20)
Choose the fast dynamic compensation term ug, as
Up = —Tag, (21)

where EC represents the estimate of d. updated by

A

d. = Projg. (¢, Ts), (A (0)] < damax, (22)

in which dpy is a pre-set bound for d.(t) and yq4 is a 2 x 2 constant
diagonal matrix. As in DARC designs in Section 3, the projection
mapping in (22) guarantees that |d.(t)| < d¢max, Vt. Thus, similar
to (15), one can choose a robust feedback term us, to meet the
following two conditions for a guaranteed robust performance:

i- ST[“SZ - Tac + E*(t)] S n

.. 23
ii. sTup <0, (23)

where EC = Ec — d; and 7 is a design parameter quantifying
the level of attenuation to be achieved. For example, one smooth
example of uy, satisfying (23) is givenby us; = — ﬁhzs, where h is

any smooth function satisfying h > ||ﬁcmax I+ lomlll¥(q, q, )] +
S, and Oy = Opax — Omin (Yao, 2003).

Theorem 1. Consider the DIARC control law (17) in which the
physical parameter estimates 0 are updated by the projection-
type adaptation law (8) with projection (16) and the dynamic
compensation d. is updated by (22) with projection (9). Regardless the
estimation function t to be used, in general, all signals in the resulting
closed loop system are bounded and the contouring error and output
position tracking error are guaranteed to have a prescribed transient
performance and steady-state accuracy in the sense that V (t) defined
by (11) is bounded by

V(t) < exp(—AD)V(0) + %[1 — exp(—AD)], (24)

where A = 20min(K)/ 2 in which opin(-) denotes the minimum
singular value of a matrix and 1, is defined in property (P1).
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4.2. Estimation of physical parameters

Regardless of the estimation function t to be used, the
above DIARC control law achieves a guaranteed transient and
steady-state performance even in the presence of uncertain
nonlinearities. Thus, this subsection focuses on the construction
of suitable estimation functions v so that an improved steady-
state performance—asymptotic output tracking or zero steady-
state contouring and position tracking error—can be obtained
even when all physical parameters are unknown. In addition, it
is desirable to have on-line parameter estimates converge or stay
close to their true values so that they can be used for other purposes
such as machine component health monitoring. To this end, in
this subsection, it is assumed that the system has parametric
uncertainties only, i.e., assuming d = 0 in (5). To avoid the need
of acceleration feedback in the following estimation of physical
parameters, let H(s) be the transfer function of any filter with a
relative degree larger than or equal to 1 (e.g., Hy(s) = 1/(1ps + 1))
and apply the filter to both sides of (3) to obtain the parameter
estimation model as follows. When d = 0, one obtains

uy = TfTO,
w [ulf] yT_ [xf,'p,xf,.o,sﬂ(k),'o, —1f, o] (25)
= uy | f 0,3, 0,7, 0,S5(3),0, =17 |’

in which e; represents the filtered value of e. Define the prediction
error vector as ¢ = Uy — uy where uy = Tf@ Then the prediction
error vector ¢ is related to the parameter estimation error as
c=70-w =170 (26)
which is in the standard linear regression model form. Thus,

various well-known parameter estimation algorithms can be used
to obtain the estimates of 6. For example, when the least-squares-
A

type estimation algorithm with co-variance limiting is used, 0 is
updated by the adaptation law (8) with the adaptation function
given by (Yao, 2003)

1
- 7
1+ vtr{Y/ 17 re

and the adaptation rate matrix given by

(27)

. «x——m78M
I = 1+ vtr{Y 113}

0, otherwise

T .
I—Vrf’rf F? 1f}\max (F) = pM(28)

where k¥ > 0 is the forgetting factor, oy, is the pre-set upper bound
for || (t)||, v = 0 with v = 0 leading to the unnormalized
algorithm. With these practical modifications, I'(t) < pul, Vt.
The following theorem summarize the improved performance of
the proposed DIARC (Yao, 2003):

