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Abstract— This paper proposes an experimental design
method for the identification of a class of nonlinear systems. The
lumped uncertainty of the nonlinear system is assumed to be
bounded by known bound. A closed-loop identification scheme
is adopted for this system. Specifically, the problem of designing
an optimal input that minimizes the worst-case identification
error is converted to a constrained optimal trajectory planning
problem. After this optimal desired trajectory is obtained,
adaptive robust control (ARC) algorithm is utilized to design
the control input such that the output of the system tracks the
desired optimal trajectory as closely as possible. LSE is used
to give an estimate of the unknown parameters based on the
filtered input and output of the controlled plant after the input
designed above is applied. Extensive experiments verify that
the proposed identification method gives better results than the
traditional open loop identification.

Index Terms— Least Squares Estimation; Set-Membership
Identification; Adaptive Robust Control; Linear Motor

I. INTRODUCTION

System identification, which plays an important role in

control, vibration, fault detection, e.t.c., is a broad topic that

has been studied extensively during the past several decades.

Traditional study on system identification focused on how to

estimate the unknown parameters of the system as accurately

as possible given the measured input and output data. This

type of research can be divided into two categories depending

on the assumption on the unmodeled uncertainties. The first

one assumes the unmodeled uncertainties to have certain

statistical distribution. This assumption leads to a series of

researches around the well-known Least Squares Estimation

(LSE) method [8]. The second one assumes the unmodeled

uncertainties to be bounded by known bounds, which is also

called set-membership assumption. Based on this assump-

tion, researchers developed Set-Membership Identification

(SMI) method that has received increasing attentions these

years due to the practicality of this assumption [4], [3], [9].

However, developing identification algorithms that best

estimate the parameters of the systems using the measured

input and output is only the last step for system identification.

A lot of works need to be done before that. If the I-O

data obtained is poor from identification point of view, then

no algorithm would achieve accurate parameter estimation

using that set of poor data. The research publications on

input design problem have seen an increase in recent years.
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The input design problem, also called experimental design

problem, focuses on what kind of input should be applied to

the system to generate a good I-O data set for the subsequent

identification. For linear systems with statistical assumption

of unmodeled uncertainties, the way to find an optimal input

is fairly simple, i.e., the input only has to be persistent

exciting enough. However, for systems with set-membership

assumption of unmodeled uncertainties, very few results are

available. Some works such as [7], [2] assume that the system

to be identified is a FIR linear filter. However, this assump-

tion is restrictive. For input design of nonlinear systems with

set-membership description of unmodeled uncertainties, no

results are currently available. In fact, it is very difficult to

quantify the worst-case identification error from the input

side for general nonlinear systems.

On the other hand, most researches on input design until

now follow an open-loop identification scheme, i.e., an

optimal input is computed and directly applied to the system.

However, open-loop identification has many drawbacks. For

most physical systems, the input and states should satisfy

certain constraints for safety considerations. Open-loop iden-

tification does not guarantee that these constraints can be

satisfied. Moreover, if the original system is unstable, a sta-

bilizing closed-loop controller needs be designed beforehand.

Having realized these limitations of open-loop identification,

the idea of closed-loop identification was proposed and has

received many attentions recently [5], [6]. However, no effort

has been done for the optimal input design problem in

closed-loop identification mode.

After knowning the drawbacks of open-loop identification

and the importance of optimal input selection, we propose

a systematic procedure of the experimental design for the

closed-loop identification of a class of nonlinear systems.

Set-membership description of uncertainties is adopted. In

order to minimize the worst-case estimation error bound

in closed-loop identification mode, we convert the optimal

input design problem to a constrained optimal trajectory

planning problem. Specifically, an optimal desired trajectory

that minimizes the worst-case identification error is obtained.

