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An output feedback adaptive robust controller is constructed for precision motion control of linear
motor drive systems. The control law theoretically achieves a guaranteed high tracking accuracy for
high-acceleration/high-speed movements, as verixed through experiments also.

Abstract

This paper studies high performance robust motion control of linear motors that have a negligible electrical dynamics. A discon-
tinuous projection based adaptive robust controller (ARC) is constructed. Since only output signal is available for measurement, an
observer is "rst designed to provide exponentially convergent estimates of the unmeasurable states. This observer has an extended
"lter structure so that on-line parameter adaptation can be utilized to reduce the e!ect of the possible large nominal disturbances.
Estimation errors that come from initial state estimates and uncompensated disturbances are e!ectively dealt with via certain robust
feedback at each step of the ARC backstepping design. The resulting controller achieves a guaranteed output tracking transient
performance and a prescribed "nal tracking accuracy. In the presence of parametric uncertainties only, asymptotic output tracking is
also achieved. The scheme is implemented on a precision epoxy core linear motor. Experimental results are presented to illustrate the
e!ectiveness and the achievable control performance of the proposed scheme. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Modern mechanical systems, such as machine tools,
semiconductormanufacturing equipment, and automatic
inspectionmachines, often require high-speed, high-accu-
racy linear motions. These linear motions are usually
realized using rotary motors with mechanical transmis-
sion mechanisms such as reduction gears and lead screw.
Such mechanical transmissions not only signi"cantly re-
duce linear motion speed and dynamic response, but also

introduce backlash, large frictional and inertial loads,
and structural #exibility. Backlash and structural #exibil-
ity physically limit the accuracy that any control system
can achieve. As an alternative, direct drive linear motors,
which eliminate the use of mechanical transmissions,
show promise for widespread use in high performance
positioning systems.
Direct drive linear motor systems gain high-speed,

high-accuracy potential by eliminating mechanical trans-
missions. However, they also lose the advantage of using
mechanical transmissions*gear reduction reduces the
e!ect of model uncertainties such as parameter variations
(e.g., uncertain payloads) and external disturbance (e.g.,
cutting forces in machining). Furthermore, certain types
of linear motors (e.g., iron core linear motors) are sub-
jected to signi"cant force ripple (Braembussche, Swevers,
Van Brussel, & Vanherck, 1996). These uncertain nonlin-
earities are directly transmitted to the load and have
signi"cant e!ects on the motion of the load. Thus, in
order for a linear motor system to be able to function and
to deliver its high performance potential, a controller
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which can achieve the required high accuracy in spite of
various parametric uncertainties and uncertain nonlinear
e!ects, has to be employed.
A great deal of e!ort has been devoted to solving the

di$culties in controlling linear motor systems (Braem-
bussche et al., 1996; Alter & Tsao, 1996, 1994; Komada,
Ishida, Ohnishi, & Hori, 1991; Egami & Tsuchiya, 1995;
Otten, Vries, Amerongen, Rankers, & Gaal, 1997; Yao
& Xu, 1999). Alter and Tsao (1996) presented a compre-
hensive design approach for the control of linear-motor-
driven machine tool axes. H

�
optimal feedback control

was used to provide high dynamic sti!ness to external
disturbances (e.g., cutting forces in machining). Feedfor-
ward was also introduced in Alter and Tsao (1994) to
improve tracking performance. Practically, H

�
design

may be conservative for high-speed/high-accuracy track-
ing control and there is no systematic way to translate
practical information about plant uncertainty and
modeling inaccuracy into quantitative terms that allow
the application of H

�
techniques. In Komada et al.

(1991), a disturbance compensation method based on
disturbance observer (DOB) (Ohnishi, Shibata, &
Murakami, 1996) was proposed to make a linear motor
system robust to model uncertainties. It was shown both
theoretically and experimentally by Yao, Al-Majed, and
Tomizuka (1997) that DOB design may not handle dis-
continuous disturbances such as Coulomb friction well
and cannot deal with large extent of parametric uncer-
tainties. To reduce the nonlinear e!ect of force ripple, in
Braembussche et al. (1996), feedforward compensation
terms, which were based on an o!-line experimentally
identi"ed force ripple model, were added to a position
controller. Since not all magnets in a linear motor and
not all linear motors of the same type are identical,
feedforward compensation based on the o!-line identi-
"ed model may be too sensitive and costly to be useful. In
Otten et al. (1997), a neural-network-based learning feed-
forward controller was proposed to reduce positional
inaccuracy due to reproducible ripple forces or any other
reproducible and slowly varying disturbances over di!er-
ent runs of the same desired trajectory (or repetitive
tasks). However, overall closed-loop stability was not
guaranteed. In fact, it was observed in Otten et al. (1997)
that instability may occur at high-speed movements.
Furthermore, the learning process may take too long to
be useful due to the use of a small adaptation rate for
stability. In Yao and Xu (1999), under the assumption
that the full state of the system is measured, the idea of
adaptive robust control (ARC) (Yao & Tomizuka, 1996,
1997b) was generalized to provide a theoretic framework
for the high performance motion control of an iron core
linear motor. The controller took into account the e!ect
of model uncertainties coming from the inertia load,
friction, force ripple and electrical parameters, etc. In
particular, based on the structure of the motor model,
on-line parameter adaptation was utilized to reduce the