Theorem 2. Consider the situation where only parametric uncertain-
ties exist after a finite time ty, i.e., d = 0, Vt > tq in (5). Then, when
the DIARC control law (17) and the projection-type adaption law (8)
are used with the least-squares-type estimation function (27), in ad-
dition to the robust performance results stated in Theorem 1, an im-
proved steady-state contouring performance — asymptotic contouring
tracking (ie, € — Oands — 0ast — oo) - is also achieved
along with the convergence of physical parameter estimates to their
true values when the following PE condition (29) is satisfied: there ex-
ist k, > 0and T > O such that

t+T
/ 1 dr = ipl,, VL (29)
t

5. Experimental setup and results

A biaxial Anorad HERC-510-510-AA1-B-CC2 gantry from
Rockwell Automation has been set up in Zhejiang University as a

Fig. 1. A Biaxial linear motor driven gantry system.

test-bed for contouring control problems. As shown in Fig. 1, the
two axes powered by Anorad LC-50-200 iron core linear motors
are mounted orthogonally with X-axis on top of Y-axis. The po-
sition sensors of the gantry are two linear encoders with a reso-
lution of 0.5 wm after quadrature. The velocity signal is obtained
by the difference of two consecutive position measurements.
Standard least-square identification is performed to obtain the pa-
rameters of the biaxial gantry and it is found that nominal val-
ues of the gantry system parameters without loads are M; =
0.12(V/m/s%),M, = 0.5(V/m/s%®),B; = 0.5(V/m/s),B, =
O7(V/m/s),Af1 = Ol(V),Afz = 015(\/), le =0, sz = 0;
these values are a little different from those in Hu et al. (in press-
a, in press-b) because some lubricant has been added to the
bearings of both axes for preventive maintenance since then. In
addition, through direct measurement of input voltages and the
resulting forces when the motor is blocked, the gain from the in-
put voltage to the force applied to the load is found to be k; =
69 N/V. The bounds of the parametric variations are chosen as
Omin = [0.05,0.45,0.35, 0.5, 0.05,0.08, —0.5, —1]" and 6,0x =
[0.20, 0.6, 0.55, 0.8, 0.15, 0.25, 0.5, 1]7, which cover the entire
range of various loading conditions of the system. The following
performance indexes will be used to quantify the quality of each
control algorithm: (i) ||& || rms = (% fOT |ec|>dt) /2, the root-mean-
square (RMS) value of the contouring error where T is the duration
of the time period interested; (ii) ey = max; {|e.|}, the maximum
absolute value of the contouring error during the time period of

interest; and (iii)@v = max{|%|, |%|}, the maximum per-
centage variations of on-line steady-state parameter estimates to
their off-line estimated values, as measures of the accuracy of pa-
rameter estimations, in which 6. and 6;, are the steady-state value
of the ith parameter estimate in circular contouring experiment
and in elliptical contouring experiment respectively, and 6;y the
off-line estimated value of 6;.

The control algorithms are implemented using a dSPACE
DS1103 controller board executing programs at a sampling period
of Ty = 0.2 ms, resulting in a velocity measurement resolution of

0.0025 m/s. The following three control algorithms are compared:

C1: direct adaptive robust control (DARC)—the control law
presented in Section 3.

C2: integrated direct/indirect adaptive robust control (DIARC)—
the proposed control law in Section 4.

C3: deterministic robust control (DRC)—the DARC control law
without using on-line adaptation (i.e., set I" = Olg in C1).

For a fair comparison, the controller parameter values of all
controllers are chosen the same if they have the same physi-
cal meanings. Specifically, for all controllers, Sf(x) and Sf(y) are
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Table 1
Circular contouring results (The first row below the controllers are for ||&c||ms in
pm and the second row for g4y in pm).

Set 1 Set 2 Set 3
C1 C2 Cc3 C1 c2 C3 C1 Cc2
2.03 1.99 7.33 2.18 2.02 8.36 2.36 2.30

