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Abstract—The ever increasingly stringent performance re-
quirements of modern mechanical systems have forced control
engineers to look beyond traditional linear control theory for
more advanced nonlinear controllers. During the past decade,
a mathematically rigorous nonlinear adaptive robust control
(ARC) theory has been developed and has been experimentally
demonstrated achieving significant performance improvement in
a number of motion control applications. This plenary paper
first uses a simple motion control problem as an example to
bring out the conceptual connection and nonlinear extension of
the widely used PID controller structure to the developed ARC
approach. Through this example, some of the key underlying
working mechanisms of the ARC theory can be grasped easily.
The paper then highlights how major issues in the precision
motion control can be handled systematically and effectively with
the ARC framework. The issues considered include (i) large
variations of physical parameters of a system; (ii) unknown
nonlinearities such as cogging and ripple forces of linear mo-
tors; (iii) dynamic uncertain nonlinearities with non-uniformly
detectable unmeasured internal states (e.g., friction described
by dynamic models in high precision motion controls); and
(iv) control input saturation due to limited capacity of physical
actuators. The precision motion control of a linear motor driven
high-speed/high-acceleration industrial gantry is used as a case
study and comparative experimental results are presented to
illustrate the achievable performance and limitations of various
ARC controllers in implementation.

I. INTRODUCTION

Modern mechanical systems such as microelectronics man-

ufacturing equipment, robot manipulators, and automatic in-

spection machines are often required to operate at high speeds

in order to yield high productivity. At the same time, as the

society moves into the era of micro and nano-technology,

these systems are also required to have motion accuracy

in the micro or nano-meter range. These industrial trends

put an urgent demand on performance oriented advanced

controls that can effectively handle (i) nonlinearities due to the
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strong nonlinear coupling effect of multiple-degree-of-freedom

(MDOF) mechanical systems during high-speed operations,

and (ii) the unavoidable uncertainties associated with modeling

of any physical system. The modeling uncertainties may come

from either (i) parameters of the system model which may

depend on operating conditions and may not be precisely

known in advance (e.g., inertia of an object grasped by a

robot), or (ii) nonlinearities which cannot be modeled exactly

(e.g., nonlinear friction characteristics) or terms which change

with time randomly (e.g., external disturbances); the former

is referred to as parametric uncertainties and the latter as

uncertain nonlinearities in this paper. To meet these ever in-

creasingly stringent control performance requirements, control

engineers have been forced to look beyond traditional linear

control theory for more advanced nonlinear controllers which

can deal with various nonlinearities and model uncertainties

directly. There has been an exponential growth in nonlinear

control research during the past two decades, with major

advances and breakthroughs reported in both the nonlinear

robust control (NRC) area [1]–[9] as well as the adaptive

or robust adaptive control (RAC) area [10]–[17], along with

systematic nonlinear control design methodologies such as the

backstepping technique [17], [18].

During the past decade, a mathematically rigorous nonlinear

adaptive robust control (ARC) theory has also been developed

to lay a solid foundation for the design of a new generation of

controllers which will help industry build modern machines

of great performance and high intelligence [19]–[29] . The

developed ARC theory bridges the gap between two of the

main control research areas - robust adaptive controls (RAC)

and nonlinear robust controls (NRC). Traditionally, those two

research areas have been presented as competing control

design approaches, with each having its own benefits and

limitations. By integrating the fundamentally different working

mechanisms of the two approaches, the developed ARC theory

is able to preserve the theoretical performance results of

both design approaches while overcoming their well-known

practical performance limitations. The developed ARC theory
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has also been applied to the design of various intelligent and

precision industrial mechatronic systems, including electro-

hydraulic actuator driven large-scale mechanical systems [30]–

[32], energy-saving control via novel programmable valves

[33]–[35], machine tools [36], robot manipulators [37], [38],

electrical motor driven mechanical systems with control accu-

racy down to sub-micrometer levels (e.g.,linear motor driven

positioning stages [20], [39]–[41] and ultra-high density hard

disk drives [42], [43]), and piezo-electrical actuator driven

nano-positioning systems for nanotechnology applications

[44], [45]. The results from this comprehensive set of applied

research projects have shown ARC to be a powerful approach

to the control of a wide variety of mechatronic systems. Other

researchers have demonstrated the effectiveness of adaptive

robust control in various applications as well (e.g., the control

of pneumatic muscles driven parallel manipulators [46]–[48],

hard disk drives [49], [50], active suspension systems [51],

[52], and vehicles [53]).

The theoretical breakthrough and the significant perfor-

mance improvement of the proposed adaptive robust control

(ARC) in various implementations make the approach an

ideal choice for industrial applications demanding stringent

performance. In addition, the indirect adaptive robust controls

(IARC) [54] and the integrated direct/indirect adaptive robust

controls (DIARC) [23] also enable accurate on-line parameter

estimations in actual implementation [55]. This by-product of

the approach – accurate parameter and nonlinearity estimations

– makes possible to add intelligent features such as the

automated on-board modeling [34] and the fault detection

and prognosis [56]. It is thus beneficial for motion control

engineers to get familiar with this advanced nonlinear control

design methodology and to learn how the method can be used

to build intelligent and yet precision motion systems. For this

purpose, instead of seeking mathematical rigor, this paper will

focus on physical interpretation of the underlying working

mechanisms of the ARC theory and use simple examples to

bring out the unique features of different types of ARC con-

trollers. In particular, the precision motion control of a linear

motor driven high-speed/high-acceleration industrial gantry

will be used as a case study and comparative experimental

results are presented to illustrate the achievable performance

and limitations of various ARC controllers in implementation.

II. TYPICAL ISSUES IN PRECISION MOTION CONTROL

To study fundamental problems associated with high-

speed/high-acceleration motion control of iron-core linear mo-

tor drive systems, a two-axis X-Y Anorad HERC-510-510-

AA1-B-CC2 gantry by Rockwell Automation has been set up

at Zhejiang University as a test-bed. As shown in Fig. 1, the

two axes of the X-Y stage are mounted orthogonally with

X-axis on top of Y-axis. The resolution of the encoders is

0.5 μm after quadrature. The velocity signal is obtained by

the difference of two consecutive position measurements. This

section uses the control of this system as an example to bring

out some of the major issues to be addressed in precision

Fig. 1. A linear motor driven biaxial industrial gantry system
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Fig. 2. Identified frequency response of X-axis

motion control. To avoid duplication, in the following, only

experimental results for X-axis are presented.

The specifications given by the manufacturer indicate that

the electrical dynamics of the current amplifiers for the linear

motors have bandwidths in KHz range. To verify this and to

determine an appropriate dynamic model that should be used

for control design, a an input signal which is sum of 1000

sinusoidal signals ranging from 1 Hz to 5 KHz with a sampling

frequency of 10 KHz is applied to the system. The obtained

experimental data set is then processed using the standard sys-

tem identification toolbox in MATLAB to obtain the estimated

frequency response of the X-axis from the input voltage to the

output velocity. As seen from the identified frequency response

in Fig. 2, the system has a mechanical resonance mode a

slightly above 100Hz. Therefore, within the frequency range

of 100Hz, only the rigid body dynamics of the stage need to

be considered and, if the targeted closed-loop bandwidth is

substantially below 100 Hz, all mechanical resonance modes

and the electrical dynamics could be neglected. In this case,

a suitable dynamic model of the X-axis linear motor stage

would be

Mẍ = u−Bẋ− Fl, Fl = Ff + Fr + Fd, (1)

where x represents the position of the inertia load along the
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X-axis stage, M is the normalized1 mass of the inertia load

plus the coil assembly, u is the input voltage to the motor, B
is the equivalent viscous friction coefficient of the stage, Fl is

the normalized lumped effect of all other forces acting on the

stage including the Coulomb friction force Ff , the cogging

force Fr, and any external disturbance Fd (e.g. cutting force

in machining). In the above model, the magnetic saturation

effect is ignored for simplicity, as the working range of the

positioning stage is normally restricted to the linear region of

the generated torque to the current command to the amplifier.