e!ect of parametric uncertainties while the uncompen-
sated uncertain nonlinearities were handled e!ectively
via certain robust control laws for high performance.
As a result, time-consuming and costly rigorous o%ine
identi"cation of friction and ripple forces was avoided
without sacri"cing tracking performance. In Xu and Yao
(2000a,b), the proposed ARC algorithm (Yao & Xu, 1999)
was applied on an epoxy core linear motor. To reduce the
e!ect of measurement noise, a desired compensation
ARC algorithm in which the regressor was calculated by
reference trajectory information was also presented and
implemented.
The ARC schemes in Xu and Yao (2000a,b) used velo-

city feedback. However, most linear motors systems do
not equip velocity sensors due to their special structure.
In practice, the velocity signal is usually obtained by the
backward di!erence of the position signal, which is very
noisy and limits the overall performance. It is thus of
practical signi"cance to see if one can construct ARC
controllers based on the position measurement only,
which is the focus of the paper. An output feedback ARC
scheme is constructed for a linear motor subjected to
both parametric uncertainties and bounded distur-
bances. Since only the output signal is available for
measurement, a Kreisselmeier observer (Kreisselmeier,
1977) is "rst designed to provide exponentially conver-
gent estimates of the unmeasurable states. This observer
has an extended "lter structure so that on-line parameter
adaptation can be utilized to reduce the e!ect of the
possible large nominal disturbance, which is very impor-
tant from the view point of application (Yao et al., 1997).
The destabilizing e!ect of the estimation errors is e!ec-
tively dealt with using robust feedback at each step of the
design procedure. The resulting controller achieves
a guaranteed transient performance and a prescribed
"nal tracking accuracy. In the presence of parametric
uncertainties only, asymptotic output tracking is also
achieved. Finally, the proposed scheme, as well as a PID
controller, is implemented on an epoxy core linear motor.
Comparative experimental results are presented to justify
the validity of the ARC algorithm.
The paper is organized as follows. Problem formula-

tion and dynamic models are presented in Section 2. The
proposed ARC controller is shown in Section 3. Experi-
mental setup and comparative experimental results are
presented in Section 4, and conclusions are drawn in
Section 5.

2. Problem formulation and dynamic models

The linear motor considered here is a current-control-
led three-phase epoxy core motor driving a linear posi-
tioning stage supported by recirculating bearings. To
ful"ll the high performance requirements, the model is
obtained to include most nonlinear e!ects like friction
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�Normalized with respect to the unit input voltage.

and force ripple. In the derivation of the model, the
current dynamics is neglected in comparison to the
mechanical dynamics due to the much faster electric
response. The mathematical model of the system can be
described by the following equations:

MqK"u!F(q, q� ),
(1)

F(q,q� )"F
�
#F

�
!F

�
,

where q(t), q� (t), qK (t) represent the position, velocity and
acceleration of the inertia load, respectively, M is the
normalized� mass of the inertia load plus the coil assem-
bly, u is the input voltage to the motor, F is the nor-
malized lumped e!ect of uncertain nonlinearities such as
friction F

�
, ripple force F

�
and external disturbance F

�
(e.g. cutting force in machining). While there have been
many friction models proposed (Armstrong-Hèlouvry,
Dupont, & Canudas de Wit, 1994), a simple and often
adequate approach is to regard the friction force as
a static nonlinear function of the velocity, i.e., F

�
(q� ),

which is given by

F
�
(q� )"Bq� #F

��
(q� ), (2)

where B is the equivalent viscous coe$cient of the sys-
tem, F

��
is the nonlinear friction term that can be

modeled as (Armstrong-Hèlouvry et al., 1994)

F
��
(q� )"![ f

�
#( f

�
!f

�
)e���� ��� � ��]sgn(q� ), (3)

where f
�
is the level of stiction, f

�
is the level of Coulomb

friction, and q�
�
and � are empirical parameters used to

describe the Stribeck e!ect. Thus, considering (2), one can
rewrite (1) as

MqK"u!Bq� !F
��
(q� )#�, (4)

where �OF
�
!F

�
represents the lumped disturbance.

Let q
�
(t) be the reference motion trajectory, which is

assumed to be known, bounded with bounded deriva-
tives up to the second order. The control objective is to
synthesize a control input u such that the output q(t)
tracks q

�
(t) as closely as possible in spite of various model

uncertainties.

3. Adaptive robust control of linear motor systems

3.1. Friction compensation

A simple but e!ective method for overcoming prob-
lems due to friction is to introduce a cancellation term for
the friction force. Since the nonlinearity F

��
depends on

the velocity q� which is not measurable, the friction com-
pensation scheme developed in Lee and Tomizuka (1996)
cannot be applied directly to achieve our objective. In

order to bypass the di$culty, in the following, the `esti-
mated friction forcea FK

��
(q�

�
) will be used to approximate

F
��
(q� ), where q

�
is the desired trajectory to be tracked by

q. The approximation errorFI
��

"FK
��
(q�

�
)!F

��
(q� ) will be

treated as disturbance. In other words, the control input
u(t) becomes

u(t)"uH(t)#FK
��
(q�

�
), (5)

where uH is the output of an adaptive robust controller
yet to be designed. Substituting (5) into (4), one obtains

MqK"uH(t)!Bq� #d, (6)

where dO�#FI
��
.

