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ABSTRACT

In this paper, performance oriented control laws are synthesized for a
class of single-input-single-output (SISO) n-th order nonlinear systems in a
normal form by integrating the neural networks (NNs) techniques and the
adaptive robust control (ARC) design philosophy. All unknown but repeat-
able nonlinear functions in the system are approximated by the outputs of NNs
to achieve a better model compensation for an improved performance. While
all NN weights are tuned on-line, discontinuous projections with fictitious
bounds are used in the tuning law to achieve a controlled learning. Robust
control terms are then constructed to attenuate model uncertainties for a
guaranteed output tracking transient performance and a guaranteed final
tracking accuracy. Furthermore, if the unknown nonlinear functions are in the
functional ranges of the NNs and the ideal NN weights fall within the fictitious
bounds, asymptotic output tracking is achieved to retain the perfect learning
capability of NNs. The precision motion control of a linear motor drive system
is used as a case study to illustrate the proposed NNARC strategy.

KeyWords: Neural network, adaptive control, robust control, nonlinear systems.

L. INTRODUCTION

Nonlinearities in physical systems may appear in
various forms. Itis in general difficult to treat various non-
linearities under a unified framework. In some situations,
due to the limited knowledge about certain nonlinear
physical phenomena (e.g., friction), it is also impossible to
precisely describe the nonlinearities that can be used to
capture those physical phenomena. These factors make it
difficult to design high performance controllers for non-
linear systems.

The appearance of neural networks (NNs) help us
advancing the design of high performance controllers for
general uncertain nonlinear systems considerably. Theo-
retically, as long as a sufficient number of neurons are
employed, a neural network can approximate a continuous
function to an arbitrary accuracy on any compact set [1-5].
It was shown in [2] that the standard multi-layer feedforward
networks with only a single hidden layer and arbitrary
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bounded and nonconstant activation function are univer-
sal approximators with respect to L”(i) performance
criteria, for arbitrary finite input environment measure ,
provided that a sufficient number of hidden neurons are
available. In practice, sigmoid type of functions and radial
basis function (RBF) are usually used in neural networks
as activation functions. The approximation capabilities of
networks with sigmoidal function being activation func-
tion were discussed in [3] while RBF networks were con-
sidered in [4,5]. Due to their universal approximation
capability, neural networks can be used to model certain
complex nonlinear physical phenomena effectively. It is
thus of practical significance to use neural networks in
nonlinear controller designs.

In the research field of neural networks itself, the
focus is on the investigation of various NN characteristics,
such as network structure, stability, convergence, and
uniqueness of weights, efc. In fact, many works have been
done on the stability of a variety of neural networks [6-10]
and the evolution of the weights of neural networks [11,
12]. In [6,7], some criteria were proposed on how to cho-
ose the weights of neural networks to guarantee the stabil-
ity of a class of nonlinear continuous neural networks.
Existence and uniqueness of the equilibrium of the neural
network were also discussed in {7]. Necessary and suffi-
cient conditions were given in [8] for stability of a neural
network of the Hopfield type with a symmetric weight
matrix while the asymmetric case was studied in [9].
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However, in all these papers, in order to guarantee the
stability of neural networks and/or the uniqueness of the
weights, the NN weights have to satisfy some restrictive
conditions, which may limit the approximation capability
of neural networks in practice since weights can only be
tuned in a relatively small region. As such, researchers are
still keeping on looking for NN structures with less restric-
tive conditions for the convergence of NN weights.
Fortunately, when neural networks are used for control
design purposes, the main focus is on the performance of
the closed-loop system in terms of output tracking as long
as all signals are bounded. Whether or not the NN weights
converge to their ideal values may not be the key issue. As
such, the NN weights can be tuned in a relatively large
region. Consequently, the approximation range of a neural
network becomes large, and a better approximation capa-
bility can be expected, which is helpful in the control of
nonlinear systems when little is known about the non-
linearities in the system. Thus, in this paper, not much at-
tention will be paid to the convergence of weights of neural
networks, and only the boundednesses of all the signals in
neural networks are guaranteed.

Neural networks have been applied to the control
field recently [13] and various results have been achieved
[14-17]. A survey of the application of neural networks to
control field was given in [13], where modeling, identifica-
tion, and control of nonlinear systems via neural networks
were discussed. Two main issues have to be dealt with in
the use of neural networks for nonlinear control design.
Firstly, the ideal synaptic weights of a neural network for
approximating an unknown nonlinear function are usually
unknown. Certain algorithms have to be derived to tune
these unknown NN weights on-line if NN is used to deal
with various unknown nonlinear functions. In terms of
control terminology, adaptation laws are needed. Secondly,
the ideal NN weights for the neutral network to reconstruct
an unknown nonlinear function exactly may not exist, i.e.,
the unknown nonlinear function to be approximated may
not be in the functional range of the neural network. The
approximation error between the ideal output of a neural
network and the true nonlinear function cannot be as-
sumed to be zero in general although it may be very small
within a compact set. Thus, the issue of robustness to the
approximation errors needs to be considered when certain
on-line tuning rules are derived for the NN weights. In
[14], based on the assumption that the both the input-
hidden weights and the bounds of the hidden-output weights
are known, backpropagation neural networks were used to
design a robust adaptive controller (RAC) for multi-link
rigid robots. In [15], with the o-modification type weight-
tuning law, the adaptive neural network control schemes
were proposed for nonlinear systems with uncertainties
not satisfying matching conditions, where the input-hid-
den weights are also assumed to be known. The backstepp-
ing method was used in [16] to design a neural network
controller to guarantee the semi-global stability of the

closed system. RBF networks were used in [17] to-adap-
tively compensate for the plant nonlinearities, and the
resulting adaptive controller achieves global stability and
the final tracking accuracy. All these works are based on
the assumption that the input-hidden weights of neural
networks are known. It may be beneficial if this assump-
tion can be relaxed so that one can fully explore the gen-
erality and flexibility of neural networks. Furthermore,
since the o-modification type weight tuning method is
used [14,15], an asymptotic output tracking cannot be
achieved even when the unknown nonlinear function is in
the functional range of the neural network. In other words,
ideal perfect learning capability of neural networks is lost.
In addition, the transient tracking performance is in gen-
eral not known. The transient period may be long and large
transient tracking errors may exhibit.