Then, adaptive robust control (ARC) algorithm is utilized to

design a control input such that the output of the system

tracks the desired optimal trajectory as close as possible. LSE

is used to give an estimate of the unknown parameters based

on the filtered input and output of the controlled plant after

the input designed above is applied. Experimental results

verify that the proposed identification method gives more

reasonable and reliable results than the traditional open loop

identification.
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II. SECOND ORDER SYSTEM

A. Problem Formulation

To illustrate our design philosophy, we consider a simple

second order system:

ẋ1 = x2

θx2ẋ2 = u+θ T
φ φ(x)+∆(x,u, t),

(1)

where x = [x1,x2]
T ∈ Rn is the state of the system. u and y

are the input and output, respectively.θφ ∈Rm is the vector of

unknown constant parameters. θx2 is an unknown parameter

with θx2 > 0. φ ∈ Rm−1 is the regressor vector which is

a sufficiently smooth function with respect to x. ∆(x,u, t)
represents the lumped unknown nonlinear functions such as

disturbances and modeling errors.

Parameterizing (1) into the form of standard linear regres-

sion model, we have

u(t) = ϕT (y, ẏ, ÿ)θ −∆(y, ẏ,u, t), (2)

where ϕ(y, ẏ, ÿ) = [ÿ, −φ T (y, ẏ)]T , θ = [θx2, θ T
φ ]T .

Assumption 1: The uncertain parameters are bounded by

known bounds. The lumped unmodeled uncertainties are

bounded by known functions. In other words, θ and ∆ satisfy

θ ∈ Ωθ
∆
= {θ : θmin ≤ θ ≤ θmax},

∆(y, ẏ,u, t) ∈ Ω∆
∆
= {∆ : |∆(y, ẏ,u, t)| ≤ δ (y, ẏ,u, t)}.

(3)

In the above, θmin ∈ Rm, θmax ∈ Rm and δ (y, ẏ,u, t) > 0 are

known.

Remark 1: Ωθ is the apriori bounding set for θ known

before the closed-loop system identification experiment is

carried on. It can be obtained by some simple identification

methods which may not be very accurate, by reasonable

guess from the physical characteristics of the system or from

the manual provided by the manufacturer. Ωθ can be very

conservative.

In addition, due to the physical limitations and safety

requirements [5], the states and inputs of the system should

satisfy the following constraints:

x1min ≤ x1 ≤ x1max

x2min ≤ x2 ≤ x2max

umin ≤ u ≤ umax

(4)

An identification algorithm is a mapping from {u(t),ϕ(t)}
to Rm+1. Denoting the estimated parameter as θ̂ . Then, our

objective is to design an optimal input u∗(t), such that the

worst-case estimation error θ̃ = θ̂ − θ after applying this

u∗(t) to the system, measuring the output and performing

the identification algorithm is as small as possible, while

the input and output of the system does not violate the

constraints (4).

B. Worst-Case Error Bound

For system (1), for each applied input u(t) and disturbance

∆(t), the system will have a particular response y(t). From

Assumption 1, the unknown parameter θ must lie in the

following set

Θ∆u =
{

θ̂ : |ϕT (t)θ̂ −u(t)| ≤ δ (t),∀ t ≥ 0
}

(5)

The above feasible set Θ∆u depends on ∆(t). Since ∆(t) is

not known in advance and can take any value between −δ (t)
and δ (t), we need to consider all the possible feasible sets

Θ∆u for a particular input u(t). Let

Θu =
⋃

∆(t)∈[−δ (t), δ (t)]

Θ∆u. (6)

Noticing Assumption 1, Θu

⋂

Ωθ is the worst-case feasible

set that θ might lie in for all ∆(t) ∈ [−δ (t), δ (t)]. The

objective of input design is to try to find an optimal u(t)
that minimizes the size of the worst-case feasible set Θu,

i.e., |Θu

⋂

Ωθ |N where |• |N is certain measure of the set •.

For linear systems in impulse response form, directly solving

min
u(t)

|Θu

⋂

Ωθ |N is feasible because the assumed form of the

system is simple [7], [2]. However, for nonlinear systems

considered in this paper, although the optimizer |Θu

⋂

Ωθ |N
is a function of u(t), it depends on u(t) through complicated

system dynamics and thus the dependence is too complicated

to be derived explicitly. Thus finding a u(t) that minimizes

|Θu

⋂

Ωθ |N is very difficult. Even if such an optimal input

u(t) can be found and is applied it to the system, there is

no guarantee that the constraints (4) will be satisfied because

the optimal input is obtained offline first and then applied to

the system in an open-loop mode.