In general, the system is subject to parametric uncer-
tainties due to the variations of M, B, and the nominal
value of the lumped disturbance d, d

�
. De"ne the un-

known parameter set �"[�
�
, �

�
,�

�
] as �

�
"1/M,

�
�
"B/M, and �

�
"d

�
/M.

A state space realization of the plant (6), which is
linearly parameterized in terms of �, is thus given by

x�
�
"x

�
!�

�
x
�
,

x�
�
"�

�
uH#�

�
#dI ,

y"x
�
, (7)

where x
�
is one state of the second order system that

represents the position q, x
�
is the other state that is not

measurable, y is the output, and dI "(d!d
�
)/M.

For simplicity, in the following, the following nota-
tions are used: '

�
for the ith component of the vector

' , '
���

for the minimum value of ' , and '
�	


for the
maximum value of ' . The operation) for two vectors is
performed in terms of the corresponding elements of the
vectors. The following practical assumption is made:

Assumption 1. The extent of the parametric uncertainties
and uncertain nonlinearities is known, i.e.,

�3��O��: �
���

)�)�
�	


�,

dI 3�
�
O�dI : �dI �)�

�
�, (8)

where

�
���

"[�
����

,2, �
����

]�, �
�	


"[�
��	


,2, �
��	


]�,

and �
�

are known.

3.2. State estimation

Since only the output y is available for measurement,
a nonlinear observer is "rst built to provide an exponen-
tially convergent estimate of the unmeasurable state x

�
.

The design model (7) can be rewritten as

x� "A
�
x#(k!e

�
�
�
)y#e

�
�
�
#e

�
�
�
uH#e

�
dI ,

y"x
�
, (9)
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where x"[x
�
,x

�
]�, e

�
and e

�
denote the standard basis

vectors in �� and

A
�
"�

!k
�

1

!k
�

0�, k"�
k
�
k
�
�. (10)

Then, by suitably choosing k, the observer matrixA
�
will

be stable. Thus, there exists a symmetric positive de"nite
(s.p.d.) matrix P such that

PA
�
#A�

�
P"!I, P"P�'0. (11)

Following the design procedure of Krstic, Kanel-
lakopoulos, and Kokotovic (1995), one can de"ne the
following "lters:

�Q
�
"A

�
�
�
#ky,

�Q
�
"A

�
�
�
#e

�
y,

(12)
�� "A

�
v#e

�
uH,

�Q "A
�
�#e

�
.

Notice that the last equation of (12) is introduced so that
parameter adaptation can be used to reduce the paramet-
ric uncertainties coming from �

�
. The state estimates can

thus be represented by

x("�
�
!�

�
�
�
#�

�
v#�

�
�. (13)

Let 	
�
"x!x( be the estimation error, from (9), (12) and

(13), it can be veri"ed that the observer error dynamics is
given by

	�
�
"A

�
	
�
#e

�
dI . (14)

The solution of Eq. (14) can be written as 	
�
"	#	

�
,

where 	 is the zero input response satisfying 	� "A
�
	 and

	
�
"�

�

�

e��	���
e
�
dI (y, 
) d
, t*0, (15)

is the zero state response. Noting Assumption 1 and the
fact that matrix A

�
is stable, one has

	
�
3��O�	

�
: �	

�
(t)�)��(t)�, (16)

where �� (t) is known. In the following controller design,
	 and 	

�
will be treated as disturbances and accounted for

using di!erent robust control functions at each step of
the design to achieve a guaranteed "nal tracking accu-
racy.

Remark 1. The � and v variables in (12) can be obtained
from the algebraic expressions (Krstic et al., 1995)

�
�
"!A�

�
�,

�
�
"A

�
�,

v"�, (17)

where � and � are the states of the following two-dimen-
sional "lters

�� "A
�
�#e

�
y,

(18)
�Q "A

�
�#e

�
uH.

3.3. Parameter projection

Let �K denote the estimate of � and �I the estimation
error (i.e., �I "�K !�). In view of (8), the following adapta-
tion law with discontinuous projection modi"cation can
be used:

�KQ "Proj�K (�
), (19)

where �'0 is a diagonal matrix, 
 is an adaptation
function to be synthesized later. The projection mapping
Proj�K ( ' )"[Proj�K � ( ' � ),2, Proj�K � ( ' �)]� is de"ned in Yao
and Tomizuka (1996) and Sastry and Bodson (1989) as

Proj�K � ( ' � )"�
0 if �K

�
"�

� �	

and '

�
'0,

0 if �K
�
"�

� ���
and '

�
(0,

'
�

otherwise.