Recently, the adaptive robust control (ARC) ap-
proach has been proposed in [18-21] for nonlinear systems
in the presence of both parametric uncertainties and non-
repeatable uncertain nonlinearities such as disturbances.
The resulting ARC controllers achieve a guaranteed out-
put tracking transient performance and final tracking ac-
curacy in general. In addition, in the presence of paramet-
ric uncertainties only, asymptotic output tracking is ac-
hieved. These strong performance results achieved by
ARC controllers motivate us to investigate whether the
essential idea of ARC approach can be extended to the NN
based controller designs to further improve the achievable
performance of NN based controllers. At the same time,
since only a special class of unknown nonlinear func-
tions—a linear combination of known basis functions with
unknown weights—have been considered in [18-21], such
an extension is also of significant theoretical values since
a more general class of unknown functions can be dealt
with via neural networks.

In this paper, neural networks and ARC design
philosophy are integrated to synthesize performance ori-
ented control laws for SISO nonlinear systems with matched
model uncertainties in a normal form. The form allows
unknown nonlinearities existing in both system model and
input channel, and the unknown nonlinearities could in-
clude non-repeatable nonlinearities such as external dis-
turbances as well. All unknown but repeatable nonlinear
functions will be approximated by the outputs of multi-
layer neural networks to achieve a better model compen-
sation for an improved performance. All NN weights are
tuned on-line with no prior training needed. Discontinu-
ous projection method with fictitious bounds [22] will be
used to make sure that all NN weights are tuned within a
prescribed range. By doing so, even in the presence of
approximation error and non-repeatable nonlinearities such
as disturbances, a controlled learning is achieved to avoid
the possible destabilizing effect of on-line tuning of NN
weights. Certain robust control terms are constructed to
attenuate various model uncertainties effectively for a
guaranteed output tracking transient performance and a
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guaranteed final tracking accuracy in general-a transient
tracking performance that the existing NN based robust
adaptive controllers [14-17] cannot achieve. In addition,
if the unknown nonlinear function is in the functional
range of the neural network and the ideal weights fall
within the prescribed range, asymptotic output tracking is
also achieved to retain the perfect learning capability of
neural networks in the ideal situation-a performance that
existing NN based robust adaptive controllers [14-17]
cannot have. Furthermore, by choosing the prescribed
range appropriately, the controller may have a built-in
anti-integration windup mechanism to alleviate the effect
of control saturation [22].

II. PROBLEM FORMULATION

The system to be considered in this paper has the
following form [17,22]

x®=¢"(x, )0 +£x) +b)u(r) + Alx, 1) M

where x is the system output, x = [x, xX, ..., x®* P17 is the
state variable vector with x denoting the i-th time deriva-
tive of the output x, ¢(x, ©) = [¢y(x, ), ..., ¢,(x, )] is the
vector of known basis functions, 6 = [6,,
constant unknown parameter vector, ¢'(x, £)8 denotes the
structured nonlinearity [22], f(x) represents the unstruc-
tured state-dependent (or repeatable) unknown
nonlinearity, b(x) is the unknown nonlinear input gain,
u(?) is the system input, and A(x, 7) represents the lumped
non-repeatable state-dependent nonlinearities such as
disturbances.

Since f(x) is not assumed to possess any special
form, a three-layer neural network will be employed to ap-
proximate it for a better performance. Thus, the following
assumption is made

Assumption 1. [2] The NN approximation error associ-
ated with the nonlinear function fis assumed to be bounded
by

fo)-wig, (V,x )| <800)d,, Vi € R @

where §(x) is a known non-negative shape function, d;is
an unknown positive constant, x, = [x”, —1]" is the aug-
mented input vector to the neural network (-1 term de-
notes the input bias), wy= [wy, ..., wy T is the hidden-
output weight vector, V;= [V, ..., U, e Ry @+D is the
input-hidden weight matrix with ¥; € ®"*Y*! ris
the nTumber of neurons, and gdVix,) = [ga(Vix,), ...,
8| ( qfrfxa)]T is the activation function vector.

Remark 1. According to theorems in [1,2], nonlinearity f
can be approximated by the output of a multi-layer neural
network to an arbitrarily accuracy on a compact set 4,

..., 0]7is the..

provided that the number of the neurons is sufficiently
large, i.e.,

fa)-wig,(V,x )| <1, Vx e a, &)

where 7] is an arbitrarily small positive number, and 4 is
a compact subset of ®". Correspondingly, in Assumption
1, é}(x) can be chosen as 1 and d;can be arbitrarily small
whenx € 4, Outside the compact set A, the difference
between the output of the neural networks and the true
value of the nonlinear function may not be made arbitrarily
small. Itis however reasonable to expect that the approxi-
mation error outside the compact set 4,is bounded by a
known nonlinear function multiplied by an unknown con-
stant as assumed in Assumption 1.

Since @is constant, the following trivial assumption
is made

Assumption 2. The elements of the system parameter
vector 8 are bounded although their bounds may not be
known, i.e.,

pl’gis eispuyei,i=1, 2,...,7‘ R (4)

where p, o and p, , represents the lower and upper bound
of 0, respectively, which may be unknown.

Remark 2. As a matter of fact, the structured nonlinearity
¢"(x, 1)B can be viewed as the output of a two-layer (i.e., no
hidden-layer) neural network with x, # being the inputs, ¢
being the activation function vector, and 0 being the
weight vector. However, since ¢'(x, #) may explicitly
depend on time ¢, the structured nonlinearity ¢'(x, )0 is
separated from the unstructured nonlinearity f(x), which
depends on the system state only.

In general, the form of the input gain b(x) may not be
known. However, it is practical to assume that b(x) has a
known sign. Thus, the following assumption is made:

Assumption 3. The input gain b(x) is nonzero with known
sign. Without loss of generality, assume

b(x)2b,>0, Vx € " )
where b, is a known positive constant.