Should the magnetic saturation effect become an issue, the

nonlinear models of magnetic saturation presented in [57], [58]

may be used to come out a better description of the input

behavior and similar analysis as presented in the paper can be

carried out.

Let yr(t) be the reference motion trajectory, which is

assumed to be known, with bounded derivatives up to the

third order. The objective is to synthesize a control input u
such that the output y = x follows yr(t) with a prescribed

transient performance and a guaranteed steady-state tracking

accuracy. It is easy to see that major hurdles in achieving

such a control objective include (i) large variation of system

parameters (e.g., the mass of the inertia load); (ii) uncertain

nonlinear cogging force Fr; (iii) uncertain nonlinear Coulomb

friction Ff , which may not be adequately modeled as a static

nonlinear function of the velocity ẋ only [59], [60]; (iv) input

saturation as u is typically limited within certain range, i.e.,

|u| ≤ uM for some known constant uM ; and (v) the neglected

high frequency dynamics such as the mechanical resonance

modes seen in Fig. 2. In following sections, various strategies

will be presented to handle these hurdles using the ARC

theory.

III. A SIMPLISTIC DIRECT ADAPTIVE ROBUST

CONTROLLER

This section considers a simplified motion control problem

in which the system parameters M and B in (1) are assumed

to be known perfectly and the stage does not interact with

external environment (i.e., Fd = 0). For this scenario, a

simplistic direct adaptive robust controller (DARC) will be

developed and compared with the widely used PID controller

structure, from which some of the key underlying working

mechanisms of the developed ARC theory can be grasped

relatively easily.

Though the cogging force Fr and the Coulomb friction Ff

are nonlinear and may not be known exactly in reality, they

are always bounded and their bounds are normally known. For

example, the cogging force and the Coulomb friction of the

X-axis of the gantry studied in this paper are within 10 N (or

0.145 Volt in terms of input voltage) and 14N (or 0.2 Volt in

terms of input voltage) respectively. Thus, though the lumped

force Fl in (1) may not be known, it is bounded with known

bounds, i.e.,

|Fl| < FM (2)

1Normalized with respect to the unit voltage of the control input.
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Fig. 3. A simplistic direct adaptive robust controller

where FM is a known constant (e.g., for the X-axis, one can

set FM = 0.345 Volt). With this information, a DARC shown

in Fig. 3 can be constructed. Specifically, let yd(t) be a desired

motion trajectory to be tracked by the stage. For the stage to

be able to track yd(t) perfectly, it is necessary that the initial

conditions are matched, i.e.,

yd(0) = x(0), ẏd(0) = ẋ(0) (3)

and the ideal control input for perfect tracking, determined by

the stage dynamics (1), is within the actuator limit, i.e.,

∀t, |ud(t)| ≤ uM , ud = Mẏd(t) +Bẏd(t) + Fl (4)

In general, the reference command yr(t) provided by the user

may not satisfy either the initial value matching conditions

(3) (e.g., the usual step input type reference command) or the

actuator limitation (4) and other limits (e.g., the acceleration

and the velocity of the reference command exceed the physical

limits of the stage). Through proper trajectory generation

algorithm with the initial value of yd(t) chosen according

to (3), one can always generate a feasible desired trajectory

yd(t) that converges to the reference command yr(t) with a

prescribed transient response since there are no uncertainties

involved in this trajectory planing process [28], [29].

In reality, due to model uncertainties, even with a feasible

trajectory yd(t), the ideal control action for perfect tracking

of yd(t) in (4) cannot be generated. Thus, the best one can do

is to use the estimated values of unknown terms to obtain

a control action which is close to the ideal action. This

is done by the model compensation ua shown in Fig. 3,

in which F̂l represents the estimated value of the actual

lumped model uncertainty Fl. However, with this approximate

model compensation ua, perfect tracking may not be achieved

anymore and certain feedback action is needed to keep the

output tracking error e = y − yd within the allowed tolerance

band. Noting that the actual system dynamics (1) is of second

order and has matched uncertainties only (i.e., the uncertainty

Fl and the input u are present in the same channel in the

system dynamics), one can simplify the feedback control
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design significantly by regulating the quantity p shown in

Fig. 3 instead of the output tracking error e = y − yd.

p essentially represents a proportional plus derivative (PD)

feedback of output tracking error and is given by

p = ė+ k1e = ẏ − ẏeq, ẏeq=ẏd − k1e, (5)

where k1 is a positive feedback gain. It is easy to see that if p
is kept small or is regulated to converge to zero exponentially,

then the output tracking error e will be small or converge

to zero exponentially since the transfer function from p to e,

Gp(s) =
e(s)
p(s) = 1

s+k1
, is stable. In this sense, controlling the

output tracking error e is the same as regulating p. The control

input and the model uncertainty are related to p through a first-

order dynamics given by

Mṗ = Mÿ −Mÿeq = u−Bẏ − Fl −Mÿeq (6)

where ÿeq=ÿd − k1ė. Thus, the ARC control law shown in

Fig. 3 can be obtained

u = ua + us, ua = Mÿd +Bẏd + F̂l

us = us1 + us2, us1 = −k2np− (Mk1 −B)ė

us2 = −ks(p)p

(7)

where k2n is any positive constant and ks(p) is a nonlinear

gain. With this control law, the following error dynamics are

obtained

Mṗ+ k2np = us2 + F̃l (8)

where F̃l = F̂l − Fl represents the estimation error of

the lumped model uncertainties. It is thus clear that, in the

absence of model uncertainties, i.e., F̃l = 0, the closed-loop

system is stable without us2. In this sense, us1 represents

a nominal stabilizing feedback. The purpose of introducing

additional feedback action us2 is to achieve a guaranteed

robust performance when model uncertainties exist. Such an

objective can be accomplished if us2 satisfies the following

conditions
i pus2 ≤ 0

ii p{us2 + F̃l} ≤ ε
(9)

where ε is a design parameter. Essentially, i of (9) ensures

that us2 is dissipating in nature and ii of (9) shows that us2 is

synthesized to dominate the model uncertainties F̃l for robust

stability and certain guaranteed robust performance quantified

by ε.

Theoretically, as long as the estimation error of the lumped

model uncertainties F̃l is bounded by a known function of

states, as shown in [27]–[29], there always exists a continuous

or sufficiently smooth us2 such that (9) is satisfied for any

ε, which could be arbitrarily small. If a fixed estimate of

F̂l = F̂l0 is used as in the traditional nonlinear robust controls,

noting (2), |F̃l| < |F̂l0| + FM . Thus F̃l would be uniformly

bounded and a robust feedback us2 satisfying (9) can be found.