(20)

It can be shown (Yao and Tomizuka, 1996) that for any
adaptation function 
, the projection mapping de"ned in
(20) guarantees

P1 �K 3��"��K : �
���

)�K )�
�	


�,

P2 �I �(���Proj�K (�
)!
))0, ∀
. (21)

3.4. Controller design

The design combines the adaptive backstepping design
in Krstic et al. (1995) with the ARC design procedure in
Yao (1997). In the following, the unmeasurable state of
the system is replaced by its estimate and the estimation
error is dealt with at each step via robust feedback to
achieve a guaranteed robust performance. The plant is of
relative degree 2, and the design is in two steps.

Step 1: De"ne the output tracking error as z
�
"y!q

�
.

From (7), the derivative of z
�
is

z�
�
"x

�
!�

�
y!q�

�
. (22)

From (13), the unmeasurable state x
�
can be expressed as

x
�
"�

���
#�

�
v
�
!�

�
�
���

#�
�
�
�
#	

��
, (23)

where 	
��

"	
�
#	

��
is the estimation error of x

�
. Substi-

tuting (23) into (22), one obtains

z�
�
"�

���
#�

�
v
�
!�

�
(�

���
#y)#�

�
�
�
!q�

�
#�M

�
,

�M
�
O	

�
#	

��
. (24)

If the "lter state v
�
were the actual control input, one can

synthesize for it a virtual control law 
�
which consists of
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two terms given by


�
"

�	
#

��
,


�	

"!

1

�K
�

��
���

!�K
�
(�

���
#y)#�K

�
�

�
!q�

�
�, (25)

where 
�	

is the adjustable model compensation, and

��

is a robust control law to be synthesized later. Let
z
�
"v

�
!

�
denote the input discrepancy. Substituting

(25) into (24) and simplifying the resulting expression, one
obtains

z�
�
"�

�
(z

�
#

��
)!�I ��

�
#�M

�
, (26)

where �
�
O[

�	
,!(�

���
#y),�

�
]�.

In Krstic et al. (1995), it needs to incorporate the tuning
functions in the construction of control functions. Here,
due to the use of discontinuous projection (20), the ad-
aptation law (19) is discontinuous and thus cannot be
used in the control law design at each step since back-
stepping design requires that the control function syn-
thesized at each step be su$ciently smooth in order to
obtain its partial derivatives. In the following, it will be
shown that this design di$culty can be overcome by
strengthening the robust control law design. The robust
control function 

��
consists of three terms given by


��

"
���

#
���

#
���

, 
���

"!

1

�
����

k
��
z
�
, (27)

where 
���

and 
���

are robust control functions de-
signed in the following and k

��
is any nonlinear feedback

gain satisfying

k
��

*g
�
#��C

(�
��

�
���, g

�
'0, (28)

in which C
(�

is a positive de"nite constant diagonal
matrix to be speci"ed later. Substituting (27) into (26),
one obtains

z�
�
"�

�
z
�
!

�
�

�
� ���

k
��
z
�
#�

�
(

���
#

���
)

!�I ��
�
#�M

�
. (29)

De"ne a positive semi-de"nite (p.s.d.) function <
�
as

<
�
"�

�
w
�
z�
�
, (30)

where w
�
'0 is a weighting factor. From (29), its time

derivative satis"es

<Q
�
)�

�
w

�
z
�
z
�
!w

�
k
��
z�
�
#w

�
z
�
(�

�

���

!�I ��
�
)

#w
�
z
�
(�

�

���

#�M
�
). (31)

From Assumption 1, it follows that

���I ��
�
��)���

�
�� ���

�
��, (32)

where �
�

"�
�	


!�
���

. Thus ���I ��
�
�� is bounded by

a known function, which ensures that there exists a
robust control function 

���
satisfying the following con-

ditions (Yao, 1997):

Condition i: z
�
��

�

���

!�I ��
�
�)�

��
,

Condition ii: z
�

���

)0, (33)

where �
��

is a positive design parameter which can be
arbitrarily small. Essentially, condition i of (33) shows
that 

���
is synthesized to dominate the model uncertain-

ties coming from parametric uncertainties �I with the level
of control accuracy being measured by the design para-
meter �

��
, and condition ii is to make sure that 

���
is

dissipating in nature so that it does not interfere with the
functionality of the adaptive control part 

�	
.

Similarly, from Assumption 1, (24) and (16), it follows
that

��M
�
�)�M

�
(t)O�	

�
�#��� (t). (34)

Note that �M
�
is an unknown but bounded function. In

principle, the same strategy as in (33) can be used to
design a robust control function 

���
to handle the e!ect

of �M
�
. However, since the bound of �M

�
is unknown, the

level of control accuracy cannot be pre-speci"ed and
thus results in a robust control function 

���
(Yao &

Tomizuka, 1997a) which satis"es more relaxed condi-
tions than (33)

Condition i: z
�
(�

�

���

#�M
�
))�

��
�M �
�
,

Condition ii: z
�

���

)0 (35)

with the level of attenuation �
��

being a design para-
meter (Yao & Tomizuka, 1997a), which can be arbitrarily
small.