Similar to Assumption 1, a neural network will be
used to estimate the nonlinear input gain b(x). Thus, the
following assumption is made

Assumption 4. The nonlinear input gain b(x) can be
approximated by the output of a multi-layer neural net-
work with
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b(x)—ngb(Vbxu) Sab(x)dbv VxeR' (6)

where ,(x) is a known non-negative shape funciton of x,
d, is an unknown positive constant, w,, g,, and V, are
defined in similar ways as wy, grand V, respectively. Itis
assumed that the number of neurons in the hidden-layer is
r,. Then, w, € R*', g, € R*',and V, e R»*"*Vis
obtained. Similar to Remark 1, d, can be made arbitrarily
small with §, = 1 on some compact set 4,.

Although it is usually difficult to predict the type of
disturbances that the system is going to encounter, it is
always true that the disturbance is bounded in some ways.
Hence, the following practical assumption is made

Assumption 5. The non-repeatable nonlinearity A is
bounded by

| AGe,1) | <840x,1)d (1) )

where 0,(x, ) is a known non-negative function, and dA(¥)
is an unknown, but bounded positive time-varying function.

For any sufficiently smooth desired output trajec-
tory x,(2), the desired state trajectory x,(¢) can be defined
as x,() =[x, xfil), ey xf;“”]T. The control objective is to
design a control law for u such that the system state
variable vector x tracks x, as closely as possible. 1f the
tracking error vector is defined as x(f) = x(f) — x(¢), the
control objective is equivalent to make the “size” of x(¢) as
small as possible.

In the following derivations, 8 =[@,, ..., 6,1 repre-
sents the estimate of the system parameters, 0 = 6 — 81is the
estimation error, Wy = [Wn, ..., Wp f]T represents the esti-

mate of the hidden-output weight vector, W, =W, —w;is the
estimation error of the hidden-output weight vector, V; =
[On, -..,;i}rf]TAis the estimate of the input-hidden weight
matrix, V; = V¢ — V}is the corresponding estimation error
matrix, and g;is the shorthand notation for g(V,x,).

Before leaving the section, the approximation prop-
erties of NNs and the discontinuous projection mapping
are reviewed in the following two subsections to facilitate
the controller designs.

2.1 Approximation properties of NN

By Taylor’s expansion theory, the following theo-
rem and lemma hold, which are proved in [23],

Theorem 2.1. [23] wf g7(V;x,) can be approximated by its
estimate w;g (Vx ) in the following form

Wngf(fo D=Wig Wfr(gf_g.;‘;fx D ng}vfxa +d

®)

where g, :gf(foa), g} = diag{g}l, e g_;,f} with g =g

(f)}x ) = dgfz(z)

y ,i=1, ..., 1, and the residual term
/4

z=ﬂj€x
dpy = W18, Vx, + w[O(V,x ) with O(V,x,) being the
sum of the higher order terms.

Lemma 2.1. [23] The residual term djy can be bounded by
a linear-in-parameter function, i.e.,

4y lsa, ®

where @ is an unknown vector constituting of positive
elements, and the known function vector ¥;is defined as
follows

v,=(1 |, vl lx.

2° “ wf "2“ Xa 2?

T
2] (10)

where “ U [l - denotes the Frobenius norm of a matrix e,
which is defined as | #|% = Trace{e"s}.

Proof. Please refer to [23].
Similar to Theorem 2.1 and Lemma 2.1, we have

Theorem 2.2. w, g,(V,x,) can be approximated by its

estimate w. g ,(V,x ) in the following way
T T s T s oY
w8, (V,x )=W,8,-w,§,-8,V,X,)
W38,V x +d (11)

where ¢, =g(V,x,). &, =diag {g,,, ... &, } with g, =

_ dg,2)

(D x
gbl( bi a) dZ

,i=1, ..., r, and the residual
z=ﬁgixa

term dyyy=—W.g,V,x, +w,0V ,x ) with O(V,x ) being
the sum of the higher order terms.

Lemma 2.2. The residual term d,,y can be bounded by a
linear-in-parameter function, i.e.,

EFET & (12)

where @, is an unknown vector constituting of positive
elements, and the known function vector Y, is defined as
follows

Y,=

1, “xa

2 “ Vb “F“xu

» 17 Ll (13)

2
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2.2 Discontinuous projection mapping

Since all the NN weights are constants, they are
within certain bounded region. It is then reasonable to
require that the estimates of the weights should be within
the corresponding bounds. However, due to the fact that
these bounds cannot be known a prior, certain fictitious
bounds have to be used [22]. Discontinuous projection
mapping [24,25] will be constructed based on these ficti-
tious bounds. The following general notation is intro-
duced

Proj;(¢)={Proj;(e;)} (14)

with its ij-th element defined as

*; =p”’*ij and ;>0

if{ - 4
*, =p1,*l7 and ®; <0 (15)

Proj;(®)=

®; otherwise

where /3,,*1,] and ﬁu,*,-j are the fictitious lower and upper
bound of % ;. For simplicity of notations, define /3*1,], =max

{‘pl,*g|’|/§u,*ij Du = {/3*,]} and py = { Py, }-
With the above notations, the adaptation laws for the

estimates of the unknown weights and bounds have the
following form

0=Proj,(Ts7,} (16)
w,=Proj, f{rwawf} 17)
V,=Proj o AT T} (18)
a =Proj; {T'Tes} (19)
W, =Proj, {T,,7,} (20
v, =Proj;, (T, 7,7} (21)
a, =Projs, Tz, 70y} (22)

Where Fe e er r’ wa e K.rfx rf, va c R(n+ Dx(n+ 1), FWG
R***, Ty, T, and T, are any diagonal positive definite
(d.p.d.) adaptation rate matrices, and Ty, 7,5, Tu Tops Tuss Tow
and 7, are adaptation functions to be specified later.
Using similar arguments as in [18], it can be shown that the
above projection-type updating laws have the following
nice properties

P1. For any adaptation functions, the weight estimates are
always within the corresponding known fictitious
bounds used in defining the projection mappings, i.c.,

Proy, S0 <Py, i=liosrpj=1,n+l,
os&ﬂspu,,,ﬂ(, k=1,...,4

ple,_sz puwb, i=1,...,1
p,’ubgsﬁbijﬁﬁww, i=1,..,rj=1,...,n+1,
050y <Py ay,, k=1,...,4 (23)

where the fictitious lower bounds for ¢ and ¢, are
chosen to be zero since all their elements are positive
as stated in Lemma 2.1 and 2.2. The fictitious lower
and upper bounds p, ,,,, and p, ,,,. used in defining the
projection mapping PI‘Q]Wb for w,;, and p, vy and
P, o in Projy, for D, should be chosen to guarantee
thatwbgb =0, vwb € [P,y Puw,)s Vo, € [P, Vg2
P, - ,]; such a requlrement may not be restrictive
since the ideal value of wbg,,, b(x), is positive as
assumed in Assumption 3.