However, with such a fixed estimate, the estimation error F̃l

always exists, which leads to non-zero steady-state output

tracking error even when the lumped model uncertainties Fl

are constant. To overcome this performance limitation, on-line
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Fig. 4. Nonlinear robust feedback design

estimation of Fl should be used. For unknown but constant Fl,

when the standard gradient type parameter adaptation law is

used, the resulting on-line estimation F̂l(t) would be updated

by

˙̂
Fl(t) = −γp or F̂l(t) = F̂l(0)− γ

∫ t

0
p(τ)dτ (10)

where γ is any positive adaptation rate. However, such a

parameter adaptation law does not guarantee that the on-line

estimate F̂l(t) will be bounded by a known function. Without

a bounded F̂l(t), the existence of the robust feedback us2

satisfying (9) is in question, which is the reason why the

traditional adaptive controls do not have a guaranteed transient

response. Thus, one of the key elements of the ARC design

[19], [24] is to use the practically available prior process

information to construct projection type adaptation law for a

controlled learning process in general. The resulting parameter

adaptation is shown in Fig. 3, in which Proj (·) represents the

standard projection mapping used in robust adaptive controls

[10], [17] and can be implemented as [27]

˙̂
Fl(t) =

⎧⎪⎨
⎪⎩

0, if F̂l ≥ FM and p ≤ 0

0, F̂l ≤ −FM and p ≥ 0

−γp, else

(11)

It is clear that such a projection type adaptation law with

|F̂l(0)| < FM always guarantees that |F̂l(t)| ≤ FM , ∀t.
Thus, noting (2), |F̃l(t)| < 2FM , ∀t. With this known bound

on |F̃l(t)|, it can be verified that any nonlinear proportional

feedback of p shown in Fig. 4 will satisfy (11) as long as the

non-negative nonlinear gain ks(p) ≥ 0 is chosen such that

ks(p) ≥ F 2
M

ε , when |p| ≤ 2ε
FM

ks(p)|p| ≥ 2FM , when |p| > 2ε
FM

(12)

Such a nonlinear robust feedback, with gains chosen to satisfy

(12) with equal sign is shown by the red straight-line segments

in Fig. 4 and any function above this red straight-line segments

in the first quadrant (e.g., the curve in blue color) satisfies

(12). With this DARC controller, the following theoretical

performance can be obtained [29]:

Theorem 1: With the DARC law (7) and estimation of the

lumped uncertainties given by (11), the following results hold:

818



A. In general, all signals of the closed-loop (CL) system are

bounded and the output tracking is guaranteed to have a

prescribed transient and steady-state performance in the

sense that the output tracking error is bounded above

in magnitude by a known function which exponentially

converges to the ball of {e(∞) : |e(∞)| < 1
k1

√
ε

k2n
},

with a converging rate no less than min{k1, k2n/M}. In

particular,

p2(t) ≤ exp

(
−2k2n

M
t

)[
p2(0)− ε

k2n

]
+

ε

k2n
(13)

B. When the lumped model uncertainty Fl becomes constant

after a finite time, in addition to the results stated in A,

the on-line estimate F̂l(t) asymptotically converges to Fl

and the output tracking error asymptotically converges to

zero or zero steady-state error is obtained. �
Some of the underlying working mechanisms of the de-

veloped ARC theory can now be illustrated through various

connections of the above DARC controller to the widely used

PID controller structures as follows:

A. Connection to PD Controllers and Role of Fast Robust
Feedback

Let us first consider the situation when the adaptation loop

in Fig. 4 is turned off, i.e., let γ = 0 or F̂l = F̂l0 where F̂l0

is a constant. In such a case, the proposed DARC becomes a

nonlinear robust control (NRC) law as detailed in [27], [28]

and the general theoretical robust performance results stated in

A of Theorem 1 still hold true. To understand the fundamental

working mechanism of such a design, let us carefully examine

the resulting CL error dynamics (8), which is rewritten here

as

Mṗ+ (k2n + ks(p)) p = F̃l0, F̃l0 = F̂l0 − Fl (14)

With |F̂l0| < FM , using (2), we can write that |F̃l0(t)| <
2FM , ∀t. It is thus easy to show that p in (14) reaches to the

region of {p : |p| ≤ 2ε
FM

} in a finite time and remains inside

the region thereafter. So let us focus on the behavior of the

closed-loop system inside the region {p : |p| ≤ 2ε
FM

}, which

is described by 2

ṗ+ λpp =
1

M
F̃l0, λp =

1

M

[
k2n +

F 2
M

ε

]
(15)

This is a stable first order dynamics from the compensation

error of the lumped model uncertainty F̃l0 to p. Noting (5), the

overall closed-loop transfer function (CLTF) from the lumped

model uncertainty Fl to the output tracking error e is

GCL(s) =
e(s)

−Fl(s)
=

1/M

(s+ k1)(s+ λp)
(16)

which has a static gain of GCL(0) =
1

Mk1λp
= 1

k1[k2n+F 2
M

/ε]

and two stable first-order poles at −k1 and −λp respectively.

By decreasing the design parameter ε, the static gain GCL(0)

2For simplicity, assume that the nonlinear robust feedback us2 is chosen
according to (12) with equal signs (i.e., the red-line shown in Fig. 4)
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Fig. 5. A PD feedback with model based feedforward compensation

is decreased and the Bode magnitude plot of GCL(s) is

lowered across all frequencies. This indicates that stronger

attenuation of the lumped model uncertainty Fl is achieved at

all frequencies. Furthermore, by using larger feedback gains

k1 and k2n, the two CL poles can be made arbitrarily fast as

well. As a result, theoretically, arbitrarily good attenuation of

model uncertainties with arbitrarily fast response is obtained

with such a nonlinear robust controller if there are no other

neglected dynamics. These results are not so surprising if one

realizes that, during the working region of {p : |p| ≤ 2ε
FM

},

the above nonlinear robust feedback control law is essentially

of similar structure as the classical PD feedback controller,

which can arbitrarily place the resulting two CL poles when

the plant dynamics is of second-order like the one described

by (1). Specifically, within the working region, noting (5), the

robust feedback control law us can be re-written as

us = −
[
k2n +

F 2
M

ε

]
p− (Mk1 −B)ė

= − (Mλp +Mk1 −B) ė−Mλpk1e
(17)

which is essentially a PD feedback controller of the output

tracking error e with a controller transfer function of

C(s) = −us(s)
e(s) = (Mλp +Mk1 −B) s+Mλpk1 (18)

The second-order system described by (1) has a plant transfer

function of P (s) = y(s)
u(s) =

1
Ms2+Bs . For this system, as shown

in Fig. 6, it is easy to verify that the PD controller (18) places

the two CL poles at −k1 and −λp respectively. With a CL

system as illustrated in Fig. 5 which can be made as fast as

one wants, it is no wonder that arbitrarily good disturbance

rejection performance can be obtained.

With the above analysis, it is also easy to see that the

fundamental working mechanism of traditional robust controls

relies in their use of fast robust feedback. It uses proper

feedback structure such that all CL poles can be made well-

behaved and can be pushed fast enough to obtain a sufficiently

high bandwidth closed-loop system with respect to the model

compensation error caused by various uncertainties. For ex-

ample, with a PD feedback in (18), both CL poles in (18) are

real, and thus no lightly damped CL poles exist. Furthermore,

they can be placed arbitrarily left in the complex plane. By

doing so, the effect of model uncertainties could be sufficiently

attenuated to meet certain performance requirements. In this

process, no attempt is made to reduce the model compensation

error due to uncertainties (e.g., F̃l0 in (14)).
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Fig. 6. A PID feedback with model based feedforward compensation

B. Connection to PID Controllers and Role of Slow Learning

Let us now consider the situation when the nonlinear robust

feedback us2 in Fig. 4 is turned off, i.e.,

u = ua + us, ua = Mÿd +Bẏd + F̂l

us = us1 = −k2np− (Mk1 −B)ė
(19)

with F̂l updated by (11). In such a case, the proposed DARC

becomes a robust adaptive control (RAC) law as detailed in

[27], [28]. The general theoretical robust performance results

stated in A of Theorem 1 is not valid any more but the steady-

state performance result in B of Theorem 1 still holds true.