Thus, closed-loop identification has to be done [5], [6].

Here we are focusing on the input design problem for the

closed-loop identification, which has not been studied before.

In the closed-loop mode, u(t) is obtained indirectly via a

feedback loop. So we cannot directly optimize |Θu

⋂

Ωθ |N
with respect to u(t). Keeping this in mind, we propose a

new strategy that tries to obtain an optimal desired trajectory

y∗(t), and designs an input that makes the output y(t) track

y∗(t) as accurately as possible.

Specifically, instead of optimizing the input u(t), we let

the optimized variable be y(t). For each response y(t), and

a particular disturbance ∆(t), there will be a corresponding

u(t). Suppose that the corresponding u(t) does not violate

the input constraint (4), noting (2), we can rewrite the set

Θ∆u as a function of ∆(t) and y(t) as follows (the notation

is changed to Θ∆y):

Θ∆y =
{

θ̂ : |ϕT (t)θ̂ −u(t)| ≤ δ (t),∀ t ≥ 0
}

=
{

θ̂ : |ϕT (t)θ̂ − [ϕT (t)θ −∆(t)]| ≤ δ (t),∀ t ≥ 0
}

.
(7)

In the above, since the relationship between y(t) and ϕ(t) is

known precisely, we just write ϕ(t) instead of ϕ(y(t)). Let

Θy =
⋃

∆(t)∈[−δ (t), δ (t)]

Θ∆y. (8)

Then Θy

⋂

Ωθ is the worst-case feasible set that θ might lie

in for a particular ϕ(t). We have the following theorem:

Theorem 1: Suppose that the identification process is to

be done from time 0 to t f . For each input y(t), suppose that

P =
∫ t f

0 ϕ(τ)ϕT (τ)dτ is non-singular. Let

Θy∗
∆
=

{

θ +2P−1
∫ t f

0
ϕ(τ)ǫ(τ)dτ, ǫ(τ) ∈ [−δ (τ), δ (τ)]

}

.

(9)
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Then Θy ⊂ Θy∗.

Proof: If θ̄ ∈ Θy. From (8), θ̄ ∈ Θ∆y for certain ∆(t).
Then from (7), ∀ 0 ≤ t ≤ t f .

ϕT (t)θ̄ − [ϕT (t)θ −∆(t)] ∈ [−δ (t), δ (t)],∀ 0 ≤ t ≤ t f .
⇓

t f
∫

0

ϕ(τ)[ϕT (τ)(θ̄ −θ)+∆(τ)]dτ

∈ {
t f
∫

0

ϕ(τ)ǫ(τ)dτ, ǫ(τ) ∈ [−δ (τ), δ (τ)]}

⇓

θ̄ ∈
{

θ +P−1
∫ t f

0 ϕ(τ)[ǫ(τ)+∆(τ)]dτ, ǫ(τ) ∈ [−δ (τ), δ (τ)]
}

(10)

So, there must be a particular ǭ(t)∈ [−δ (τ), δ (τ)] such that

θ̄ = θ + P−1
∫ t f

0 ϕ(τ)[ǭ(τ) + ∆(τ)]dτ . Since ǭ(τ) + ∆(τ) ∈
[−2δ (τ), 2δ (τ)], it follows that θ̄ ∈ Θy∗. Thus Θy ⊂ Θy∗.

It should be noted that in general, Θy 6= Θy∗. However,

since the computation of Θy is extremely difficult, it is not

advisable to compute the explicit expression of Θy.