P2. In addition, if the true parameters 6, w, V, &, w,, V,,
and @, are actually within the prescribed ranges, i.e.,
p1030</3u9’Vi—1 rplwf<wﬁ puwf’plvf]
S V=P g Vi=1,. rf,‘v’]_l ,n+1,0< o

<pullfkk 1 4plw <Wbt puwb’plvbu—vbll_
Puv ] ,Vi=1,. r,,,‘v’]—l o+ 1,0S042p, 4, .
k=1, ..., 4, then,
P2 6'(T3'ProjyT ®)— ) <0, Ve

W/ (I, Proj, (,; *)~*) <0, Ve

Trace {Vf(r;}Projvf(F,,f *)—0)}<0, Ve
&fT(l'Z}Projaf(Faf e)—e)<, Ve
wb(IxW},Projwb(l"wb *)—)<(, Ve
Trace{Vb(l—T,,'JProj‘;b(FUb *)—)} <0, Ve
&5, Proj,, (Cap ©— ) <0, Ve (24)

III. NNARC WITH KNOWN
INPUT-HIDDEN WEIGHTS

In order to explain the proposed NNARC clearly and
compare it with other existing methodologies, we will
solve the problem step by step. For this purpose, it is firstly
assumed that the input-hidden weights of the network are
known as done in [14,15,26,16] and the input gain is unity
[14],i.e., b=1. In the subsequent sections, these assump-
tions will be removed, and on-line estimates of the input-
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hidden weights and NN approximation of b(x) will be
considered.

Since the control objective is to force x to track x,, a
concise tracking error metric is defined by [17]:

s(t)= (% +0)""'%(r) with A>0 25)

where x(¢) = x(f) — x,(¢) is the output tracking error, A is a
positive constant. (25) can be rewritten as s(f) = Ax(t)
with the i-th element of vector A given by C.- A" =
(n-1)!
(n-D1G-1)!
plane in the K’ state space on which the tracking error
vector exponentially converges to zero. Thus, the perfect
tracking can be asymptotically achieved by maintaining
this condition [27].
Consider the control law

A"~ The equation s(f) = 0 defines a hyper-

U=u,+u, (26)
with

u,=—a,0)-9"c,n0-wlg,

Uy = Ug + Ug, Uy =—KS 27
and adaptation laws

O =Proj;(TssP(x, 1) (28)

w,=Proj, (Tssg,) (29)
where k > 0, and a,(f) = A x —x® with A) = [0, A", ...,
C i__zl?\." —i*+ ., (n=DA]. In(27), the robust feedback term

u,, is synthesized to satisfy the following two conditions
[22]

s(— ¢Té+f<x)—w}gf’<vfxa>+usz+A)

2 2
(ed-toel)|| | |(1oali-1201)
Sl+———— | €+ 1+ — €,
“p"“z “pwf"z
+ed;+e,dA0) (30)
su, <0 31)

in which €, €,, €;, and ¢, are four positive design constants,
and || . "2 denotes the 2-norm of a vector . Control law
(26) is referred to as NNARC-I in the following discussion.

Remark 3. The robust term u,, in (30) may be chosen in the

following way. Let

Ugp =_k52s’ ksZ Zlg

2
h, (32)
ei

4

where k,, is a nonlinear gain and 4;’s are sufficient smooth
functions satisfying

hi2|ow.n]0l,+| 7ol (33)
na2g | v+ Ayl (34)
hy > §(x), (35)
hy 2 O5(x, ©) 36)
and| oe, )| =1/ T2 de.0) [ g, | =/ Ziz¥| 24 By

doing so, (31) is satisfied, and

2
Left hand side of (30) S_s( o(x, t)é+:—ls)
61

|
n

h 2
wig(V,x,) +4—€2—s

2

[l

he h
+sl f)-wlig . (V.x )——25 | +s{ A~—2s 37
fx) fgf( f M) 4€3S 4e, (37

It is thus easy to show that (30) is satisfied by using the
completion of square, as in [22].

Remark 4. Usually, the activation functions g;’s are
sigmoid functions; hence, ] 85 l <land || g; “ <1y Ttisalso
clear that || W || , S || Pus || ,- Therefore, we can simply choose
hy = 2¢r7|| Pus “ , in practice.

Substituting control law (26) into the system equa-

tion (1) with the assumption that b(x) = 1 yields the
following error equation

s=—ks+u,— 9" 0+fx)-wig (V,x )+ A (38)

Theorem 3.1. With NNARC-I (26), the adaptation laws
(28) and (29), the following results hold:

A.1In general, all signals are bounded. Furthermore, the
sliding error s(r) exponentially converges to a small
value and is bounded above by
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(1) Sexp (= 2kn)s*(0) +%[1 —exp (= 2kt)]

Sexp(—2kt)s2(0)+% (39)
where
2 2
(oot | | [{1eul1L)|
€=|1+——————| €,+|1+ — €
| 26 12,1,
redi+ed,| (40)

with | d,, |, being L.. norm of dy(0).

B. By the desired trajectory initialization [18], i.e., let
x,(0) =x(0), we have, s(0) =0. Consequently, the actual
state tracking errors are asymptotically bounded by

|#0]_s2ne & (41)

C.If fix) = wfgf(foa) [3], i.e., the nonlinear function fis
in the functional range of the neural network, then, in
addition to the results in A and B, asymptotic output
tracking is achieved provided that there is no external
disturbance (A = 0), and the actual parameter 6 and the
ideal weight w,lie within their corresponding fictitious
bounds (i.e., p,, < 6,<p, .. Vi=1,....7, ﬁ,’wﬁ Swp<
ﬁu’wﬁ, Vi=1,..,r).

Proof. See Appendix 1.