Remark 2. One smooth example of 
���

satisfying (33)
can be found in the following way. Let h

�
be any smooth

bounding function satisfying

h
�
*���

�
������

�
���. (36)

Then, 
���

can be chosen as (Yao & Tomizuka, 1997b;
Yao, 1997)


���

"!

h
�

4�
����

�
��

z
�
. (37)

An example of 
���

satisfying (35) is given by Yao and
Tomizuka (1997a)


���

"!

1

4�
����

�
��

z
�
. (38)

Other smooth or continuous examples of the needed
robust control functions satisfying conditions (33) and
(35) can be worked out in the same way as in Yao (1997)
and Yao and Tomizuka (1997a,b).
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Step 2: From (25), (27) and (17), it is easy to check that

�
is a function of y, t, �, �

�
and �K . Thus, the derivative

of 
�
is given by

�
�
"�

��
#�

��
,

�
��

"

�
�

�y
(�

���
#�K ��)#

�
�

��
�� #

�
�

��
�

�Q
�
#

�
�

�t
,

�
��

"

�
�

�y
(!�I ��#�M

�
)#

�
�

��K
�KQ , (39)

where ��"[v
�
,!(�

���
#y),�

�
]. In (39), by replacing

�� and �� in terms of their expressions in (18) and (12)
respectively, �

��
is calculable and can be used in the

design of control functions, but �
��
cannot due to various

uncertainties. Therefore, �
��

has to be dealt with via
robust feedback in this step of design. From (12) and (39),
the derivative of z

�
"v

�
!

�
can be expressed as

z�
�
"uH!k

�
v
�
!�

��
!�

��
. (40)

Consider an augmented p.s.d. function <
�
given by

<
�
"<

�
#�

�
w
�
z�
�
, w

�
'0. (41)

From (31) and (40), it follows that

<Q
�
)�

�
w

�
z
�
z
�
#<Q

�
��� #w

�
z
�
z�
�

"<Q
�
��� #w

�
z
��

w
�

w
�

�
�
z
�
#uH!k

�
v
�
!�

��
!�

���,
(42)

where<Q
�
��� is a shorthand notation for<Q � when v�"

�
(or z

�
"0). Similar to (25), the actual ARC control

uH consists of two parts given by

uH"uH
	
#uH

�
,

uH
	
"!

w
�

w
�

�K
�
z
�
#k

�
v
�
#�

��
,

(43)
uH
�
"uH

��
#uH

��
#uH

��
,

uH
��

"!k
��
z
�
, k

��
*g

�
#��

�
�

��K
C�� ��

�
#��C

(�
��

�
���,

where g
�
'0 is a constant, C�� and C

(�
are positive

de"nite constant diagonal matrices, uH
��

and uH
��

are ro-
bust control functions to be chosen later. Substituting
(43) and (39) into (42) and using similar techniques as in
(26), one obtains

<Q
�
)<Q

�
��� !w

�
k
��
z�
�
#w

�
z
�
(uH

��
!�I ��

�
)

#w
�
z
�
(uH

��
#�M

�
)!w

�
z
�

�
�

��K
�KQ , (44)

in which

�
�
"eH

�

w
�

w
�

z
�
!

�
�

�y
�,

(45)

�M
�
"!

�
�

�y
�M
�
,

where eH
�
denotes the "rst basis vector in ��. Noting (34),

one has ��M
�
�)��

�
/�y��M

�
. Similar to (33) and (35), the

robust control functions uH
��
and uH

��
are chosen to satisfy

Condition i: z
�
(uH

��
!�I ��

�
))�

��
,

Condition ii: z
�
uH
�	

)0, j"2,3, (46)

Condition iii: z
�
(uH

��
#�M

�
))�

��
�M
�

�,

where �
��

and �
��

are positive design parameters which
can be arbitrarily small. As in Remark 2, examples of
uH
��

and uH
��

satisfying (46) are given by

uH
��

"!

h
�

4�
��

z
�
,

(47)

uH
��

"!

1

4�
��
�
�

�
�y �

�
z
�
,

in which h
�
is any smooth bounding function satisfying

h
�
*���

�
������

�
���. (48)

From (31) and (44), the derivative of <
�
satis"es the

following inequality:

<Q
�
)!

�
�
	�

w
	
k
	�
z�
	
#w

�
z
�
��

�

���

!�I ��
�
�

#w
�
z
�
��

�

���

#�M
�
�#w

�
z
�
�uH

��
!�I ��

�
�

#w
�
z
�
�uH

��
#�M

�
�!w

�

�
�

��K
�KQ z

�
. (49)

Theorem 1. Let the parameter estimates be updated by the
adaptation law (19) in which 
 is chosen as


"

�
�
	�

w
	
�
	
z
	
. (50)

If the controller parameters C�� and C
(

, k"1,2, are

chosen such that c�
(
�

*w


w
�
/2c���� where c��� and c

(
�
are

the rth elements of C�� and C
(

, respectively. Then, the

control law (43) guarantees that
A. In general, the control input and all internal signals

are bounded. Furthermore, <
�

is bounded above by

<
�
(t))exp(!�

�
t)<

�
(0)

#�
�

�

exp(!�
�
(t!
))(��

��
#��

��
�M
�

�(
)) d


)exp(!�
�
t)<

�
(0)#

��
��

#��
��

���M
�
���
�

�
�

�[1!exp(!�
�
t)], (51)
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Fig. 1. Experimental setup.

where �
�
"2min�g

�
,g

�
�, ��

��
"��

	�
w
	
�
	�
, ��

��
"��

	�
w
	
�
	�
,

and ���M
�
��
�

stands for the inxnity norm of �M
�
.