It can be seen that the center of Θy∗ is θ , which is

not known in advance. And each element in Θy∗ differs

from its center θ by a vector 2P−1
∫ t f

0 ϕ(τ)ǫ(τ)dτ, ǫ(τ) ∈
[−δ (τ), δ (τ)]. It means that for any identification al-

gorithm mapping u(t) and ϕ(t) to Θy∗ after running

the experiment, the estimation error is within the set

{2P−1
∫ t f

0 ϕ(τ)ǫ(τ)dτ, ǫ(τ) ∈ [−δ (τ), δ (τ)]}. However, if

we use LSE to estimate the unknown parameter, i.e.,

θ̂ = P−1
∫ t f

0
ϕ(τ)u(τ)dτ, (11)

Then the estimation error θ̃ = θ̂ − θ is equal to

P−1
∫ t f

0 ϕ(τ)∆(τ)dτ , which is half of the corresponding ele-

ment in Θy∗. Thus, it is obvious that minimizing the norm

of the feasible set Θy∗ is equivalent to minimizing the

worst-case norm of the estimation error if LSE is used

as estimation algorithm, i.e.,

min
y(t)



















max
ǫ(τ)

∈[−δ (τ), δ (τ)]

[|P−1
∫ t f

0
ϕ(τ)ǫ(τ)dτ|N ]



















, (12)

By solving the above min-max problem with respect to

y(t), we can get an optimal trajectory y∗(t) that minimizes

the worst-case LSE identification error.

C. Choosing a Suitable Norm

1) H∞ Bound Case:

Theorem 2:

max |P−1
∫ t f

0 ϕ(τ)ǫ(τ)dτ|∞ =
∣

∣

∣

∫ t f

0 abs(Pϕ(τ))δ (τ)dτ
∣

∣

∣

∞
,

∀ǫ(τ) ∈ [−δ (τ), δ (τ)]
(13)

where the operator abs(•) is defined as taking the absolute

value of each element in the vector •.

2) Individual Parameter Estimation Bound Case: Some-

times we only focus on one particular parameter of θ . In

this case, only error bound for that parameter needs to be

considered. We don’t have to care about the estimation errors

for other parameters. The following norm that measures the

error bound for the i-th parameter of θ is proposed.

Definition 1:

| • |∞ i
∆
= the sum of elements in the i-th row of abs(•).

(14)

Theorem 3:

max |P−1
∫ t f

0 ϕ(τ)ǫ(τ)dτ|∞i =
∣

∣

∣

∫ t f

0 abs(Pϕ(τ))δ (τ)dτ
∣

∣

∣

∞i
,

∀ǫ(τ) ∈ [−δ (τ), δ (τ)]
(15)

D. Closed-Loop Identification

Incorporating the constraints (4), we propose a novel

method to obtain the optimal trajectory that minimizes the

worst-case estimation error by solving a constrained optimal

control problem:

min
y(t), 0≤t≤t f

(
∣

∣

∣

∫ t f

0 abs(Pϕ(τ))δ (τ)dτ
∣

∣

∣

∞
),

or

min
y(t), 0≤t≤t f

(
∣

∣

∣

∫ t f

0 abs(Pϕ(τ))δ (τ)dτ
∣

∣

∣

∞i
),

subject to

y(t) is 3rd-order continuously differentiable,

ẏ(t) = v(t),
x1min ≤ y(t) ≤ x1max,
x2min ≤ ẏ(t) ≤ x2max,
x3min ≤ ÿ(t) ≤ x3max,
x4min ≤

...
y (t) ≤ x4max,

y(0) = x10, y(t f ) = x1t f
,

ẏ(0) = x20, ẏ(t f ) = x2t f
,

ÿ(0) = x30, ÿ(t f ) = x3t f
,

(16)

In the above, x3min and x3max are set as follows:

x3min =











umin + max
ymin≤x1≤ymax ,

vmin≤x2≤vmax

(φ(x)) · max
θφ∈Ωθ

(|θφ |2)











/θx2max

(17)

x3max =











umax − max
ymin≤x1≤ymax ,

vmin≤x2≤vmax

(φ(x)) · max
θφ∈Ωθ

(|θφ |2)











/θx2max.

(18)

It can be verified that, with these choices of x3min and x3max,

the input constraint in (4) is satisfied, i.e., umin ≤ u ≤ umax.