To understand the fundamental working mechanism of such a

design, let us first consider the situation when no projection

is used in the adaptation law (11), i.e., the standard parameter

adaptation law (10) used in the adaptive controls. The resulting

control law now becomes a standard adaptive control (AC)
law and, noting (5) and (10), can be re-written in terms of

feedback of the output tracking error e as

u = uf + ue, uf = Mÿd +Bẏd + F̂l(0),

ue = −k2np− (Mk1 −B)ė− γ
∫ t

0
p(τ)dτ

= − (k2n +Mk1 −B) ė− (k2nk1 + γ) e− γk1
∫ t

0
edτ

(20)

This is essentially a PID feedback with a controller transfer

function of

ue(s)
−e(s) = (k2n +Mk1 −B) s+ (k2nk1 + γ) + γk1

1
s (21)

The resulting CL system is shown in Fig. 6 and has a CLTF

from −Fl to e given by

GCL(s) =
e(s)

−Fl(s)
= s

(s+k1)(Ms2+k2ns+γ) (22)

which is stable and has three CL poles at

pCL1 = −k1, pCL2,3 = −k2n

2M ±
√(

k2n

2M

)2 − γ
M

(23)

Noting that the CLTF in (22) contains a differentiator due to

the integration feedback in the controller, it is no surprise that

such a standard adaptive control law can achieve zero steady-

state error when the lumped model uncertainty Fl is constant,

which agrees with the result in B of Theorem 1.

Some of the major concerns of practicing engineers about

the traditional adaptive controls are that the transient re-

sponse of an adaptive system is in general not known and

it is normally very hard to tune adaptation rate to obtain

a reasonably fast transient response. Such problems can be

seen quite easily from the above simple analysis as well.

Specifically, traditional adaptive controls typically focus on

the use of parameter adaptation (or on-line learning) only to

deal with model uncertainties, not so much on the proper

selection of underlying controller structure and the use of

fast robust feedback. For example, the self-tuning regulator

(STR) [11] and the model reference adaptive control (MRAC)

[13] simply use the standard pole-placement design method

as the underlying control law structure with the desired

nominal CL poles chosen based on the reference model for

command following. If the same design philosophy is used

in the design and tuning of the robust adaptive control law

(19), noting that the two nominal CL poles3 are at −k1 and

−k2n/M , the feedback gain k2n and k1 would be chosen as

k2n = Mωd and k1 = ωd respectively. Here, ωd represents

the desired bandwidth for command following and is normally

set at a reasonable value to avoid actuator saturation. With

this selection of feedback gains for the underlying control

law, the subsequent tuning of adaptation rate γ for good

transient response and fast convergence of tracking errors to

zero becomes rather difficult. As seen from (23), with a pre-

determined value of k2n = Mωd, when a adaptation rate

of γ > M
4 ω2

d, two of the CL poles would become under-

damped. Thus, when a large adaptation rate is chosen, lightly

damped CL poles will appear and the system will exhibit large

amount of oscillations during the transient period. To avoid

this poor transient response problem, typically, a rather small

adaptation rate is typically used in the traditional adaptive

controls [11], [13], which significantly limits the usefulness

of on-line adaptation.

Through the above analysis, it is seen that the fundamental

working mechanism of traditional adaptive controls lies in

their ability to make full use of the structural information of

model uncertainties (e.g., the lumped model uncertainty Fl

is assumed to be constant in the development of adaptation

law (11)) so that certain slow learning or adaptation can be

constructed to obtain better estimates of various unknown but

constant or slowly changing variables. By doing so, the effect

of model uncertainties could be reduced or eliminated and a

better steady-state tracking performance can be obtained.

C. Integration of Fast Robust Feedback and On-line Learning

The preceding analysis shows that traditional nonlinear

robust control (NRC) and robust adaptive control (RAC) use

feedback in essentially two distinct ways when dealing with

model uncertainties. Using either one of them alone has certain

obvious practical performance limitations. Specifically, almost

all physical systems have neglected high-frequency dynamics

(e.g., the neglected mechanical resonance mode around 100

Hz shown in Fig.2). Thus, there always exist certain practical

limits on how high the CL bandwidth can be pushed with

respect to the model compensation error. Consequently, as

one would expect when only a PD controller is used in

practice, with NRC, some steady-state tracking errors are

3poles of the closed-loop system when the robust adaptive control law (19)
is used assuming a perfect estimation of all unknown quantities, i.e., assuming
F̂l = Fl
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Fig. 7. A nonlinear feedback for improved transient performance and better
trade-off in meeting conflicting requirements

always present. On the other hand, as one can only learn things

which do not change much during the learning period, and

since it takes time to learn, totally relying on the use of on-

line learning and adaptation to gain performance, like what is

done in RAC, will never lead to a system that can respond fast

and deliver consistent control performance when reality differs

from what is assumed in the construction of learning law (e.g.,

the lumped model uncertainty Fl is not constant). Because of

these distinct benefits and practical limitations of NRC and

RAC, they have been traditionally presented as competing

control design approaches [9], [17]. Instead, a better way to

control systems with uncertainties is to effectively integrate

these two distinct but complementary philosophy of using

feedback information, which is exactly what the developed

adaptive robust control (ARC) theory has accomplished. In

this sense, the developed ARC controllers can be thought as a

well-designed PID controller, focusing on the use of both PD
and I feedback as well as their interactions for effective
integration. For example, the DARC controller shown in

Fig.3 has features of both NRC and RAC while possible

negative interaction of using both feedback mechanisms on

the CL stability is avoided through the use of projection type

parameter adaptation law (11) and the explicit use of the

known bound on the resulting model compensation error in

the synthesis of nonlinear robust feedback (12) as shown in

Fig.4.

D. Benefits of Nonlinear Feedback Designs

Departing from traditional linear control theory, the ARC

theory also emphasizes effective use of nonlinear feedback

to make better trad-offs while meeting various conflicting

performance requirements. As pointed out in [36], the use of

nonlinear projection mapping in the integral type adaptation

law (11) essentially functions as a built-in anti-integration

windup mechanism. Another example, shown in Fig.7, is

explained below.

Rewriting the tracking error dynamics (8) as

Mṗ+ (k2n + ks(p)) p = F̃l (24)

it can be considered as a nonlinear filter with the tracking error

index p being the output and the model compensation error F̃l

as the input. During the region of |p| ≤ l2 shown in Fig.7, the

nonlinear robust feedback ks is large, which leads to a fast

first-order dynamics (24). As such, p would converge very

quickly to its steady-state response and can be approximated

reasonably well by 1
k2n+ks

F̃l. Thus, in general, larger the ks
is, smaller the the steady-state tracking error would be. On

the other hand, a too large ks will lead to severe control input

chattering in implementation due to unavoidable measurement

noises. Thus, a trade-off will have to be made in determining

an appropriate ks to meet the dual objectives of having a

smaller steady-state tracking error while keeping the degree of

the control input chattering within certain limits. This is done

by using a moderate feedback gain of k1 for ks when p is near

zero, since this region represents most of the experimental

execution period where the model compensation error F̃l is

reduced to within the level of |F̃l| ≤ (k2n+k1)l1 ≈ k1l1 after

the initial adaptation period. On other other hand, during the

initial period when the adaptation has not come into effect and

the model compensation error may be larger than k1l1, p will

be in the region l1 < |p| ≤ l2. With ks larger than k1 used

in this region, a stronger attenuation of F̃l is achieved, which

will lead to a transient error less than what it would have

been if the same moderate gain k1 is used. One may argue

that this may lead to severe control input chattering problem

as well. However, it should be noted that, unlike the traditional

nonlinear robust control where F̃l always stays large due to the

use of fixed model compensation, the proposed ARC actively

uses adaptation to reduce F̃l. As a result, F̃l will be large

only during the initial period of adaptation. Thus, the elevated

control input chattering problem caused by the use of larger

feedback gain during the transient should not be a serious

issue.