B. If after a xnite time t
�
, dI "0, i.e., in the presence of

parametric uncertainties only, then, in addition to results in
A, asymptotic output tracking (or zero xnal tracking error)
is also achieved.

Proof of the theorem is given in the appendix.

Remark 3. Results in A of Theorem 1 indicate that the
proposed controller has an exponentially converging
transient performance with the exponentially converging
rate �

�
and the "nal tracking error being able to be

adjusted via certain controller parameters freely in
a known form; it is seen from (51) that �

�
can be made

arbitrarily large, and ��
��

#��
��

���M
�
���
�
/�

�
, the bound of

<
�
(R) (an index of the "nal tracking errors), can be

made arbitrarily small by increasing the feedback gains
g
�
and/or decreasing the controller parameters �

��
and

�
��
. Theoretically, this result is what a well-designed

robust controller can achieve. In fact, when the para-
meter adaptation law (19) is switched o!, the proposed
ARC law becomes a deterministic robust control law and
results in A of Theorem 1 remain valid (Yao
& Tomizuka, 1996, 1997b).
B of Theorem 1 implies that the e!ect of parametric

uncertainties is eliminated via parameter adaptation law
and an improved tracking performance*asymptotic
tracking*is achieved without using any discontinuous
or in"nite gain feedback. Theoretically, result B is what
a well-designed adaptive controller can achieve.

Remark 4. It is seen from (51) that the transient tracking
error is a!ected by the initial value <

�
(0). To further

reduce the transient tracking error, the idea of "lter
initialization (Yao & Tomizuka, 1997b; Krstic et al.,
1995) can be used to render <

�
(0)"0.

4. Comparative experiments

4.1. Experimental setup

To test the proposed nonlinear ARC strategy and
study fundamental problems associated with high-
speed/high-acceleration/high-accuracymotion control of
linear motor drive systems, a two-axis positioning stage
is set up as a test-bed. As shown in Fig. 1, the test-bed
consists of four major components: a precision X}>
stage with two integrated linear drive motors, two linear
encoders, a servo controller, and a host PC. The two axes
of the X}> stage are mounted orthogonally on a hori-
zontal plane with the >-axis on top of theX-axis. A par-
ticular feature of the setup is that the two linear motors
are of di!erent type: the >-axis is driven by an Anorad
LEM-S-3-S linear motor (epoxy core) and the X-axis is

driven by an Anorad LCK-S-1 linear motor (iron core).
They represent the two most commonly used linear mo-
tors and have di!erent characteristics. The resolution of
the encoders is 1 �m after quadrature. In the experiments,
only the >-axis is used.
Standard least-squares identi"cation is performed to

obtain the parameters of the >-axis. The nominal values
of M is 0.027 V/m/s�, which is equivalent to �

�
"37. To

test the learning capability of the proposed ARC algo-
rithm, a 9.1 kg load is mounted on the motor in the
experiments and the identi"ed values of the parameters are

�
�
"10, �

�
"2.73. (52)

The bounds of the parameter variations are chosen as

�
���

"[8.3, 2.4,!50]�,
(53)

�
�	


"[50, 17.5, 50]�.

4.2. Performance index

As in Yao et al. (1997), the follow performance indexes
will be used to measure the quality of the control algorithm:

� ��e��
���

"�(1/¹
�
)��

�
�e��dt, the rms of the tracking

error, is used as an objective numerical measure of
average tracking performance for an entire error curve
e(t), where ¹

�
represents the total running time;

� e
�

"max
�
��e(t)��, the maximum absolute value of the

tracking error, is used as an index of measure of
transient performance;

� e
�
"max

�������
��e(t)��, the maximum absolute

value of the tracking error during the last 2 s, is used as
an index of measure of xnal tracking accuracy;

� ��u��
���

"�1/¹
�
��

�
�u�� dt, the rms of the control input,

is used to evaluate the amount of control ewort;
� c

�
"���u��

���
/��u��

���
, the normalized control vari-

ations, is used to measure the degree of control chatter-
ing, where

���u��
���

"	
1

N

�
�
	�

�u(j�¹)!u((j!1)�¹)��.
(54)

is the rms of the control input increments.
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Table 1
Experimental results

Controller Set 1 Set 2 Set 3

PID ARC PID ARC PID ARC

e
�
(�m) 51.2 14.4 156 113 85.8 55.9

e
�
(�m) 15.1 6.88 21.2 6.71 16.1 6.30

��e��
���

(�m) 2.99 1.88 8.04 4.32 4.35 3.26
��u��

���
(V) 0.19 0.20 0.21 0.21 0.40 0.42

���u��
���

(V) 0.05 0.06 0.06 0.06 0.04 0.08
c
�

0.28 0.32 0.28 0.30 0.11 0.19

4.3. Comparative experimental results

Experiments are performed with the >-axis. The con-
trol system is implemented using a dSPACE DS1103
controller board. The controller executes programs at
a sampling frequency f