The constraint x4min ≤
...
y (t)≤ x4max is imposed to make sure

that the input does not change too fast in order to reduce any

possible unmodel high-frequency dynamics from the applied

input u to the actual input to the system, e.g., amplifier

dynamics. The initial conditions and final conditions on the

states of the system specify how the system identification

process should start and stop.
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The optimal solution is denoted as y∗(t). The correspond-

ing optimal bound

∣

∣

∣

∫ t f

0 abs(Pϕ∗(τ))δ∗(τ)dτ
∣

∣

∣

N
is denoted as

J∗. How to solve the above constrained optimal trajectory

planning problem numerically can be found in [1].

E. Control Input Design

After the desired optimal response y∗(t) is obtained, an

optimal feedback control law should be designed such that

the real output y(t) of the system tracks the desired one y∗(t)
as accurately as possible. Various types of controllers with

good tracking capabilities may apply. However, Adaptive

Robust Control (ARC) algorithm will be used here due to

its many advantages over other existing methods [11], [12].

For the system (1), define a switching-function-like quan-

tity p as:

p
∆
= ė+ k1e = x2 − x2eq, x2eq

∆
= ẏ∗− k1e, (19)

where e = x1(t)−y∗(t) is the output tracking error and k1 > 0

is a positive gain. If p is small or converges to zero, then

the output tracking error e will be small or converge to zero

since Gp(s) = e(s)
p(s) = 1

s+k1
is a stable transfer function. So

the rest of the design is to make p as small as possible.

Differentiating (19) and noting (1), one obtains

θx2 ṗ = u+θ T ϕ ′(x)+∆(x,u, t), (20)

where ẋ2eq
∆
= ẍd − k1ė and ϕ ′T = [ẋ2eq,φ

T ]. We propose the

following ARC control law u∗:

u∗ = ua +us, ua = −ϕ ′T θ̂c, (21)

where ua is the adjustable model compensation needed for

perfect tracking, and us is a robust control law to be synthe-

sized later. θ̂c is obtained using the following discontinuous

projection law:

˙̂θc = Pro jθ̂c
(−Γφ p) (22)

where Γ > 0 is a diagonal matrix. The projection mapping

Projθ̂ (•) = [Projθ̂c1
(•1), · · · ,Projθ̂c4

(•4)]
T is defined in ele-

ment as

Projθ̂ci
(•i) =







0 if θ̂ci = θimax and •i > 0

0 if θ̂ci = θimin and •i < 0

•i otherwise

(23)

Substituting (21) into (20), and then simplifying the re-

sulting expression, one obtains

θx2 ṗ = us +ϕ ′T θ̃c +∆, (24)

where θ̃c = θ̂c − θ . The robust control function us has the

following structure:

us = us1 +us2, us1 = −k2 p, (25)

where us1 is a simple proportional feedback to stabilize the

nominal system and us2 is a smooth robust performance

feedback term having the following properties[11], [12]:

p{us2 −ϕ ′T θ̃c +∆} ≤ ε
pus2 ≤ 0

(26)

where ε is a design parameter that can be arbitrarily small.

With the proposed control law, we have the following theo-

rem:

Theorem 4: The ARC control law (21) guarantees that

[13].

A. In general, all signals are bounded. Furthermore, the

positive definite function Vs = 1
2
θx2 p2 is bounded above by

Vs(t) ≤ exp(−λ t)Vs(0)+
ε

λ
[1− exp(−λ t)], (27)

where λ = 2k2/θx2max.

B. If after a finite time tN , there exist parametric uncer-

tainties only (i.e., ∆ = 0, ∀t ≥ tN), then, in addition to results

in A, zero final tracking error is also achieved, i.e, e −→ 0

and p −→ 0 as t −→ ∞.

The proof is similar to [13].

F. Post-Experiment Identification

After applying the optimal input u∗(t) designed in the last

subsection to the system (1) from time 0 to t f , the response

of the system y(t) will be measured. Since ϕ(t) involves

ÿ which is not measurable, a first-order filter H f (s) = w
s+w

is used so that only y and ẏ are used in the identification.