Finally, consider the rare situation when p is very large (e.g.,

emergency situations caused by extremely large disturbances),

a high gain feedback will easily lead to severe controller

windup or integrator windup problem and cause instability

even when large disturbances are removed. As such, the

main objective in these emergency cases would be to avoid

controller windup so that the system can regain stability

quickly once the large disturbances disappear. The saturation

type robust feedback, shown in Fig.7, still guarantees global

stability once the system is free of large disturbances, and thus

avoids the common controller windup problem.

IV. DIRECT ARC OF LINEAR MOTORS WITH LARGE

PARAMETER VARIATIONS AND UNKNOWN

NONLINEARITIES

In the previous section, the inertia and damping of linear

motors are assumed to be known exactly. In addition, other

than the fact that the lumped model uncertainty Fl is assumed

to be constant so that its low frequency component can be

compensated for using integral type on-line adaptation, no

other structural information about Fl is utilized. In reality,

parameters like the inertia M may experience large vari-

ations due to different working conditions. One may also
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Fig. 8. Discontinuous static friction model and its smooth approximation for
realizable friction compensation

know additional structural information about various model

uncertainties and it would make sense for us to make full use

of those information to synthesize better learning laws. This

section shows how the developed ARC theory can be used to

systematically handle these issues.

To simplify the problem somewhat, yet without losing gen-

erality, this section only shows how the usual static nonlinear

Coulomb friction model can be used to obtain a better estimate

of the lumped model uncertainty Fl. The technique of how to

make full use of the fact that cogging force of iron core linear

motors is mostly periodic function of the position x with a

known period of pitch between magnets is studied in [61].

To approximate the unknown cogging force, sufficiently large

number of sinusoidal functions of the position x are used as

basis functions with weights adapted on-line. The additional

aperiodic part of the cogging forces with respect to position

is also accounted for by using B-spline functions in [41].

For most applications, it might be sufficient to consider

Coulomb friction as a static function of velocity ẋ only, which

is shown in Fig.8 by the red line. Note that the static friction

model is discontinuous (in fact, not defined) at zero velocity.

If such a model is used for friction compensation, it would be

very sensitive to measurement noise and quantization errors

at zero velocity and may excite the neglected high frequency

dynamics. In addition, due to the electrical dynamics, the

sudden jump of friction compensation required by the model

when velocity changes direction can never be realized as well.

Thus, in practice, it is better to use a continuous or sufficiently

smooth shape function with a slope around zero velocity

being large enough to capture the essential characteristics of

the static friction model while not being overly large that

produce a friction compensation command which can never be

delivered by the actuator. Such a model for realizable friction

compensation is shown in Fig.8 by the blue line and described

by F̄f = AfSf (ẋ), in which the amplitude Af could be

unknown and Sf (ẋ) is a known continuous or smooth function

having the same characteristics as the static friction model

when the velocity is out of the very low velocity region. With

this friction modeling, the linear motor dynamics (1) can be

re-written as:

Mẍ = u−Bẋ−AfSf (ẋ) + d, (25)

where d = − (
Ff − F̄f

)−Fr−Fd. Let the unknown parameter

set be θ = [θ1, θ2, θ3, θ4] where θ1 = M , θ2 = B, θ3 = Af

and θ4 = dn, which represents the effect of unknown mass,

viscous damping coefficient, Coulomb friction magnitude, and

the nominal value of the lumped uncertain nonlinearities d
respectively. With the two state variables x1 and x2 being the

position and velocity respectively, the state space representa-

tion of (25) can be linearly parameterized in terms of θ as

ẋ1 = x2, (26)

θ1ẋ2 = u− θ2x2 − θ3Sf + θ4 + d̃, (27)

where d̃ = d − dn. The following practical assumptions are

made:

Assumption 1: The unknown parameter vector θ is within

a known bounded convex set Ωθ. Without loss of generality, it

is assumed that ∀θ ∈ Ωθ, θimin ≤ θi ≤ θimax, i = 1, . . . , 4,

where θimin and θimax are some known constants.

Assumption 2: The uncertain nonlinearity d̃ is bounded, i.e.,

d̃ ∈ Ωd={ d̃ : |d̃| ≤ δd } (28)

where δd(t) is a known bounded function.

The following nomenclature is used throughout this paper:

•̂ is used to denote the estimate of •, •̃ is used to denote

the parameter estimation error of •, e.g., θ̃ = θ̂ − θ, •i is

the ith component of the vector •, •max and •min are the

maximum and minimum value of •(t) for all t respectively,

and the operation < for two vectors is performed in terms of

the corresponding elements of the vectors.

A. Projection Type Adaptation Law

Let θ̂ denote the estimate of θ and θ̃ the estimation error

(i.e., θ̃ = θ̂− θ). One of the key elements of the ARC design

[19], [24] is to use the practical available process information

to construct the projection type adaptation law for a controlled

learning process even in the presence of disturbances. As in

[19], [27], the widely used projection mapping Projθ̂(•) will

be used to keep the parameter estimates within the known

bounded set Ω̄θ, the closure of the set Ωθ. The standard

projection mapping is [10], [17]:

Projθ̂(ζ) =

⎧⎪⎨
⎪⎩

ζ, if θ̂ ∈ ◦
Ωθ or nT

θ̂
ζ ≤ 0(

I − Γ
nθ̂n

T

θ̂

nT

θ̂
Γnθ̂

)
ζ, θ̂ ∈ ∂Ωθ and nT

θ̂
ζ > 0

(29)

where ζ ∈ Rm, Γ(t) ∈ Rm×m, m is the dimension of

parameter vector θ,
◦
Ωθ and ∂Ωθ denote the interior and the

boundary of Ωθ respectively, and nθ̂ represents the outward

unit normal vector at θ̂ ∈ ∂Ωθ. It is proven in [27] that the

following lemma holds:

Lemma 1: Suppose that the parameter estimate θ̂ is updated

using the following projection type adaptation law:

˙̂
θ = Projθ̂ (Γτ) , θ̂(0) ∈ Ωθ (30)
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where τ is any adaptation function and Γ(t) > 0 is any

continuously differentiable positive symmetric adaptation rate

matrix. With this adaptation law, the following desirable

properties hold:

P1. The parameter estimates are always within the known

bounded set Ω̄θ, i.e., θ̂(t) ∈ Ω̄θ, ∀t. Thus, from Assumption

1, ∀t, θimin ≤ θ̂i(t) ≤ θimax, i = 1, . . . , 4.

P2.

θ̃T
(
Γ−1Projθ̂ (Γτ)− τ

) ≤ 0, ∀τ (31)

�
Property P2 enables one to show that the use of projection

modification to the traditional integral type adaptation law in

(30) does not interfere with the perfect learning capability of

the original integral type adaptation law.

B. Desired Compensation DARC Law

With the projection type adaptation law (30), a direct adap-

tive robust control law is synthesized in [40] for the system

(25) that achieves a guaranteed transient and final tracking

accuracy. Furthermore, to reduce the effect of measurement

noises, desired compensation ARC (DCARC) [19] is used.