�
"2.5 kHz. The following two

controllers are compared:
PID: PID control with feedforward compensation*

consider the linear motor system described by (4), and
assume that the following variables are available (either
measured or computed) for control implementation;
q(t),q

�
(t), q�

�
(t) and qK

�
(t). The velocity signal q� (t) is ob-

tained by the di!erence of two consecutive position
measurements. If the parameters and nonlinear friction
term of (4) are known, the control objective can be
achieved with the following PID control law:

u"MqK
�
(t)#Bq� (t)#F

��
(q� )

!K
�
e!K

�� edt!K
�
e� , (55)

where eOq!q
�
. Closing the loop by applying (55) to (4)

easily leads to the closed-loop characteristic equation

s�#
K

�
M

s�#

K
�

M
s#

K
�

M
"0. (56)

By placing the closed-loop poles at desired locations, the
design parameters K

�
, K

�
and K

�
can thus be deter-

mined. In the experiments, since M and B are unknown
parameters, instead of using (55) the following control
law is used:

u"MK (0)qK
�
(t)#BK (0)q� (t)#FK

��
(q� )!K

�
e

!K
�� edt!K

�
e� , (57)

where MK (0) and BK (0) are the "xed parameter estimates
chosen as 0.05 and 0.24, respectively. FK

��
(q� ) is the friction

compensation term which depends on the velocity q� and
is chosen as (0.2/�) arctan(900q� ). By placing all the three
closed-loop poles at !300 when M"M

���
"0.02, one

obtains K
�
"5.4�10�, K

�
"5.4�10� and K

�
"18.

ARC: Adaptive robust control*the output feedback
ARC law proposed in Section 3. All the roots of the
observer polynomials are placed at s"!200 which
leads to k

�
"400 and k

�
"4�10�. The controller para-

meters are: w
�
"1, g

�
"600, �

��
"�

��
"5�10��, C

(�
"

10�� ) diag[5, 0.5, 10]; w
�
"0.1, g

�
"850, �

��
"1�10��,

�
��

"1, C
(�

"C
(�
, C��"10�I

�
. The adaptation rate

is �"10� ) diag[5, 3, 20]. The estimated friction com-
pensation term FK

��
(q�

�
) is chosen as (0.2/�) arctan(900q�

�
).

The initial parameter estimates are chosen as �K (0)"
[30,10,0]�.
To test the tracking performance of the proposed algo-

rithm, the following two typical reference trajectories are
considered.

Case 1: Tracking a sinusoidal trajectory y
�
"

0.05 sin(4t). Comparative experiments are run for track-
ing a sinusoidal trajectory. The desired trajectory is gen-
erated by a stable second order system:

qK
�
#�

�
q�
�
#�

�
q
�
"qK

�
#�

�
q�
�
#�

�
q
�
, (58)

where �
�
"100 and �

�
"2500. By choosing q

�
(0)"y(0)

and setting all remaining "lter initial conditions to zero
(i.e., q�

�
(0)"0, qK

�
(0)"0, �(0)"0, �(0)"0 and �(0)"0),

one has <
�
(0)"0 for an improved transient perfor-

mance as explained in Remark 4. The following test sets
are performed:

Set 1: To test the nominal tracking performance of the
controllers, the motor is run without payload, which is
equivalent to �

�
"37;

Set 2: To test the performance robustness of the algo-
rithms to parameter variations, a 9.1 kg payload is
mounted on the motor, which is equivalent to �

�
"10;

Set 3: A large step disturbance (a simulated 0.5 V
electrical signal) is added at t"2.2 s and removed at
t"7.2 s to test the performance robustness of each con-
troller to disturbance.
The experimental results in terms of performance in-

dexes are given in Table 1. As seen from the table, in
terms of performance indexes e

�
and e

�
, PID performs

poorly for all three sets, but with a slightly lesser degree
of control input chattering. One may argue that the
performance of PID control can be further improved
by increasing the feedback gains. However, in practice,
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Fig. 2 . Tracking errors for sinusoidal trajectory without load. Fig. 3. Tracking errors for sinusoidal trajectory with load.

Fig. 4 . Tracking errors for sinusoidal trajectory with disturbance.

Fig. 5. High-acceleration/high-speed point-to-point motion trajectory.

feedback gains have upper limits because the bandwidth
of every physical system is "nite. To verify this claim, the
closed-loop poles of the PID controller are placed at
!320 instead of !300, which is translated into PID
gains of K

�
"6144, K

�
"655360 and K

�
"19.2. With

these gains, the closed-loop system is found to be unsta-
ble in the experiments. This indicates that the closed-loop
bandwidth that a PID controller can achieve in imple-
mentation has been pushed almost to its limit and not
much further performance improvement can be expected
from PID controllers. Thus, in order to realize the
high-acceleration/high-speed/high-accuracy potential of
a linear motor system, a PID controller even with feed-
forward compensation may not be su$cient.
For Set 1, the tracking errors are given in Fig. 2. It

shows that the ARC controller achieves very good nom-
inal tracking performance. For Set 2, the tracking errors
are given in Fig. 3 (The tracking errors are chopped o!.).
It shows the ARC controller achieves good tracking
performance in spite of the change of inertia load. The
tracking errors for Set 3 are given in Fig. 4. As seen from
the "gures, the added large disturbance does not a!ect
the performance of ARCmuch, except for the spike when
the sudden change of the disturbance occurs. This result
illustrates the performance robustness of the ARC design.