Specifically, let

u f (t) = ϕT
f (y, ẏ, t)θ −∆ f (y, ẏ, t), (28)

where u f (t) = F−1{H f (s)} ∗ u(t), ϕT
f (y, ẏ, t) =

[y
(2)
f ,−φ T

f (y, ẏ, t)]T = [F−1{sH f (s)} ∗ ẏ,−F−1{H f (s)} ∗

φ T
f (y, ẏ, t)]T , ∆ f (y, ẏ, t) = F−1{H f (s)} ∗ ∆(y, ẏ, t).

F−1 denotes the inverse Fourier transformation,

and ∗ denotes the convolution operation. It is

trivial to check that |∆ f (x, t)| ≤ δ f (y, ẏ, t), where

δ f (y, ẏ, t) = F−1{H f (s)} ∗ δ (y, ẏ, t) is the filtered bound

of uncertainties. Thus, (28) still has a set-membership

description of uncertainty.

With LSE used as identification algorithm, according to

subsection B,

|θ̃lse|N ≤

∣

∣

∣

∣

∫ t f

0
abs(Pf ϕ f (τ))δ f (τ)dτ

∣

∣

∣

∣

N

∆
= J f . (29)

It should be noted that J f 6= J∗ because ϕ(t) 6= ϕ∗(t). In order

to make J f close enough to J∗, ϕ f −ϕ∗ has to be as small

as possible. To achieve this, the bandwidth of the filter (w)

should be properly selected. The first term of ϕ f −ϕ∗ is

y
(2)
f − ÿ = F−1{sH f (s)}∗ ẏ− ÿ∗

= F−1{sH f (s)}∗ ˙̃y+F−1{H f (s)−1}∗ ÿ∗
= F−1{ w

s+w
}∗ ¨̃y+F−1{ −s

s+w
}∗ ÿ∗.

(30)

Since ˙̃y can be made arbitrarily small, ¨̃y is mainly composed

of high frequency component. Thus, we see that if w is

chosen small, the first term will shrink. But the second term

will increase. This puts a tradeoff in choosing w, i.e., w can

neither be chosen too large nor too small. However, if the

level of (φ T θφ + ∆)/θx2 is much smaller than the level of

ÿ, then ¨̃y itself will be small. Then w can be chosen to be

large.
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The worst-case bound using LSE is thus J f = J∗ + Je,

where Je is the additional worst-case bound level resulting

from ϕ f −ϕ∗.

III. EXPERIMENTAL RESULTS

In this section, we consider a real system as an exam-

ple. In the Precision Mechatronics Laboratory at Zhejiang

University, a two-axes commercial Anorad HERC-510-510-

AA1-B-CC2 Gantry by Rockwell Automation has been set

up. Both axes of the gantry are powered by Anorad LC-50-

200 iron core linear motors and have a travel distance of 0.51

m. Linear encoders provide both axes a position measurement

resolution of 0.5µm. The entire system will be used as

motion system hardware for our study. To implement the

real-time control algorithm, the above system is connected

to a dSPACE CLP1103 controller board.

The dynamics of 1-DOF linear motor systems can be rep-

resented by the following second order differential equation

[13], [10]:

Mẍ+Bẋ+Fc(ẋ)+ d̄ +∆(x, ẋ, t) = u (31)

where x represents the position of linear motor, with its

velocity and acceleration denoted as ẋ and ẍ respectively.

M and B are the mass and viscous friction coefficient nor-

malized with respect to the input gain, respectively. Fc(ẋ) =
A f S f (ẋ) is the Coulomb friction term, where A f represents

the unknown normalized Coulomb friction coefficient and

S f (ẋ) = arctan(β ẋ) is a known smooth function used to ap-

proximate the traditional discontinuous sign function sgn(ẋ)
for effective friction compensation in implementation. u is

the control input voltage. d represents the constant portion of

lumped disturbances, ∆(x, ẋ, t) represents the varying portion

of lumped disturbances.