Remark 5. A and B of Theorem 3.1 show that the pro-
posed NNARC-I achieves a guaranteed transient perfor-
mance and final output tracking accuracy in general; it is
seen that the exponentially converging rate 2k and the
bounds of the final tracking error (“ x || _SAT ”m ) are
related to the design parameters k, €, €,, €;, and €, in a
known form, and can be adjusted freely by suitably choos-
ing the design parameters. These results are thus much
stronger than those in [14-16] where transient perfor-
mance is not guaranteed.

Remark 6. C of Theorem 3.1 shows that the proposed
NNARC-I is able to accomplish its learning goal (the
assumptions in C of Theorem 3.1 represent the ideal
situation that a neural network is intended to be used for).
As aresult, an improved tracking performance-asymptotic
output tracking- is achieved. It is noted that all previous
research [14-16] cannot attain this level of perfect learning
capability.

Remark 7. From (26), it is clearly that the control law is
composed of two parts, model compensation part u, and

robust control part u,. For u,, the key issue is how to adjust
the estimate W, to make WfT.gf as close to f(x) as possible.
For robust control part, the main focus is on the design of
control gains to attenuate various model uncertainties
effectively.

Remark 8. Same as in [22], the control saturation problem
may be alleviated by choosing the fictitious bounds of 6
and w; appropriately.

IV. NNARC WITH UNKNOWN
INPUT-HIDDEN WEIGHTS

Although the input-hidden weights may be obtained
by the off-line training of neural networks, it will be more
practical and beneficial if this assumption can be relaxed
and input-hidden weights can be tuned on-line, which is
the focus of this section. In the following, for simplicity,
the sigmoid function will be used as activation functions.
Other type of activation functions (e.g., RBF [17], bipolar
sigmoid function [14]) can be worked out in the same way
as long as the activation functions and their derivatives are
bounded functions. Itis still assumed that b(x) =1 in this
section. This assumption will be removed in the next
section.

The control law has the same structure as in (26), i.e.

u=u, +u, 42)
with u, and u, given by

u,=—at)-9"xc,n0-wig,

Uy =Ug +il g, Uy =—ks = OY .sgn(s) (43)

Note that a sliding mode term is added in u, by using
the estimates of the residual bounds. In (43), the robust
control term u,, is synthesized to satisfy the following
conditions

S| _¢T(x9t)é+f(x)_w;gf+us2+A Ses (44)

sugy <0 (45)

where €, is given by (40). Control law (42) is referred to
as NNARC-II in later discussion.

Since V;is unknown, adaptation law (29) cannot be
im-plemented. In viewing (8), it is changed to the follow-
ing form

W, =Proj, (U.;s€—£€,V,x ) (46)
Furthermore, the following adaptation laws are em-

ployed to estimate the input-hidden weights V, and the
unknown parameter vector &;.
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§}=Pnﬂ@KTW¢Wfl Ty=x WE, (47)

@:Proj&f[(f‘qfrqf)T], Taf=| s |Yf (48)

Substituting control law (42) to the system equation
(1) yields the following dynamic equation of s(f)

$=—ks = 970c,00+f00)—Wig,— Y sgn (s) +A+u ,
(49)

Theorem 4.1. With NNARC-II (42), the adaptation laws
(28), (46), (47), and (48), the following results hold:

A.In general, all signals are bounded. Furthermore, the
sliding error s(f) exponentially converges to a small
value and is bounded above by

$2(¢) <exp (- 2kt)s*(0) +%[1 —exp(—2k)]

< exp (= 2k0)s%0) +% (50)

B. By desired trajectory initialization, i.e., let x,(0) = x(0),
one has s(0) = 0. Consequently, the actual state tracking
errors are asymptotically bounded by

msziki—n+1 /_% (51)

C.Ifflx)= w}rgf(x) [3], i.e., the nonlinear function fis in the
functional range of the neural network, then, in addition
to the results in A and B, asymptotic output tracking is
achieved provided that no disturbance exists, i.e., A=0,
and all of the true parameters and weights lie within the
corresponding fictitious bounds (i.e., P, o, < 6, < D, 0,
VYi=1,...,r, .[)l,w{i Swy< ﬁ”*‘”fi’ 'D’*“fr % v, < ﬁu,uf,_j, Vi
:)1, ot V= n 4 L 0K 0 2P k=1

D. When the discontinuous sign function sgn(s) in (43) is
dropped or replaced by any continuous function y(s)
satisfying sy(s) = 0, Results A and B still remain valid.

)‘C'(i)

Proof. See Appendix 2.

Remark 9. In the above, although the input-hidden weights
are unknown, by properly choosing control law and adap-
tation law, all the results in Section 3 remain valid.

Remark 10. In NNARC-II (42), the discontinuous term
&fT Y, sgn(s) can be dropped from (43), and Results A and
B in Theorem 4.1 still remain valid. The proof can be
worked out in the same way as in the proofs of parts A and
B of the Theorem in Appendix 2.

Remark 11. Although condition (44) is different from
(30), uy, in (44) can have the same form as (32) in Remark
3 with the same bounding functions #,, h,, k; and h, as in

Remark 3. The reason is that || § ; H = || g; || due to the use of

sigmoid function. The details can be worked out in a
similar way as in Remark 3 and are omitted.

V.NNARC FOR SYSTEMS WITH
UNKNOWN INPUT GAIN

In the previous two sections, the case of unity input
gain (or known input gain) has been considered. This sec-
tion focuses on the case with unknown input gain. In view-
ing Assumption 6, the following control law is proposed

U=u,+ U, (52)
with
u,=——L—la,@)+9"xc,nB+wg ]
Wb gb

ks +(&fTYf+&,fo| u,

— |
Uu,=u +Ms2, uﬂ__b_
1

)sgn (s)l

(33)

Using control law (52), the following dynamic equa-
tion can be obtained

s=x®+a ()=¢"(x, )0 +fx) +bx)u +A+a (f)

=0"(x,1)0+[fx)+a O] +bx)u, +b@u, +A
= [q)T(x, 10— ¢7(x, t)@] + [f(x) - wagf] + [w}gf— w}gf]

+[b@)-wig, |u,+|wig,~wig,]u.,

+A+bEu, +bxu,,

=-¢'(x, t)é+[f(x)—w;gf+dWN]
+ [‘ W;(gf_g}vfxa)‘wfg}vfxa]

+{[b(x)_wng +d ] +[—WZ@1; _g;;Vbxa)‘

—Wng‘;,Vbxa]}ua —k%s— bb(x)ﬁt;stgn (s)

4 !

b(x)

!