The resulting DCARC control law has the following form:

u = ua + us, ua = −ϕT
d θ̂, (32)

where ua is the adjustable model compensation needed for

achieving perfect tracking, ϕT
d = [−ÿd,−ẏd,−Sf (ẏd), 1] is

the regressor that depends on the reference trajectory yd(t)
only and thus is free of measurement noise effect, and us is

a robust control function having the form of

us = us1 + us2, us1 = −ks1p, (33)

where p is defined in (5), ks1 is a nonlinear gain large enough

such that the matrix A1 defined below is positive definite

A1 =

[
ks1 − k2 − θ1k1 + θ2 + θ3g − 1

2k1(θ2 + θ3g)

− 1
2k1(θ2 + θ3g)

1
2θ1k

3
1

]
(34)

in which g is defined by Sf (x2) − Sf (ẏd) = g(x2, t)ė, and

us2 is synthesized to satisfy the following robust performance

conditions

i p{us2 − ϕT
d θ̃ + d̃} ≤ ε

ii pus2 ≤ 0
(35)

in which ε is a design parameter. With this DARC control law,

it is shown in [40] that the tracking error dynamics are

θ1ṗ = us1 + (θ1k1 − θ2 − θ3g)ė︸ ︷︷ ︸+us2 − ϕT
d θ̃ + d̃︸ ︷︷ ︸(36)

and the following theoretical performance holds:

Theorem 2: With the projection type adaptation law (30)

and an adaptation function of τ = ϕdp, the DCARC law (32)

guarantees that

A. In general, all signals are bounded. Furthermore, the

positive definite function Vs defined by

Vs =
1

2
θ1p

2 +
1

2
θ1k

2
1e

2 (37)

is bounded above by

Vs ≤ exp(−λt)Vs(0) +
ε

λ
[1− exp(−λt)], (38)

where λ = min{2k2/θ1max, k1}.

B. If after a finite time t0, there exist parametric uncertain-

ties only (i.e., d̃ = 0, ∀t ≥ t0), then, in addition to results in

A, zero final tracking error is also achieved, i.e, e −→ 0 and

p −→ 0 as t −→ ∞. Furthermore, if the desired trajectory

satisfies the following persistent exciting (PE) condition

∃ T, t0, εp > 0 s.t.
∫ t+T

t
ϕd(ν)ϕd(ν)

T dν ≥ εpIp, ∀t ≥ t0
(39)

then, the parameter estimates θ̂ asymptotically converge to

their true values (i.e., θ̃ → 0 when t → ∞). �

V. INDIRECT ARC OF LINEAR MOTORS

The underlying parameter adaptation law (30) in DARC

is based on direct adaptive control designs, in which the

control law and the parameter adaptation law are synthesized

simultaneously through certain stability criteria to meet the

sole objective of reducing the output tracking error. Such a

design normally leads to a controller whose dynamic order is

as low as the number of unknown parameters to be adapted

while achieving excellent output tracking performance [24],

[29], [62]. However, the direct approach has the drawback

that parameter estimates normally do not converge or even

approach their true values fast enough as observed in actual

use [25], [30]. Such a poor convergence of parameter estimates

with DARC designs is mainly due to: (i) a gradient type
adaptation law (30) with a constant adaptation rate matrix
Γ that does not convergence as well as the least squares
type; (ii) the adaptation function τ is driven by the actual
tracking error index p, which is very small in implementation
for a well designed direct ARC law. Thus it is more prone to
be corrupted by factors that were neglected during synthesis
of the parameter adaptation law such as the sampling delay
and noise; (iii) the PE condition (39) needed for parameter
convergence cannot always be met during operation. These

practical limitations make it almost impossible for the resulting

parameter estimates to be used for secondary purposes that

require more reliable and accurate on-line parameter estimates

such as machine component health monitoring and prognosis.

If more accurate parameter estimates are needed, then the

indirect adaptive robust control (IARC) design presented in

[54] can be used. It completely separates the construction of

parameter estimation law from the design of the underlying

robust control law as reviewed below.

A. Projection Type Adaptation Law with Rate Limits

In order to achieve a complete separation of estimator design

and robust control law design, in addition to the projection-

type parameter adaptation law (30), it is also necessary to use

the preset adaptation rate limits for a controlled estimation

process [54]. For this purpose, for any ζ ∈ Rm, define a
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saturation function as:

satθ̇M (ζ) = s0ζ, s0 =

{
1, ‖ζ‖ ≤ θ̇M
θ̇M
‖ζ‖ , ‖ζ‖ > θ̇M

(40)

where θ̇M is a pre-set rate limit. It can be verified that the

following lemma holds [54]:

Lemma 2: Suppose that the parameter estimate θ̂ is updated

using the following projection type adaptation law with a pre-

set rate limit θ̇M :

˙̂
θ = satθ̇M

(
Projθ̂ (Γτ)

)
, θ̂(0) ∈ Ωθ (41)

where τ is any adaptation function and Γ(t) > 0 is any

continuously differentiable positive symmetric adaptation rate

matrix. With this adaptation law, the following desirable

properties hold:

P1. The parameter estimates are always within the known

bounded set Ω̄θ, i.e., θ̂(t) ∈ Ω̄θ, ∀t. Thus, from Assumption

1, ∀t, θimin ≤ θ̂i(t) ≤ θimax, i = 1, . . . , 4.

P2.

θ̃T
(
Γ−1Projθ̂ (Γτ)− τ

) ≤ 0, ∀τ (42)

P3. The parameter update rate is uniformly bounded by

‖ ˙̂θ(t)‖ ≤ θ̇M , ∀t �

B. Desired Compensation ARC Law

With the use of the projection type adaptation law with

rate limit (41), the parameter estimates and their derivatives

are bounded with known bounds, regardless of the estimation

function τ to be used. As such, the same design techniques as

in the direct ARC design can be used to construct a desired

compensation ARC function that achieves a guaranteed tran-

sient and final tracking accuracy, independent of the specific

identifier to be used later. The resulting control function is of

the desired compensation type having the same form as (32)

with the same form of us as in (33). The only difference is that

the regressor used in the parameter adaptation function of the

proposed IARC will be based on the actual system dynamics

for better parameter estimates, i.e., ϕ = [−ÿ,−ẏ,−Sf (ẏ), 1]
T ,

instead of the desired regressor vector ϕd as in DARC. To

address the effect of this change of adaptation law design, in

addition to choosing ks1 large enough so that A1 > 0 as in

DARC, it is also required that A2 > 0 where A2 is defined as[
θ1
θ̂1
(ks1 + θ̂2 + θ̂3g)− k2 − θ1k1 − 1

2
θ1
θ̂1
(θ̂2 + θ̂3g)k1

− 1
2
θ1
θ̂1
(θ̂2 + θ̂3g)k1

1
2θ1k

3
1

]
(43)

With this ARC control law, following the same derivations as

in [40], the following theorem can be obtained.

Theorem 3: Consider the ARC law (32) with the projection

type adaptation law with rate limits (41), in which τ could be

any adaptation function. Then, the same robust performance

results as in A of Theorem 2 can be obtained.

C. Indirect Parameter Estimation Algorithms

In the above subsection, an ARC law which can admit any

estimation function τ has been constructed and a guaranteed

transient and final tracking performance is achieved even in

the presence of uncertain nonlinearities. Thus, the reminder of

the IARC design is to construct suitable estimation functions

τ so that an improved final tracking accuracy–asymptotic

tracking or zero final tracking error in the presence of para-

metric uncertainties only–can be obtained with an emphasis on

good parameter estimation process as well. As such, in this

subsection, it is assumed the system is absence of uncertain

nonlinearities, i.e., let d̃ = 0 in (27).