Due to physical limitations, the states and input of the

system should satisfy the following constraints:

−0.01m ≤ x1 ≤ 0.4m

−2m/s ≤ x2 ≤ 2m/s

−10V ≤ u ≤ 10V

(32)

For this type of linear motor, the unmodeled uncertainties

are mainly composed of dynamic friction and cogging force.

Dynamic friction exist in low speed, and cogging force is

position dependent and is varying in the full traveling range.

Denoting θ = [M, B, Fc, d̄]T . After conducting some sim-

ple identification using square wave and reading the manual

provided by the manufacturer, we can give a conservative

guess of the range of θ , i.e., θmax = [0.18, 0.5, 0.5, 0.5]T

and θmin = [0.08, 0, 0, −0.5]. The bound of the uncertain

nonlinearity is characterized as follows with the effect of

dynamic friction and cogging force being considered:

|∆(x, ẋ, t)| ≤ δ (x, ẋ, t),

δ (x, ẋ, t) =

{

0.25 |ẋ| ≤ 0.1
0.15 |ẋ| > 0.1

.
(33)

Now our objective is to estimate θ as accurately as possible,

i.e., we want to shrink the conservative bound defined by

θmax and θmin to our best.

The method proposed in section II will be applied here.

Since what we care about are the values for M, B and

Fc, the experiment will be done for three times. At each

time, letting | • |N = | • |∞i, i = 1,2,3, we want to estimate

the i-th parameter of θ as accurately as possible. When

solving the optimal trajectory planning problem in discrete-

time domain at each time, we let T = 0.01 and try different

Ni – Ni = 20,30,40,50,60. The Ni that achieves the smallest

J∗i will be adopted. The initial state at t = 0 and final

condition at t = 2NiT are set as [0, 0, 0] and [0, 0, 0],
respectively. while at time t = NiT another constraint is

added: the position at that instance should be at greater

than 0.3 to guarantee sufficiently long traveling range. The

above optimal desired trajectory obtained is from time 0

to t f = 2NiT . Concatenating this trajectory one by one, an

optimal periodic desired trajectory is formed and used to

design the ARC law.

The optimal desired trajectories y∗i(t) at each time are

plotted in Fig.1,2,3. The corresponding Ni and optimal J∗i

are listed in Tab.I. Then, after conducting the closed-loop

experiment for i = 1,2,3 with ARC control law applied, the

control inputs and tracking errors at each time are plotted in

Fig.4, 5 and 6, respectively. The bandwidth of the filter is

selected as w = 1000. At each time, using LSE with filtered

signals, we get the estimated values of M, B and Fc. They are

listed in Tab.II together with the corresponding error bound.

It can seen that, with the proposed experimental design

method, the feasible set for the parameters has been reduced

substantially compared to the original Ωθ . The reduction

for M is most obvious. This is because the regressor term

associated with M is the acceleration, and the maximal

acceleration can be as high as 45m/s2. The estimation of

M at high acceleration will significantly reduce the effect

of unmodeled uncertainties. Thus, our algorithm in section

II automatically computes that the desired trajectory needs

high acceleration parts, as shown in Fig.1,2,3. In comparison,

the error bound for B is reduced a little bit. This is because

the maximal allowable speed 2m/s is much less than the

maximal allowable acceleration 45m/s2 in magnitude. Thus,

the reduction for the error bound of B is not so obvious.

For Fc, because the associated regressor is S f (ẋ) is always

between −1 and 1, which is of very small magnitude, the

error bound for Fc is thus large.

To compare the proposed closed-loop identification with

the open loop identification, we draw the linear motor at

some point in the middle of the traveling range, and apply

two impulse sequences with magnitude of 0.3 and 0.5,

respectively. The input and output are plotted in Fig.7,8. The

filtered input and regressor are used for LSE. The estimated

values and the corresponding error bound for each parameter

is listed in Tab.III. As can be seen from the table, the error

bound is very large for open-loop identification and does

not reduce the pre-known bound Ωθ at all. It is true that

increasing the magnitude of input will make the acceleration

and velocity vary at larger ranges and may thus reduce the

error bounds. However, it’s hard to manage it in open loop

because the velocity or position can easily go out of bound
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for large input.
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