7.31 7.14 21.0 8.16 6.85 19.78 26.81 28.43

chosen as %arctan(QOOOk) and %arctan(QOOOj/) respectively, and
A = diag[100, 30]. Mathematically, one should use the form of
u,; = —Ki(q, q, t)s with K, being a nonlinear proportional feed-
back gain (e.g., Ky, = 4—1"h2 for the specific example given below
Eq. (23) so that robust performance conditions like (23) can be sat-
isfied globally. In implementation, a large enough constant feed-
back gain K, can be used instead to simplify the resulting control
law. With such a simplification, though the robust performance
condition (23) may not be guaranteed globally, the condition can
still be satisfied in a large enough working range which might
be acceptable to practical applications as done in Yao, Bu, Reedy,
and Chiu (2000). With this simplification, noting (17), we choose
u; = —K;s in the experiments where K; represents the combined
gain of K and Kj,; the specific values used in both controllers are
K; = diag[100, 60]. The adaptation rates in C1 are set as I’ =
diag[10, 10, 10, 10, 1, 1, 10000, 10000] with initial parameter
estimates chosen to be 6(0) = [0.1, 0.55, 0.35,0.5,0.1,0.15, 0,
0]" for all experiments. The bounds of d. in (22) is set as dunex =
[0.5, 1.5]" with Y4 = diag[10000, 10 000]. Second-order trans-
fer functions of damping ratio of 0.7 and natural frequencies of
250 Hz for X-axis and 150 Hz for Y-axis are used for the filters in
Section 4.2. In (28), a forgetting factor of x = 0.1 and a normaliza-
tion value of v = 0.1 are used. The initial adaptation rates are set
as I'(0) = diag[10, 10, 10, 10, 10, 10, 5000, 5000] and py = 500
and the same initial parameter estimates as in C1 are used in C2.
The following test sets are performed.

Set 1: Experiments are run without payload, which is equivalent
toM; = 0.12 and M, = 0.5.

Set 2: A5 kg payload is mounted on the gantry, which is equivalent
toM; = 0.19 and M, = 0.57.

Set 3: A step disturbance (a simulated 0.6 V electrical signal) is
added to the input of Y axis at t = 1.86 s and removed
att = 4.86 s to test the performance robustness of each
controller to input disturbances.

5.1. Circular contouring with constant velocity

The biaxial gantry is first commanded to track a circle having
a radius of 0.2 m and a desired velocity of v = 0.4 m/s on
the contour. The circular contouring experimental results in terms
of performance indexes after running the gantry for one period
are given in Table 1. Overall, both DARC and DIARC achieve
good steady-state contouring performance during fast circular
movements. Specifically, for both Set 1 and Set 2, the contouring
errors of DARC and DIARC are mostly within 5 um and roughly one-
third of those in DRC, demonstrating the significantly improved
performance of using on-line adaptation and the performance
robustness of the proposed controllers to parameter variations.
The contouring errors of Set 3 for DARC and DIARC are given in
Fig. 2. As seen from the figures, the added disturbances do not affect
the contouring performance much except the transient spikes
when the step disturbances occur. These results demonstrate the
strong performance robustness of the proposed algorithms to
disturbances as well.

5.2. Elliptical contouring with constant angular velocity

To test the contouring performance of the proposed algorithms
for non-circular motions, the biaxial gantry is also commanded
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Fig. 2. Circular contouring errors of Set3 (disturbances).

Table 2

Elliptical contouring results (the first row below the controllers are for ||&||;ms in
nm and the second row for ey in pwm).

Set 1 Set 2 Set 3
C1 C2 Cc3 C1 C2 c3 C1 c2
2.63 261 7.00 2.89 2.66 114 3.10 291

9.35 8.19 18.17 10.31 8.96 30.1 254 26.0
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Fig. 3. Elliptical contouring errors of Set2 (loaded).

to track an ellipse described by q; = [0.2sin(3t), — 0.1cos(3t)
+ 0.1]" which has a time-varying contouring velocity of
0.34/1 + 3 cos?(3t) m/s though a constant angular velocity of =
3 rad/s. The elliptical contouring experimental results in terms of
performance indexes after running the gantry for one period are
given in Table 2. Again, both DARC and DIARC achieve good steady-
state contouring performance during the fast elliptical movements.
For Set 1, the contouring errors of DARC and DIARC are mostly
within 5 wm as well, significantly less than in DRC, demonstrating
the need of using on-line adaptation. For Set 2, the contouring er-
rors are shown in Fig. 3, revealing almost the same level of steady-
state contouring performance as without the payload. This again
demonstrates the strong performance robustness of the proposed
contouring controllers to parameter variations. Though not shown
due to the page limit, the contouring errors of Set 3 are similar to
those in circular experiments. All these results further demonstrate
the strong performance robustness of the proposed schemes to
disturbances.
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Table 3
Physical parameter estimations of DIARC without load.
M1 M2 B1 Bz Af] Af2
Oin 0.12 0.5 0.5 0.7 0.1 0.15
ic 0.111 0.483 0.522 0.730 0.102 0.150
Ore 0.115 0.505 0.464 0.670 0.104 0.147
iy 7.5% 3.4% 7.2% 4.3% 4.0% 2.0%
Table 4
Physical parameter estimations of DIARC with 5 kg load.
M, M, By By Ar1 Ar
Oin 0.19 0.57 0.5 0.7 0.1 0.15
6ic 0.182 0.562 0.500 0.642 0.102 0.163
Gie 0.188 0.578 0.462 0.720 0.105 0.15
iy 4.2% 1.4% 7.6% 8.3% 5.0% 8.7%
0.65 0.9 circular contouring
elliptical contouring
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~ o e ———
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Fig. 4. Y-axis parameter estimates of Set1 (no load).
5.3. Parameter estimation results