&Tb‘Yb| u,

sgn(s)+b@u,+A (54)
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In viewing (54), the adaptation laws for w,, Vf and
@, are given by (46), (47), and (48), respectively. The
adaptation laws for w,, V,, and &, are as follows

#,=Proj,, {wa[uas(g”b - g},?,,xa)]} (55)
V,=Proj;, {FVb[uaxasWZg;]} (56)

]} (57)

The robust control term ug, is synthesized to satisfy
the follow conditions

&b=Proj&b{Fab[|s|Yb| .,

S{¢T9+[f(x)+a,(t)]+b(x)ua +A+b(x)us2} <e,,

(58)
su, <0 (59)
where
2
(1us =150
€,=€.+|1+ €5+d266 (60)

2.0,

in which €5 and €4 are positive design constants. The
control law (52) is referred to as NNARC-III.

Theorem 5.1. With NNARC-III (52), the adaptation laws
(28), (46), (47), (48), (55), (56), and (57), the following
results hold:

A.In general, all signals are bounded. Furthermore, the

sliding error s(f) exponentially converges to a small
value and is bounded above by

s3(z) Sexp (= 2kn)s*(0) +%[1 —exp (=2kn)]

€bx
k

<exp (—2kt)s*(0) + (61)

B. By desired trajectory initialization, i.e., letting x ,(0) =
x(0), one has s(0) =0. Consequently, the actual tracking
error is asymptotically bounded by

|20l s2n /e )

C.If fix) = w/g(Vix,), and b(x) = w}g,(V,x,), [3], i.e., the
nonlinear functions fand b are in the functional range of
the corresponding neural network respectively, then, in

addition to the results in A and B, asymptotic output
tracking is achieved provided that there is no distur-
bance (A = 0), and all true parameters and weights lie
within the fictitious bounds (i.e., P9, < 6, < P, 0, Vi=
Lo 7 P Swy < Puwys ﬁlvuﬁié Uy S Puvg» Vi=1,
et Vji=1,..,n+1,0< < Puagk=1,....4, D1,
waisﬁm%ﬂ [jl’vbij < v,,,-jSﬁ,,,ubij, Vi=1,...,r,Vj=1,
B+ 1,00 S Py oy, k=1, .., 4).

D. When the discontinuous sign function sgn(s) in (53) is
replaced by the continuous saturation function sa#(<;)
(yis the thickness of the boundary layer), Results A and
B still remain valid.

Proof. See Appendix 3.

Remark 12. Similar to Remark 10, the discontinuous term

Zl—[ﬁth_ﬁ&ZYb‘ u, 1sgn(s) can be dropped from (53) if
)

only Results A and B in Theorem 5.1 are required. The
proof is similar to parts A and B in Appendix 3.

Remark 13. In viewing the third and fourth line of (54), u,
in (53) can be selected in the same form as (32) with A, >

),

o ol (IS AR R A GRS

o, h ZLé‘(xt) and hs >
o T4 st/ 5
Vb,

, and hg = 1 |ua

Vb,

VI. EXPERIMENTAL CASE STUDY

e el
i 1

15

5,.

u(l

The proposed NNARC has been recently applied to
the precision motion control of an expoxy core linear
motor having the following dynamic model in [28]:

Mx=-Bx—F (x,X)+u+F ,(x,x,1) (63)

where x represents the position of the inertia load, M is the
normalized” mass of the inertia load plus the coil assembly,
u is the input voltage to the motor, B is the equivalent
viscous friction coefficient of the system, F, is the lumped
nonlinear force which includes the effects of nonlinear
friction and the electr-magnetic force ripples, and F, is the
normalized external disturbance force (e.g. cutting force
in machining), which may be state dependent and time-
varying. In practice, M, B are unknown constants, and F,
is bounded. Itis seen that the system (63) can be put in the

. F
form of (1) withx = [x, x")", p=x, 6=—B fx) =2,
orm of (1) withx =[x, x'"]", ¢ =x Mf(x) Y,
bx)=-L a=La

M M

Normalized with respect to the unit input voltage.
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The details of the experimental set-up and off-line
identification can be found in [28] and only the sketch of
the controller design and typical experimental results are
shown below to illustrate the proposed NNARC strategy.
The off-line identification in [28] indicates that f(x) =

]&IF depends on both position x and velocity x and is

hard to model. Hence, a three-layer neural network is
employed to approximate this unknown nonlinearity with
an input vector of [x, x, —17". Three types of neurons are
used in the hidden layer to take into account the particular
properties of f{x):

1. Type-I: Five hidden neurons with a conventional sig-

—exp(=*)

1 +exp(—*)
tion are used to capture the phenomenon that F, de-
pends on the velocity (especially, the direction of the
velocity) and slowly changes with position. Since the
slope of g(e) around the origin is unknown, the corre-
sponding input-hidden weights are assumed to be
unknown.

2. Type-1II: Three hidden neurons with sinusoid type of

moid function g(e) = as activation func-

x) szn(%x) and sm(Mx)) be-

ing activation functlons are used to compensate for the
electro-magnetic force ripple, which is a periodic func-
tion of the position. The input-hidden weights is set to
be [1, 0, 0]” while the hidden-output weights are
unknown.

3. Type-Il: One hidden neuron with an identity function
g(®) = e as activation function is used to capture the
lumped average effect of all other uncertainties in-
cluding disturbance. Corresponding to the input [x, x,
—177, its input-hidden weights are set to be [0, 0, 1]”. The
hidden-output weight is unknown. In this case, since
g(e) is an identity function, it may also be viewed that
there is no hidden layer neuron.

functions (sm(

Since the input-hidden weights are fixed in the last
two types of hidden neurons, the corresponding adaptation
laws can be simplified to

W, =Proj Wf(rwf g, (64)

Jor

where g, = [sm( x) sm( x) sin x)]” for Type-

0.03 003 0.03
I neurons, and g;= 1 for Type-III neuron.