Let Hf (s) be the transfer function of a stable filter with a

relative degree 1, e.g., Hf (s) = 1
τfs+1 . Then, when d̃ = 0,

applying the filter to both sides of (27), one obtains

θ1ÿf = uf − θ2ẏf − θ3Sff + θ41f (44)

where ẏf , yf , uf , Sff , and 1f represent the filtered output

speed, position, input, the shape function, and 1 respec-

tively, i.e., ẏf (t) = Hf (p)[ẏ(t)], yf (t) = Hf (p)[y(t)], uf =
Hf (p)[u(t)], Sff = Hf (p)[Sf (ẏ(t))], and 1f = Hf (p)[1], and

ÿf is obtained from the filter of the output speed as Hf (s) has

a relative degree of 1. From (44), a linear regression model

can be obtained as

uf = −ϕT
f θ (45)

where the regressor is ϕT
f = [−ÿf ,−ẏf ,−Sff , 1f ]. Thus, by

defining the prediction output and the prediction error as

ûf = −ϕT
f θ̂

ε = ûf − uf

(46)

one obtains the following prediction error model

ε = −ϕT
f θ̃ (47)

With this static linear regression model, various estimation

algorithms can be used to identify unknown parameters, of

which the gradient estimation algorithm and the least squares

estimation algorithm [12], [17] are given below.

1) Gradient Estimator: With the gradient type estimation

algorithm, the resulting adaptation law is given by (41), in

which Γ can be chosen as a constant positive diagonal matrix,

i.e., Γ = diag[γ1, ..., γ4], and τ is defined as

τ =
1

1 + ν‖ϕf‖2ϕf ε, ν ≥ 0 (48)

where by allowing ν = 0, one encompasses unnormalized

adaptation function.

2) Least Squares Estimator: When the least squares type

estimation algorithm with exponential forgetting [12] is used,

the resulting adaptation law is given by (41), in which Γ(t) is

updated by

Γ̇ = αΓ− 1

1 + νϕT
f Γϕf

Γϕfϕ
T
f Γ, Γ(0) = ΓT (0) > 0 (49)
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where ν ≥ 0 with ν = 0 leading to the unnormalized

algorithm, α is the forgetting factor, and τ is defined as

τ =
1

1 + νϕT
f Γϕf

ϕf ε (50)

In practice, the above least square estimator may lead to esti-

mator windup (i.e., λmax (Γ(t)) −→ ∞) when the regressor is

not persistently exciting. To prevent this estimator windup and

to take into account the effect of the rate-limited adaptation

law (41), (49) is modified to

Γ̇ =

⎧⎪⎨
⎪⎩

αΓ− 1
1+νϕT

f
Γϕf

Γϕfϕ
T
f Γ,

if λmax (Γ(t)) ≤ ρMand‖Projθ̂ (Γτ) ‖ ≤ θ̇M
0, otherwise

(51)

where ρM is the pre-set upper bound for ‖Γ(t)‖. With these

practical modifications, Γ(t) ≤ ρMI, ∀t. The following

lemma and theorem summarize the properties of these esti-

mators and the theoretical performance which can be achieved

[54]:

Lemma 3: When the rate-limited projection type adaptation

law (41) with either the gradient estimator (48) or the least

squares estimator (50) is used, the following results hold:

θ̃ ∈ L∞[0,∞) (52)

ε ∈ L2[0,∞) ∩ L∞[0,∞) (53)

˙̂
θ ∈ L2[0,∞) ∩ L∞[0,∞) (54)

Theorem 4: In the presence of parametric uncertainties

only, i.e., d̃ = 0, by using the control law (32) and the

adaptation law (41) with either the gradient type estimation

function (48) or the least squares type estimation function

(50), in addition to the robust performance results stated in

Theorem 3, an improved steady-state tracking performance

– asymptotic tracking – is also achieved, i.e., e → 0 as

t → ∞. Furthermore, when the PE condition (39) is satisfied,

the parameter estimates converge to their true values. �
VI. INTEGRATED DIRECT/INDIRECT ARC OF LINEAR

MOTORS

As shown in the comparative experimental results later,

compared to the rather fast response of the actual tracking error

dynamics (36), the parameter adaptation in the IARC design

(41) is relatively slower. Thus significant transient tracking

error and non-zero steady-state error may exhibit due to the

parameter estimation error θ̃ . While the direct ARC (DARC)

design does not necessarily produce good parameter estimates,

it has been observed in practice that DARC normally has a

better tracking performance than IARC. A thorough analysis

reveals that the relatively poorer IARC tracking performance

is caused by the loss of dynamic compensation type fast

adaptation that is inherent in DARC designs. To overcome

this IARC problem, an integrated direct/indirect ARC (DI-

ARC) design framework is developed in [23]. The design

not only uses the same IARC adaptation process for accurate

estimation of physical parameters, but also introduces dynamic

compensation type fast adaptation to achieve better transient

and steady-state performance. Such an integrated ARC design

is reviewed below.

The proposed DIARC control law has the form of

u = ua + us, ua = ua1 + ua2, ua1 = −ϕT
d θ̂, (55)

where ua1 is the same adjustable model compensation as in the

IARC law (32) with the same parameter estimation algorithm

(41) for θ̂, ua2 is a fast dynamic compensation term to be

synthesized later, and us is a robust control function having

the same form as (33) with the same us1 as in IARC but

different robust performance conditions for us2, which will

be detailed later. Substituting (55) into (27), corresponding to

(36), the new tracking error dynamics are

θ1ṗ = us1 + (θ1k1 − θ2 − θ3g)ė︸ ︷︷ ︸+ua2 + us2 −ϕT
d θ̃ + d̃︸ ︷︷ ︸ (56)

Define a constant d0 and time varying function d̃∗(t) such that

d0 + d̃∗(t) = −ϕT
d θ̃ + d̃ (57)

Conceptually, (57) lumps the disturbance and the model

uncertainties due to parameter estimation error together and

divides it into the low frequency component d0 and the higher

frequency components, d̃∗(t), so that the low frequency com-

ponent d0 can be compensated for through the fast adaptation

of direct ARC design as follows. Substituting (57) into (56),

θ1ṗ = us1 + (θ1k1 − θ2 − θ3g)ė︸ ︷︷ ︸+ua2+us2+d0+d̃∗(t) (58)

Choose the fast compensation term ua2 as

ua2 = −d̂0 (59)

where d̂0 represents the estimate of d0 updated by

˙̂
d0 = Projd̂0

(γd
1

θ̂1
p), |d̂0(0)| ≤ d̂max (60)

in which d̂max is a pres-set bound for d̂0(t). As in DARC

in section 3, the projection mapping in (60) guarantees that

|d̂0(t)| ≤ d̂max, ∀t. Substituting (59) into (58),

θ1ṗ = us1 + (θ1k1 − θ2 − θ3g)ė︸ ︷︷ ︸+us2 − d̃0 + d̃∗(t) (61)

Similar to (35), the robust feedback us2 is now chosen to

satisfy the following robust performance conditions:

i p{us2 − d̃0 + d̃∗(t)} ≤ ε

ii pus2 ≤ 0
(62)

Theorem 5: With the same parameter estimation algorithm

for θ̂ as in IARC in section 4 and d̂0 updated by (60), the

DIARC law (55) achieves the same theoretical performance

results as DARC in Theorem 2. �
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VII. ARC OF LINEAR MOTORS WITH DYNAMIC FRICTION

COMPENSATION

It has been well known that to have high accuracy of

motion control at low speed movement, friction cannot be

simply modeled as a static nonlinear function of velocity

alone but rather as a dynamic function of velocity and dis-

placement. Thus, during the past decade, significant efforts

have been devoted to solving the difficulties in modeling and

compensation of dynamic friction with various types of models

proposed [59], [63], [64]. Among them, the LuGre model by

Canudas de Wit et al. [59] can describe major features of

dynamic friction, including presliding displacement, varying

break-away force and Stribeck effect. Due to its relatively

simpler form and its ability to simulate major dynamic friction

behaviors, LuGre model has been widely used in controls

with dynamic friction compensation [65], [66]. Although many

application results have been reported [67], some practical

problems are also discovered, especially when applying the

LuGre model to systems experiencing large ranges of motion

speeds such as the linear motor drive system studied in this

paper. Namely, the traditional LuGre model could become very

stiff when the velocity is large. This leads to some unavoidable

implementation problems since dynamic friction compensation

can only be implemented digitally due to its highly nonlinear

characteristics. For example, it has been reported in [68] that

the observer dynamics to recover the unmeasurable internal

states of the LuGre model could become unstable at high speed

motions.