Though both DARC and DIARC achieve excellent contouring
performance, unlike DARC, the proposed DIARC has good on-line
parameter estimations as well. To see this, the steady-state values
of the parameter estimates of the proposed DIARC during both
the circular and elliptical contouring motions are given in Table 3
for no-load experiments and in Table 4 for loaded experiments
respectively. Typical histories of on-line parameter estimates can
be seen from Fig. 4, the parameter estimates of Y-axis during
no-load experiments, and from 5, the parameter estimates of
X-axis during loaded experiments. As shown, on-line estimates of
physical parameters all converge and stay close to their off-line
estimated values with maximum estimation errors less than 9% in
all cases, which might be accurate enough for them to be used for
other purposes such as the component health monitoring. All these
results demonstrate the potential accurate on-line parameter
estimation capability of the proposed DIARC contouring controller
in implementation.

6. Conclusions

In this paper, an integrated DIARC contouring controller that
possesses not only excellent contouring performance but also
accurate parameter estimations is developed and tested on a
biaxial linear-motor-driven industrial gantry system. The unique
feature of the proposed DIARC contouring controller is that the
parameter estimation process is completely independent of the
control law design, allowing the use of estimation algorithms
having better convergence properties such as the least-squares
type and the explicit on-line monitoring of signal excitation
levels for accurate parameter estimations. In addition, dynamic

0.2 0.7 circular contouring
elliptical contouring
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0.1
0 50 100 0 50 100
t(sec) t (sec)
0.2 0.02
0.15 0.01 -
< ==
0.1 0
-0.01
0'050 50 100 0 50 100
t (sec) t (sec)

Fig. 5. X-axis parameter estimates of Set2 (loaded).

compensation-type fast adaptations similar to those in DARC
designs are also introduced to preserve the excellent contouring
performance of DARC designs. Comparative experimental results
verify the excellent contouring performance and the accurate
estimations of physical parameters of the proposed DIARC
contouring controller in practice.

Appendix
Proof of Theorem 1. Substituting (21) into (20) and noting i of
(23),
V = s"[—Ks + uy — Td, 4+ d*(t)] < —s"Ks + n
< =AV+n (30)

which leads to (24) by the comparison lemma. The rest of
Theorem 1 can thus be verified easily. ®

Proof of Theorem 2. Choose a positive function as
1 -
Vo=V+ 5Ef[yd“dc (31)

where V is given by (11). Noting the assumption that A= 0, from
(18) and (21),

Vo = s'[Td, + u, — ¥(q. 4. 8] + d' ya~d.

= —s"Ks +s"uy, — s"W(q, 4, )0 +E{[yd*1ﬁf —Ts]. (32)
Noting (22) and ii of (23),
Vo < —s'Ks —s"W(q,q, )6 +d’ [va~'Projg (y4Ts) — Ts]

< —s'Ks —s"w(q, q, £)0 (33)

in which the projection property (P5) is used by treating d. =
0. When the PE condition (29) is satisfied, it can be shown that
the standard estimation algorithm leads to the convergence of
parameter estimates to their true values and 6 € L,[0, 00). Since
¥ (q, q, t) is bounded due to Theorem 1, ¥(q, q, t)6 € L,[0, c0)
as well. From (33), s € L,[0, co). By Barbalat’s Lemma, asymptotic
contouring tracking can be proved. ®
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