From (63), it is clear that the input gain L isacon-

stant. This property will be taken into account to simplify
the NN for b(x) by letting g, to be identity function.
Consequently, there is no hidden layer in NN for b(x), and
only w, (i.e., b) needs to be adjusted. Correspondingly,

adaptation laws (56) and (57) are not needed, and adapta-
tion law (55) becomes

P =I;=Pr0j,;{rbuas} (65)

Since no hidden layer exists in NN for b(x), the
robust control term &Y | u,,

Furthermore, as stated in Result D of Theorem 5.1, narctan

(y,s) can be used to replace the sign function in (53) to
avoid control input chattering. The resulting NNARC is

__a®+0i+w]g,

nnarc ™
b

_bl ks +%&;Yfarctan (W,8) | +u,, (66)

!

where u,, assumes the form (32) with k,, = max(3, 2} h —L )

and y, = 90 is used in the experiments.
6.1 Parameters in control laws and adaptation laws

As stated in Remark 8, the fictitious bounds of the
NN weights should be chosen based on the particular pro-
perties of the system and the types of weights and neurons
used. For Type-I neurons, large fictitious bounds can be
assumed for the input-hidden weights since sigmoidal
functions are always bounded by *1. For other types of
neurons, the fictitious bounds of their weights need to be
chosen conservatively to avoid the possible integration
windup problem. Under this general guideline, the fol-
lowing different adaptation rates and fictitious bounds are
chosen empirically

1. Type-I: For input-hidden weights, 10* is used as adap-
tation rate, and the fictitious lower and upper bounds
are -3 x 10° and 3 x 10° respectively.

For hidden-output weights, adaptation rate is 10°, and
the fictitious lower and upper bounds are —20 and 20
respectively.

2. Type-IL: Only hidden-output weights are to be adjusted.
The adaptation rate is 10°. The fictitious lower and
upper bounds are —-20 and 20 respectively.

3. Type-IIl: Same as Type-II except that the adaptation
rate is 2 x 10°.

The initial values of all the weights are zeros. Since
0.025 <M <£0.1, b,= 10 results. The actual value of b is
37.037 with an initial estimate of b(0) = 20. The adapta-
tion rate is 5000. The fictitious lower and upper bounds of
6 are assumed the values of —11 and O with an initial
estimate of 8(0) = —8.111 and adaptation rate of 4 x 10*.
A =200 is used for the sliding plane and k = 20 is used as
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the constant gain. The final tracking accuracy indices are
€,=5000,i=1, ..., 6.

6.2 Experimental resuits

It is known that the main nonlinearity in the model
(63) is F, and the force ripple may produce noticeable
effects when the motor moves at a low speed. In order to
investigate how NNARC deals with this unknown
nonlinearity, a low speed point-to-point desired trajectory
with a maximum speed of 0.02 m/s is used.

The experimental results are given in Figs. 1-3. As
shown in Fig. 1, the output tracks the desired trajectory
very well. In fact, the tracking error during the entire run
is within £5.6 um, and for most of the run, the tracking
error stays within +2 pm, almost within the encoder
resolution of +1 um of the experimental systems. The
appearance of small spikes when the direction of velocity
changes is caused by the Coulomb friction, which is near
discontinuous around those time instances. Since NN can

position error (LLm)

p ; ; ; ; :
0 20 40 . 60 80 100 120
time (s)

Fig. 1. Position error under NNARC.

20

T T T T T

$01id: estimate:of b

[
T

S
T

=]
T

parameter estimates
W

: : ‘dashed; estimate of 6: .

10 ; ; ; ; ; ; i ; ;

0 10 20 30 40 . 50 60 70 80 90 100
time (s)

Fig. 2. Estimate of 8 and b under NNARC.

Fig. 3. Output of NN under NNARC (with filter

only approximate continuous functions to arbitrary accu-
racy and may not be able to handle discontinuous
nonlinearity like Coulomb friction well, it is not surprise
to see these spikes. Even so, it can be seen that the
magnitude of these spikes keep decreasing until reaching
to a small value of 2.5 pum. All these results indicate the
high performance nature of the proposed NNARC.

The time histories of the estimate 8 and b are given
in Fig. 2. Since the desired trajectory is not rich enough
and the persistent excitation condition cannot be satisfied,
the estimates “drift away”. Fortunately, through the use of
projection mappings, the estimates cannot go unbounded.
Both of them are kept within the fictitious bounds. In this
sense, a controlled learning is achieved.

The output of the neural network (a stable filter with

50
s+5
effects) is plotted versus the position as shown in Fig. 3. It
can be seen that the filtered NN output tends to have a
shape like the actual one in [28].

Opverall, the proposed NNARC can have an excellent
output tracking performance even with little knowledge of
the system and parameters not converging to their true
values.

transfer function

0 is used to get rid of the noise

VII. CONCLUSION

Performance oriented NNARC control laws have
been constructed for a class of n-th order SISO nonlinear
systems with matched uncertainties. The proposed NNARC
law takes full advantages of both neural networks and
adaptive robust control (ARC) designs. The universal
approximation capability of neural networks is utilized to
construct multi-layer neural networks to approximate all
unknown but repeatable nonlinear functions to achieve a
better model compensation for an improved performance.
All NN weights are tuned on-line with no prior training

output of NN

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

position (m)

50y from £ =79.9996
s+50
sec to t=92.1780 sec.
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needed. Discontinuous projection mappings with ficti-
tious bounds are used to achieve a controlled learning even
in the presence of neural network approximation error and
non-repeatable nonlinearities such as external disturbances.
Certain robust feedback is constructed to attenuate various
model uncertainties effectively for a guaranteed output
tracking transient performance and a guaranteed final
tracking accuracy in general-a transient tracking perfor-
mance that existing NN based robust adaptive controllers
cannot achieve. The resulting NNARC has the nice
feature that if the unknown nonlinear functions are in the
functional ranges of the neural networks and the ideal
weights fall within the prescribed range, asymptotic out-
put tracking is also achieved-a performance that existing
NN based robust adaptive controllers cannot have.