Case 2: High-acceleration/high-speed point-to-point
motion trajectory (without load). A fast point-to-point
motion trajectory with high-acceleration/deceleration,
which runs back and forth several times, is shown in
Fig. 5. The trajectory has a maximum velocity of
v
�	


"1 m/s and a maximum acceleration of a
�	


"

12 m/s�. The tracking errors of PID and ARC are shown
in Fig. 6. As seen, the proposed ARC has a much better
performance than PID. Furthermore, during the zero
velocity portion of motion, the ARC tracking error is
within $1 �m.
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Fig. 6. Tracking errors for high-acceleration/high-speed point-to-point
motion trajectory.

5. Conclusions

In this paper, an output feedback ARC scheme based
on discontinuous projection method has been developed
for high performance robust motion control of linear
motors. The proposed controllers take into account the
e!ect of model uncertainties coming from the inertia
load, friction force, force ripple and bounded external
disturbances. The proposed controller uses on-line
parameter adaptation to compensate for the e!ect of
nonlinear disturbances that can be modeled. The uncom-
pensated disturbances and the estimation errors of the
unmeasurable states are e!ectively handled via certain
robust feedback to achieve a robust performance. The
resulting controller achieves a guaranteed transient per-
formance and a prescribed "nal tracking accuracy in the
presence of both parametric uncertainties and bounded
disturbances. In the presence of parametric uncertainties
only, asymptotic output tracking is achieved without
using an in"nite fast switching control law or an in"nite-
gain feedback. Comparative experimental results are
obtained for the motion control of an epoxy core linear
motor. Experimental results illustrate the high perfor-
mance of the proposed ARC strategy.

Appendix

Proof of Theorem 1. From (49), (33), (35) and (46), it
follows that:

<Q
�
)

�
�
	�

w
	�!(g

	
#��

�
	��
��K

C�	 ��
�
#��C

(	
��

	
���)z�

	

#	
	�

#	
	�

�M
�

��!w
�

�
�

��K
�KQ z

�
, (A.1)

in which the fact that �
�
/��K "0 is used in the above

concise description of <Q
�
via summation. By completion

of square,

!

�
�

��K
�KQ z

�
)�z

�
��
�

�
��K

C��C���� �KQ �
)��

�
�

��K
C�� ��

�
z�
�
#

1

4
��C���� �KQ ���. (A.2)

Noting that C���� and � are diagonal matrices, from (19)
and (A.2), one obtains

��C���� �KQ ���"��C���� Proj�K (�
)���)��C���� �
���

)�
�
�

�

��C���� �w


�


z


���

�

)2�
�
�

�

��C���� ��


���w�



z�

�. (A.3)

Thus, if C�� and C
(


satisfy the conditions in the the-
orem, from (A.2) and (A.3), it follows that:

!w
�

�
�

��K
�KQ z

�
)w

� ��
�

�
��K

C�� ��
�
z�
�

#
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��C���� ��
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��K
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��C
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��
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. (A.4)

From (A.4) and (A.1), it can be veri"ed that

<Q
�
)

�
�
	�

w
	
g
	
z�
	
#

�
�
	�

w
	
(�

	�
#�

	�
�M �
�
)

)!�
�
<

�
#��

��
#��

��
�M �
�
, (A.5)

which leads to (51). Following the standard adaptive
control arguments as in Krstic et al. (1995), it can be
proved that all internal signals are bounded. A of The-
orem 1 is thus proved.
The following is to prove B of the theorem. In the

presence of parametric uncertainties only (i.e., dI "0),
from (15) and (24), �M

�
"	

�
. With the robust control

functions given by (38) and (47), it is easy to check that
�z
�
(�

�

���

#�M
�
)�)�

��
	�
�

and �z
�
(uH

��
#�M

�
)�)�

��
	�
�
.

Thus, noting (50) and condition ii of (33), (35) and (46),
from (49) and (A.4), one has

<Q
�
)

�
�
	�

(!w
	
�I ��

	
z
	
!w
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#w
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	�

	�
�
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�
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#��

��
	�
�
. (A.6)
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De"ne a new p.d. function <� as

<�"<�
#�

�
�I �����I #�	�P	, (A.7)

where �*��
��
. Noting P2 of (21) and the fact that

	� "A
�
	, from (A.7) and (11), the derivative of <� satis"es

<Q �)!

�
�
	�

w
	
g
	
z�
	
!�I �
#��

��
	�
�
#�I �����KQ !���	���

)!

�
�
	�

w
	
g
	
z�
	
. (A.8)

Therefore, z3¸�
�
. It is also easy to check that z� is

bounded. So, zP0 as tPR by the Barbalat's lemma,
which leads to B of Theorem 1. �
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