In [69], the LuGre model was first revisited to reveal the

cause for the digital implementation problems when using

the model for dynamic friction compensation. Based on the

analysis, a modified version of LuGre model was proposed

for dynamic friction compensation, in which the estimation of

internal states is automatically stopped at high speed move-

ments to by-pass the instability problem of the LuGre model

based observer dynamics. A continuous function is designed

to make a continuous transition from the LuGre model based

low speed dynamic friction compensation to the static friction

model based high speed friction compensation. The ARC

strategy is then utilized along with the proposed modified

LuGre model based dynamic friction compensation to achieve

accurate trajectory tracking for both low-speed and high-speed

movements. The proposed ARC algorithm, along with ARC

algorithms with friction compensations using the LuGre model

and the static friction model respectively, are tested on the

linear motor system in section II. Comparative experimental

results were also presented to illustrate the effectiveness of the

proposed modified LuGre model based dynamic friction com-

pensation in practical applications and the excellent tracking

performance of the proposed ARC algorithm.

VIII. GLOBALLY STABLE SATURATED ARC OF LINEAR

MOTORS WITH INPUT SATURATION

All actuators of physical devices are subject to amplitude

saturation. While it may be possible to ignore input saturation

in some applications, reliable operation and acceptable perfor-

mance of most control systems must be assessed in light of ac-

tuator saturation. Significant amount of research has been done

to stabilize the system while taking into account the saturation

nonlinearities at the controller design stage. However, most of

the research assume that the systems of concern are linear

and exactly known, which is not the case for most physical

systems in reality. Therefore, it is of practical importance to

take model uncertainties and external disturbances into account

when attacking the actuator saturation problem. In [70], the

judicious use of saturation functions in [71] is combined with

the ARC strategy to achieve both global stability and high

performance for a chain of integrators subject to matched

parametric uncertainty and uncertain nonlinearities. However,

like the saturated controller in [71], the design is based on a

set of transformed coordinates, in which the effect of model

uncertainties immediately shows up at the beginning step of

the backstepping-like controller design, even though the model

uncertainties studied are matched uncertainties. In other words,

the actual model uncertainties has been ”amplified” n times

to be accommodated by the control input where n represents

the order of the system. Thus, with a limited control authority,

the extent of model uncertainties that the resulting controller

can handle is quite restricted, leading to a conservative overall

design. In [20], [72], a new saturated control structure based on

the back-stepping design and the ARC strategy was proposed.

The control law is designed to ensure fast error convergence

during normal working conditions while globally stabilizing

the system for a much larger class of modeling uncertainties

than those considered in [70]. Essentially, a bounded virtual

control law is designed to ensure the boundedness and con-

vergence of the error signal at each step. The actual control

input comes from the design at the final step and consists of a

model compensation term and a local-high-gain-but-globally-

saturated robust control term like the one shown in Fig.7.

The bound on the model compensation can be calculated

from the pre-known information of the system and the desired

trajectory to be tracked. The nonlinear robust control is used

to meet the dual objective of (i) maintaining global stability

with limited control efforts during rare emergencies when the

tracking errors are large and (ii) having a high CL bandwidth

for high performance during normal running conditions when

the errors are small. Experimental results were presented to

verify these claims as well.

IX. COMPARATIVE EXPERIMENTS

A. Experiment Setup

All control algorithms have been implemented on the linear

motor system in section II using a dSPACE DS1103 con-

troller board. The controller executes programs at a sampling

frequency of fs = 5 kHz, which results in a velocity

measurement resolution of 0.0025 m/sec. Standard least-

square identification is performed to obtain the nominal values

of parameters; the nominal value of M is 0.12 (V/m/s2). To

test the learning capability of the proposed ARC algorithms,

a 5 kg load is also mounted on the motor and the identified
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values of parameters with this load are θ1 = 0.19 (V/m/s2),
θ2 = 0.2 (V/m/s), and θ3 = 0.3 (V ). The bounds of the

parameter variations are chosen as:

θmin = [0.08, 0.08, 0.1, −0.5]T

θmax = [0.25, 0.3, 0.5, 0.5]T

The initial parameter estimates of θ0 = [0.1 0.2 0.1 0.0]T are

used for all experiments. The following three control algo-

rithms are compared: (1) DARC, the Direct Adaptive Robust

Control (DARC) law; (2) IARC, the Indirect Adaptive Ro-

bust Control with the least square type estimation algorithm;

and (3) DIARC, the Direct/Indirect Adaptive Robust Control

(DIARC) with the least square type estimation algorithm.
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Fig. 9. Tracking error for (a)DARC, (b)IARC, (c)DIARC with no load
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Fig. 10. Tracking error for (a)DARC, (b)IARC, (c)DIARC with load

To test the tracking performance of the proposed algorithms,

as in [40], a typical high-speed/high acceleration motion

trajectory for the pick-and-place operations in industry is used

in all experiments. The desired trajectory corresponds to a

movement of 0.4 m with a maximum speed of 2 m/s and

an acceleration of 30 m/s2. The experimental results in terms
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Fig. 11. θ̂1 for (a)DARC, (b)IARC, (c)DIARC with no load
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Fig. 12. θ̂3 for (a)DARC, (b)IARC, (c)DIARC with no load

of time history are given in Figs.9-14. As seen from these

results, the tracking errors of all three ARC controllers are

very small, which are within 20 micrometers even during the

high acceleration and deceleration periods. The tracking errors

with and without load are almost the same, indicating the

strong performance robustness of ARC designs to parameter

variations. It is also seen that IARC and DIARC do have better

parameter estimates than DARC, but IARC exhibits non-zero

steady-state tracking errors. Overall, DIARC achieves the best

tracking performance while having a more robust parameter

estimation process and more accurate parameter estimates than

DARC. All these agree with previous theoretical analysis.

X. CONCLUSION

The paper gives an overview on how the recently devel-

oped nonlinear adaptive robust control (ARC) can be used

to effectively and systematically address some of the major

issues in precision motion control. Control of a linear motor

drive system is used as a case study and comparative exper-

imental results are presented to demonstrate the achievable

performance and limitations of various ARC designs. The case

study makes it easier to understand the fundamental design

principles of ARC theory. In some senses, the proposed ARC
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could be thought as the modern version of classic PID design.

The adjustable nonlinear model compensation with on-line

parameter adaptation or other learning tools used in ARC is a

refined version of traditional feedforward design with integral

feedback. The emphasis on the use of nonlinear robust control

law having targeted locally high gain but globally low gain

feedback is the key to build a closed-loop system that locally

has sufficiently high loop gain to meet the stringent distur-

bance rejection or model uncertainty attenuation requirement

while avoiding the severe control input saturation problem

associated with the traditional linear high-gain feedback for

global stability.
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