APPENDIX 1

A. Consider the following Lyapunov function candidate
_1o
=s(t) (67)

Noting (38) and the condition (30), the time deriva-
tive of Vis as follows

V=ss<—ks*+€,=—2kV +€, (68)
which leads to inequality (39).

B. Since s(0) = 0, from inequality (39), we have

$20) < 5[1 —exp (—2kt)]< (69)

?
Hence, the inequality (41) is obtained [29].

C. Consider the following Lyapunov function candidate
1% =% )+ 0'T5' 8+wT i, (70)
When f(x) = w/g(V,;x,) and A =0,

V=ss+0'T, 9 +Ww LW h

=—ks®+su,—5¢"0+ 0T ProjyT os¢) — wfsgf(fo)

+w/TProj, (wasgf) S—ks®+su, <—ks’ (71)

in which the first two inequalities in properties (24) and
condition (31) are utilized. By applying Barbalat’s lemma
[18], it can be proved that asymptotic output tracking is
achieved. [ ]

APPENDIX 2

A. Consider the following Lyapunov function candidate
v=Llg (72)
2

Noting the dynamic equation (49) and conditions
(44), as well as the fact that &; >0, we have

V:sé:—ks2+s(—¢ré+f(x) Wngf aTstgn(s)+A+uﬂ)

=—ks2—ﬁ!}Yf|sl+s —0TO+f(x)- Wig+A+u,

<—ks® +€, (73)
which leads to the inequality (50).

B. Using the same method as in the proof B of Theorem
3.1, inequality (51) can be resulted [29].

C. Consider Lyapunov function candidate as follows

=124+ 0'T5'0 +w; T, ,+Trace {Vfl';}V;}

(74)

When fix) = w; g(Vx,) and A = 0, using adaptation
laws (28), (46), (47), (48) and condition (45), we have

V=ss+0T5 9+w fwf+Trace{VfI§}l7;}+&fT;}@

=—ks2+s—¢Té+f(x) w"ngf OtTstgn(s)+us2

T;'6 I5'60+w/T, 1w, +Trace VIV )+ & T,
=—ks2+sus2—s¢T9+QTI‘;@H[W}gf—Wngf]
~|s|gY +Ww[T,; +Trace{V,IvaVf}+ priA
s sy 50"+ 0T 0 o g, gV x|

‘diN]_| s|Y +w T,

|- |s[@¥ +97T
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+Trace {VTTT,}‘A/; J+a T o

=—ks” +5u ,~ 59”0+ 6 T3 ProjyTes(x, 1))
_ s[wf?(g‘f—g"}vfxa)] — S(W;g}f/ a)
+5d oy | 5|0Y -+ WL jProj; [Ty s@,~£,V,x )]
+Trace {V I',/Proj; f(rufx sW1E )}
+&T o Proj, Taf |V )
S—ks+|s|fY |5 |0+ &T o Projz(Tafs|¥ )

=—ks’—|s|&Y + &, Proja Lo s|¥)

<-ks*<0 (75)

in which the fourth equality uses Theorem 2.1, the first
inequality uses Lemma 2.1, condition (45), and the first
three inequalities in (24), and the second inequality uses
the fourth inequality in (24). Using Barbalat’s lemma, it
can be proved that asymptotic output tracking is achieved.

D. Using the same positive definite function candidate as
in A, it can be easily verified that V < —ks” + ¢, since —sy
(s) €0 holds. Hence, Result A remains valid, so does
Result B. [ |

APPENDIX 3

A. Consider a Lyapunov function candidate V = In

l 2

2
viewing (5) and (58) as well as the fact that &. >0, &,
0, and b(x) > b,, the time derivative of V is

V=ss=—k

u

a

bW b@gy

b(x) -
b, b, b

a,Y,

s|

+s{¢’9+[f(x)+a,(t)]+b(x)ua +A+b(x)uﬁ}
<—ks® + €, (76)
which leads to (61).

B. Using the same method in the proof B of Theorem 3.1,
inequality (62) can be resulted [29].

C. Consider a Lyapunov function candidate as follows

14 =% )+ 0'T5' 0+ Wil /W +Trace (V, T, ¥/}
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+ & T @ +Ww,Tw, + Trace {V, T,V ) + 85 Tol 0,
)]
When fix) =w/g, b(x) =w}g,, and A =0, noting (54),

the adaptation laws (28), (46), (47), (48), (55), (56), and
(57), the time derivative of V is derived as follows
V =s5 + 9Tﬁlé+wm}ﬁf+Trace {Vfl";f"j'fr} +& T 0

+wil,Ww, +Trace{Vb1'?,be}+abT}bab

=54 - ¢Té+[f(x)_w;gf+dﬂ\”‘/] + _‘:’;@f'é}‘;fxa)‘

‘ngf fx +[bx)-w,g, +d ylu,

W&, 8, VX )-Wig, V,x lu,

_b@) b@) g
k b, s b Y sgn(s

b9y . encs
1

+hu,+AY +6'T! 6 +w oW,

+Trace {VJIT,}‘*/;} + &;R}@+wlﬁ;@b

+Trace (V, [0V, )+ & T &,

bx o S o
S—k—;—)s2+s{dﬂw+ -W@,~gV,x,)-wgV,x,

I
Zg;vaa}

Ty~ ~ X7 .
i d W€, — 8,V X Ju,—u,w

0w )s| -

+wf1";fwf+Trace{Vf1'?,fo}+aTI‘ W,

+Trace{‘7,,r‘Lzl;‘A/:} + &Zr‘;fl;ab

2 Ty =7 ~T < 7
S—ks’+OfY | s|+s|-W]@,~&V,x,)-WigV x,

, e
+&,Y u suw,@,—8,Vyx,)
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_suawzg;vaa = @;Yfl S | -y,

u,||s|
. 1.5 3 T ~ 14

+w/T W +Trace {V, IV, } + &T ;0
- 1.2 7 5T = A

+Ww,L,,9, +Trace (V, [, V,} + & T, &,

~ks? (78)

in which similar techniques as in the derivation of (75)
have been used. Using the similar reasoning as in the proof
of Theorem 4.1, the asymptotic output tracking is obtained.

D. Using the similar arguments as in the proof of Theorem

4.1, the result can be obtained. |
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